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Summary

The human masticatory system consists of a mandible which is able to move with respect to the skull at its bilateral temporomandibular joint
(TMJ) through contractions of the masticatory muscles. Like other synovial joints, the TMJ is loaded mechanically during function. The articular
surface of the mandibular condyle is covered with cartilage that is composed mainly of collagen fibers and proteoglycans. This construction
results in a viscoelastic response to loading and enables the cartilage to play an important role as a stress absorber during function. To un-
derstand its mechanical functions properly, and to assess its limitations, detailed information about the viscoelastic behavior of the mandibular
condylar cartilage is required. The purpose of this paper is to review the fundamental concepts of the biomechanical behavior of the mandib-
ular condylar cartilage. This review consists of four parts. Part 1 is a brief introduction of the structure and function of the mandibular condylar
cartilage. In Part 2, the biochemical composition of the mandibular condylar cartilage is summarized. Part 3 explores the biomechanical prop-
erties of the mandibular condylar cartilage. Finally, Part 4 relates this behavior to the breakdown mechanism of the mandibular condylar car-
tilage which is associated with the progression of osteoarthritis in the TMJ.
ª 2009 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
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Introduction

The so-called diarthrodial joints allow relative motion of the
articulating bones in reaction to the forces produced by the
surrounding muscles1. Furthermore, they act as growth
centers for the skeleton2. The articulating ends of the bones
are covered by a thin and highly deformable layer of articu-
lar cartilage, a dense connective tissue1. The joint cavity,
the space between the cartilaginous surfaces, is filled with
a small amount of synovial fluid which serves as a lubricant.
The articular capsule, augmented with ligaments, tendons,
and other soft tissues inside and outside the joint compart-
ment, provides stability to the joint. It helps to maintain
a proper alignment of the articulating bone ends during mo-
tion, and prevents the synovial fluid from flowing away1.
Generally, daily activity is coupled with joint motion and joint
loading. Diarthrodial joints then act as biological bearings,
with tribological characteristics such as friction, lubrication,
and wear3.

The human masticatory system consists of a mandible
which is able to move with respect to the skull, guided by
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two temporomandibular joints (TMJ) through contractions
of the masticatory muscles. Like many other synovial joints,
the TMJ enables large relative movements4,5. As the man-
dibular condyle undertakes both translatory and rotary
movements, the TMJ can be described as a sliding-gingly-
mus joint. Very unlike most other joints, in the TMJ the artic-
ular surfaces are separated by a cartilaginous articular disc
with nonuniform thickness6,7. This disc is able to move
smoothly together with the mandibular condyle along the ar-
ticular eminence while it is simultaneously rotating under-
neath5. The TMJ disc is connected superiorly to the
temporal bone and inferiorly to the mandible by relatively
loose fibrous structures that make up the articular capsule.
It is reinforced laterally by the temporomandibular ligament,
which is the only capsular structure that runs directly be-
tween the temporal bone and the mandible7.

The articular surfaces of the TMJ are highly incongruent.
If these surfaces would be in contact directly the contact
area would be very small, which would lead to large peak
loads and friction. The presence of the TMJ disc in combi-
nation with the articular cartilage of this joint is believed to
prevent these peak loads8e12, as they are capable to adapt
their shape to that of the bony articular surfaces by defor-
mation. Unfortunately, the pristine structures of the articular
surfaces often deteriorate with aging by internal derange-
ment, and arthritis. Then they erode and become increas-
ingly roughened, leading to pain and dysfunction.
Eventually, this may progress into osteoarthritis (OA).
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Degradation is frequently preceded with internal derange-
ment of the TMJ characterized by an abnormal positional
relationship of the disc relative to the mandibular condyle
and the articular eminence. Ultimately, TMJ-OA is charac-
terized with deterioration and abrasion of articular cartilage,
and thickening and dysfunctional remodeling of the underly-
ing bone13. This results in painful and impaired function with
limited movement characteristics.

