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SUMMARY

The synaptic insertion or removal of AMPA recep-
tors (AMPAR) plays critical roles in the regulation
of synaptic activity reflected in the expression of
long-term potentiation (LTP) and long-term depres-
sion (LTD). The cellular events underlying this
important process in learning and memory are still
being revealed. Here we describe and characterize
the AAA+ ATPase Thorase, which regulates the
expression of surface AMPAR. In an ATPase-depen-
dent manner Thorase mediates the internalization
of AMPAR by disassembling the AMPAR-GRIP1
complex. Following genetic deletion of Thorase,
the internalization of AMPAR is substantially
reduced, leading to increased amplitudes of minia-
ture excitatory postsynaptic currents, enhancement
of LTP, and elimination of LTD. These molecular
events are expressed as deficits in learning and
memory in Thorase null mice. This study identifies
an AAA+ ATPase that plays a critical role in
regulating the surface expression of AMPAR and
thereby regulates synaptic plasticity and learning
and memory.

INTRODUCTION

The excitatory amino acid glutamate plays important roles in

neuronal development, synaptic plasticity, and neurodegenera-

tion through activation of N-methyl-D-aspartate (NMDA) recep-

tors and a-amino-3-hydroxy-5-methylisoxazole-4-proprionate

(AMPA) receptors (AMPAR) (Besancon et al., 2008; Kessels

and Malinow, 2009). Synaptic strength is thought to be deter-