During normal and abnormal function the joints are loaded.
This causes its cartilaginous structures to deform. The magni-
tude of deformation and the resulting stress is, besides the na-
ture of the applied loads, primarily determined by the
biomechanical properties of the cartilage, such as stiffness.
An understanding of these properties is important for several
reasons. First, they determine the role of the cartilage as
a stress-distributing and load-absorbing structure12,14. Sec-
ond, mechanical stress and strain affects the extracellular ma-
trix synthesis in the cartilage15,16, resulting in an adaptation of
stiffness. Third, the mechanical properties of the cartilaginous
structures and their alterations by joint loading will also influ-
ence the stresses and strains that occur in the subchondral
layers, which are of critical importance for damages on the
short term and bone remodeling on the long term. Fourth, pre-
cise information about the biomechanical properties of the ar-
ticular cartilage is required to develop suitable joint simulation
models, with which the distribution of stress and strain in the
structures of the joint can be estimated17. This will enable pre-
diction of the effects of mechanical manipulation of the joints in
the process of prevention or treatment of joint derangements.
Finally, information on the biomechanical properties of the ar-
ticular cartilage is indispensable for the development of tissue-
engineered replacements for damaged TMJ components.

In this paper, the fundamental concepts of the biome-
chanical behavior of the mandibular condylar cartilage are
reviewed. The review is divided into four parts. The first
part introduces the structure and function of the mandibular
condylar cartilage. Part 2 relates the biomechanical behav-
ior to the biochemical composition of the mandibular condy-
lar cartilage. In Part 3, the biomechanical properties of the
mandibular condylar cartilage are summarized. Finally,
Part 4 relates this behavior to the breakdown mechanism
of the mandibular condylar cartilage associated with the
progression of OA in the TMJ.
Structure and function of the mandibular condylar
cartilage

Mandibular condylar cartilage plays a crucial role in TMJ
function. It facilitates articulation with the TMJ disc and re-
duces point loads on the underlying bone14. It is of the fi-
brous type and is therefore structurally different from the
generally applied hyaline articular cartilage.

The cartilage layer on the mandibular condyle is from the ar-
ticular surface to the underlying bone, composed of several
zones: the fibrous, proliferative, mature and hypertrophic
zones18,19. Essentially, the proliferative zone serves as a sep-
arating barrier between the fibrocartilaginous fibrous zone and
the hyaline-like mature and hypertrophic zones. The fibrous
zone is composed of fibroblast-like cells, which have a flat
shape. Their endoplasmic reticulum is surrounded by a dense
intercellular matrix of collagen fibrils and ground substance20.
The proliferative zone plays an important role as a cell reser-
voir. It has mesenchymal cells distributed heterogeneously
as chondrocyte precursors for the underlying zones21. Differ-
entiated chondrocytes are found in the mature and hypertro-
phic zones. Here an increase of degenerated chondrocytes
has been noted close to the subchondral bone20. The collagen
fibers of the fibrocartilage are arranged in several distinct
zones22, and are considered to provide mainly tensile strength
to the cartilage. Shear strength has been suggested to origi-
nate from cross-links between the collagen fibers23. Mandibu-
lar condylar cartilage differs from general articular cartilage by
the presence of type I collagen24. This is dominant in the super-
ficial zone, though type II collagen (the dominant type in hya-
line cartilage) is dominant in the mature and hypertrophic
zones. In addition collagen type III isobserved in the superficial
zone25, while collagen type X, which is also commonly found in
hyaline cartilage, is present in the mature and hypertrophic
zones26,27. In articular cartilage, collagen forms a three-dimen-
sional network and thus impacts its form, stability and tensile
strength and resistance to shear forces. When cartilage is
loaded by compression, the low permeability of the collagen
network impedes the interstitial fluid to flow through the colla-
gen network28. This feature contributes to the viscoelastic
properties of cartilage. The collagen matrix is organized in an
arched structure29. The fibers curve from a radial orientation
at the subchondral bone into a tangential orientation at the ar-
ticular surface29. These fibers run predominantly in parallel. In
the mandibular condylar cartilage, collagen fibers run mainly in
the antero-posterior direction14, which is suggested to be an
optimized orientation to resist antero-posterior shear forces.

Resistance to compressive forces is due to the presence
of proteoglycans which are embedded in the collagen net-
work30,31. Proteoglycans are able to bind the interstitial
fluid. Under compression this fluid may pressurize to bear
the actual compressive forces, especially at high strain
rates32. Versican and decorin are among the proteoglycans
present in the mandibular condylar cartilage, but the major
proteoglycan in this structure is aggrecan. The latter is
mainly located in the hypertrophic and mature zones31,33.
It provides osmotic swelling pressure to the cartilage which
also contributes to resistance to compression31,33.

The fibrocartilage covering both articular surfaces in the
TMJ is avascular. Consequently, for nourishment these
structures are dependent on the intra-articular synovial fluid.
Partially thanks to the presence of this fluid the fibrocartilagi-
nous cells even have limited ability for self-repair34e36. The fi-
brocartilaginous nature of the condylar cartilage along with
the lubrication function of the intra-articular synovial fluid al-
low the TMJ to conform under function and ensure that loads
are absorbed and spread over larger contact areas8e12.
Biochemical composition of the mandibular
condylar cartilage

Articular cartilage contains chondrocytes and a large
amount of surrounding matrix macromolecules such as pro-
teoglycans, glycosaminoglycans (GAGs) and type II, IX,
and XI collagens37,38. These molecules contribute to the
flexibility of cartilage and protection of the joint components
from mechanical threats originating from, for instance, com-
pression, shearing and stretching loads. The load-bearing
functions of cartilage are mainly provided by the viscoelastic
property of collagen fiber network and the osmotic pressure
due to the presence of proteoglycans39.

Condylar cartilage of the TMJ is macroscopically similar
in structure to articular cartilage in other synovial joints,
and also similar regarding pathological changes. For in-
stance, TMJ arthritis resembles knee or hip arthritis
largely40. Microscopically, mandibular condylar cartilage is
dissimilar to articular cartilage, especially regarding its con-
stituents. Where articular cartilage in general is composed
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of hyaline cartilage, the mandibular condylar cartilage con-
sists largely of fibrocartilage (Fig. 1), with thick multi-layers
composed of several collagen fiber zones41. The surface of
the mandibular condylar cartilage contains primarily type I
collagen where primarily type II is present in articular carti-
lage in general. The latter is also present in mandibular con-
dylar cartilage, in its matured layer located beneath the
fibrous layer42. An immunohistological study revealed that
type IX and XI collagens are also present in the condylar
cartilage of neonatal mammalian43. The functional conse-
quences of the differences between fibrocartilage and hya-
line cartilage due to the collagen composition, however,
remain unclear.

The proteoglycans consist of a protein core to which
GAGs are attached. In aggrecan, these are large strands
of negatively charged polysaccharides. Due to their charge
they enable the proteoglycans to trap water. They are a ma-
jor extracellular matrix component, which exert a key func-
tion by contributing to both the structural and functional
integrity. They intertwine creating large proteoglycan aggre-
gates to give the material viscosity.

Both in fibrocartilage and hyaline cartilage hyaluronic acid
(HA) is the principal GAG, besides chondroitin and keratan
sulfate38. It is a GAG consisting of repeated disaccharide
units of D-glucuronic acid and N-acetyl-D-glucosamine and
with varying, but high molecular weight (800e1900 kDa) in
its native state44. The rheological properties of HA in solu-
tion are characterized by a remarkably high viscoelastic-
ity45,46. HA imparts the viscoelastic character of the
solution due to its specific structure, which is generally ex-
plained as random coil-entanglement. HA forms reversible
and ordered aggregates and extensively branched networks
at physiological temperatures in solution47. The large size
and high negative charge of HA contribute to the physiolog-
ical features associated with its structural fluid dynamics,
and the homeostasis and maintenance of connective tissue
integrity. HA in cartilage has been demonstrated to change
with aging. The molecular weight of HA in human articular
cartilage decreases from 2000 to 300 kDa between the
ages of 2.5 and 8648. As HA in cartilage is essential to main-
tain viscosity such decrease in molecular weight can be con-
sidered to lead to reduction of its biorheological properties.

Furthermore, HA is also present in synovial fluid, where it
is believed to have a crucial function in articular joint
Fig. 1. Photomicrographs of the TMJ and the articular cartilage layer. Car
toluidine blue staining. Bar indicates
lubrication49,50. The function of HA is highly dependent on
its molecular weight. High molecular weight HA is associated
with viscoelasticity of synovial fluid. Increase of low molecu-
lar weight HA, as in aging, appears to result in a reduction of
viscoelasticity, leading to impairment of joint lubrication51.

Lubricin, a high molecular mass (w345 kDa) mucinous
glycoprotein with small amounts of keratan and chondroitin
sulfate substitution, also known as proteoglycan 452 or artic-
ular cartilage superficial zone protein is detected in the su-
perficial zone of articular cartilage53. This molecule plays
a major role in the boundary lubrication of articular surface
with high contact pressure and low speed sliding54.

From these findings, it is suggested that the various con-
tents of cartilage and synovial fluid contribute to the function
of articular joints: to enable skeletal movement under more
or less heavy loads. Overloading and subsequent deteriora-
tion of the metabolism and simultaneous remodeling pro-
cesses in the underlying bone may result in degenerative
diseases in TMJ.
Biomechanical properties of the mandibular
condylar cartilage (Table I)

Mandibular motions can be continuous or intermittent .
These motions, sometimes combined together, result in static
and dynamic loading in the TMJ11. Static loading occurs, for
example, during clenching, grinding, and bruxism; dynamic
loading occurs during, for example, talking and chewing. Me-
chanical loading in the TMJ is necessary for the growth, devel-
opment and maintenance of the joint tissue. Generally,
dynamic loading is likely to lead to an anabolic effect in the joint
tissues, while static loading, especially if prolonged or exces-
sive, induces a catabolic effect. As both sliding and rotating
movements occur simultaneously between the articulating
surfaces, the TMJ is subjected to a multitude of different load-
ing regimen during mandibular movements. Basically, three
types of loading can be distinguished: compression, tension,
and shear. During natural loading of the joint, combinations
of these basic types occur on the articulating surfaces. During
joint loading, its articular cartilage layers and the fibrocartilagi-
nous disc undergo deformations (strain) dependent on their
material properties.These strains are accompaniedby internal
forces (stress) within the tissue.
tilage layers of condyle in 16-week-old male rats were visualized by
200 mm (A) and 100 mm (B).



Table I
Summary of elastic moduli (in MPa) of mandibular condylar cartilage

Species Loading motion Loading directiony Region

Cent* AM* AL* PM* PL*

Tension
Kang et al.57 Pig Static A-P 9.04

M-L 6.55
Singh and Detamore14 Pig Static A-P 12.2 (7.4)z

M-L 6.5 (3.8)z
Compression

Kuboki et al.60 Pig Static (sustained) 2.68e4.75x
Static (intermittent) 3.36e6.621x

Hu et al.59 Rabbit Dynamic 2.34 1.53 1.11 0.95
Patel and Mao58 Rabbit Dynamic 0.95 1.02
Tanaka et al.12 Pig Dynamic 1.36

(0.34)k
1.12

(0.24)k
0.79

(0.16)k
0.72

(0.16)k
Shear

Tanaka et al.64 Pig Dynamic A-P 1.50e2.03 (0.41e0.51)k
Tanaka et al.65 Pig Dynamic M-L 0.33e0.55 (0.09e0.15)k

*Central (Cent) region, anteromedial (AM), antoerolateral (AL), posteromedial (PM), and posterolateral (PL) regions.

yAntero-posterior (A-P) and medio-lateral (ML) direction.

zRelaxed modulus.

xEquilibrium modulus.

kViscous modulus.
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The functional role of mandibular condylar cartilage is sim-
ilar to articular cartilage in general. It plays an important role as
stress absorber during function, and enables functional joint
movements11,55. However, the more fibrous nature of TMJ
cartilage is responsible for some differences. As determined
from its embryologic origin, this cartilage cannot be classified
as a primary growth center. It is characterized as secondary
cartilage, primarily associated with membrane bone56. The bi-
ological composition and histochemical content of the man-
dibular condylar cartilage, therefore, differ from articular
cartilage in the synovial joints as described in Part 2.

The mandibular condylar cartilage behaves as a nonlinear
viscoelastic material, just like the TMJ disc. Anisotropy of its
mechanical properties is characterized by larger average
tensile strength, tensile stiffness, and energy absorption in
the antero-posterior direction than in the medio-lateral direc-
tion. The reported Young’s moduli in the antero-posterior
direction were 1.5e2 times larger than those in the medio-
lateral direction57. Furthermore, both the instantaneous
and relaxed moduli have been reported about twice as large
in the antero-posterior direction14. These findings are corre-
lated well with the predominantly antero-posterior fiber ori-
entation in the fibrous zone of condylar cartilage.

Under dynamic compression, the dynamic elastic modu-
lus was significantly larger than the dynamic viscous
one12. These dynamic properties, however, varied signifi-
cantly between antero-posterior regions12,58. For instance,
the anterior area revealed significantly larger moduli than
the posterior area12. These findings were in agreement
with the nano-indentation findings of Hu et al.59. The resis-
tance to compression is mainly dependent on the density of
proteoglycans60. As the distribution and amount of these
aggregates are different in various regions of the mandibu-
lar condylar cartilage, the observed regional differences in
the compressive modulus can be explained accordingly.

Of the three types of loading, shear loading is the most im-
portant in a tribological aspect. During joint loading the carti-
lage layers are sheared to adapt their shape to the
incongruent articular surfaces. Excessive shear, however,
can cause a fatigue, which irreversibly may lead to damage
of cartilage61e63. Furthermore, excessive shear stress is as-
sociated with a breakdown of joint lubrication through a re-
duction of HA molecular weight. Previously, our work has
demonstrated that the shear behavior of the mandibular con-
dylar cartilage was dependent on the frequency and ampli-
tude of the applied shear strain64. The dynamic shear
moduli increased nonlinearly with the frequency irrespective
of the shear strain amplitude64. In other studies it was re-
ported that the shear stress in cartilage was very sensitive
not only to the frequency and direction of the loading but
also to the amount of shear and compressive strain53,61.
Our recent study indicated that the condylar cartilage had di-
rection-dependent dynamic shear characteristics65. The re-
sistance to shearing is larger in anterioreposterior than in
medio-lateral direction, but the viscous properties are not de-
pendent on the direction65. This may indicate that the former
might be attributed to anisotropy of collagen cross-links.

With respect to the dynamic shear modulus in the antero-
posterior direction, the dynamic elastic modulus was also
larger than the dynamic viscous one64 and these values
were almost the same as those in dynamic compression12.
In contrast, the dynamic shear modulus in the medio-lateral
direction was about 30% of the antero-posterior one, which
implies that the dynamic shear behavior of the mandibular
condylar cartilage is also anisotropic65. As described
above, excessive shear loading can induce a breakdown
of cartilage. Therefore, the shear characteristics suggest
that the mandibular condylar cartilage has a weaker resis-
tance to medio-lateral shear stress, which more easily might
lead to degradation of articular cartilage and synovial fluid.
Breakdown mechanism of the mandibular condylar
cartilage

The dominant factor in relation to cartilage wear is age. Both
frequency and severity of the cartilage breakdown appear to
increase with aging. For example, degenerative joint disease
occurs typically in the fifth and sixth decades of life when artic-
ular cartilage usually starts to lose its cellular density and
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herewith its adaptive capacity66. Age-related changes have
also been detected in the TMJ components. For example,
the calcium content of the human TMJ disc increases progres-
sively with aging67,68. Furthermore, the amount of GAGs in the
disc increases markedly from newborns to mature adults69.
This increase will elevate the osmotic swelling pressure and
hence the cartilaginous stiffness.

The major direct cause of mandibular condylar cartilage
breakdown is overloading9,13. With respect to TMJ-OA, the
mechanism of overloading is probably the same as that in
the other synovial joints. Chondrocytes e especially hypertro-
phic chondrocytese appear to have evolved mechanorespon-
sive mechanisms70,71. They may lead to an increase in
metabolic activity and activation of pathological processes
which could lead to irreversible cartilage degradation72. The
key mediators of cartilage degradation include the matrix met-
alloproteinases (MMPs) and the closely related aggreca-
nases73. Collagen type II is degraded by the first, while
aggrecan, the major proteoglycan in cartilage, is degraded
by both74,75. These proteases, especially aggrecanase-1
and -2, are important mediators of aggrecan loss in cytokine-
stimulated normal cartilage and in already-damaged OA carti-
lage73. MMP-1, -3 and -9 are abundantly present in cartilage
and synovial fluid in joints under pathologic conditions76,77.

Cyclic tensile pressure has been demonstrated to up-reg-
ulate the expression of MMP-1316. Also vascular endothe-
lial growth factor (VEGF) is up-regulated, whereas the
expression of tissue-inhibitors of matrix metalloproteinase
(TIMP) -1 is down-regulated. Cyclic hydrostatic pressure
appeared to have the opposite effect71. VEGF expression
in OA cartilage appeared to be progressive with mechanical
overload. VEGF induction in chondrocytes by mechanical
Fig. 2. Schematic illustrations of the concept of mandibular condylar cartila
TMJ mediate the destructive processes associated with osteoarthrosis a
overloading is linked to activation of the HIF-1, leading to hypoxia in the joi
TIMPs which are among the effectors of extracellular matrix remodeling. O

the HA degradation by free radicals. The regulation of HA produ
overload is linked to activation of the hypoxia-induced tran-
scription factor-1 (HIF-1) which is known to bind to hypoxia
response element (HRE) in the human VEGF gene pro-
moter78. After mechanical overload chondrocytes were
strongly immunopositive for HIF-1a, resulting in induction
of VEGF79. VEGF, which is also enhanced by hypoxia
and cytokines80,81 acts mainly on endothelial cells by stim-
ulating proliferation, migration, and induction of various
genes involved in tissue remodeling. Recently, its expres-
sion in mandibular condylar cartilage was demonstrated
abundantly after mechanical overload which indicated its
relationship with TMJ-OA36. VEGF expression in chondro-
cytes has been demonstrated to be induced by high-intensity
stress82 and, therefore, may act in cartilage as an autocrine
inducer of MMPs (Fig. 2).

In condylar cartilage associated with TMJ-OA, the number
of blood vessels and osteoclasts is markedly increased in the
area directly below the hypertrophic cell layer. In the same
layer VEGF-expressing chondrocytes were detected36. It is
reported that VEGF played an important role not only in endo-
thelial cell recruitment but also in osteoclast recruitment83,84.
Macrophage-colony stimulating factor (M-CSF) and VEGF
have been demonstrated to have overlapping function in
the support of osteoclastic bone resorption83. Therefore,
VEGF produced by chondrocytes might be responsible for
migration, differentiation and stimulation of preosteoclasts
and osteoclasts into cartilage. This may induce destruction
of cartilage through vascular invasion which is suggested to
be an early mechanism to turn cartilage into bone85.

With overload of a joint, its intra-articular pressure in-
creases. When this should exceed the capillary perfusion
pressure, it may cause temporary hypoxia, which in turn is
ge degradation. Functional overloading can facilitate hypoxia in the
s an autocrine factor. VEGF induction in OA cartilage by functional
nt tissue. Furthermore, VEGF regulates the production of MMPs and

verloading also causes collapse of joint lubrication as the result of
ction is controlled by various pro-inflammatory cytokines.
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corrected by re-oxygenation on cessation of degradation by
the overloading. Such a hypoxia-re-perfusion cycle has
been reported to nonenzymatically release reactive oxidative
radical species (ROS) such as superoxide anions and hy-
droxyl anions86. One of the effects of ROS in synovial joints
is inhibition of the biosynthesis and degradation of HA, both
causing a marked reduction in viscosity of the synovial fluid86.

It is suggested that HA degradation occurs in pathologic
joints, because of free radical de-polymerization of the HA
chain87,88 or the abnormal biosynthesis of HA by type B sy-
novial cells89,90. Free radicals rapidly de-polymerize HA
in vitro, which may implicate them in the degradation of
HA in vivo. Hereupon the molecular weight of HA in the sy-
novial fluid decreases91. Such degradation affects the vis-
coelastic properties of synovial fluid in arthritic joints,
resulting in impairment of joint lubrication13,87. In the TMJ
this may lead to adhesion of the disc to the glenoid fossa9.
Furthermore, the fragmentation of HA may lead to cartilage
destruction in terms of the enhanced expression of MMPs
as well as the up-regulation of CD4492. As neither healthy
nor inflammatory synovial fluids contain hyaluronidase ac-
tivity, ROS is assumed to cause HA de-polymerization88,93.

The process of regulation of HA production is controlled
by, among others, cytokines like interleukin (IL)-1b, tumor
necrosis factor (TNF)-a, interferon (IFN)g and transforming
growth factor (TGF)b. In rabbit TMJ synovial lining cells it
has been demonstrated that TGFb1 enhances the expres-
sion of HA synthase-2 mRNA in synovial membrane fibro-
blasts94. Such may contribute to the production of high
molecular weight HA in the joint fluid. Several pro-inflamma-
tory cytokines, such as TGFb, TNF-a, IL-1b, IL-6, IL-8, IL-
10, and IL-12, have been detected in the synovial fluid
obtained from patients with TMJ-OA95e97. This indicated
that cytokines in the synovial fluid might be responsible
for progression of the degenerative changes in the TMJ.

Conclusions

TMJ-OA has a similar pathobiology as OA in any other
joint in the body. Therefore, in order to eliminate the confu-
sion amongst patients, clinicians, researchers and third
party insurance carriers, TMJ-OA should be discussed in
the same terms as orthopaedists discuss OA, and not as
a separate disease. Mandibular condylar cartilage plays
a fundamental role in the TMJ function as a stress absorber.
This role is dependent on its biochemical and biomechani-
cal features, which may degenerate with aging and me-
chanical loading. In fact, the cartilage is indispensable for
whole musculoskeletal system85, while TMJ-OA indicates
its collapse. Therefore, an understanding of the pathogene-
sis of TMJ-OA and current clinical treatment are essential to
the successful integration of tissue engineering into the fu-
ture surgical management of TMJ pathology.
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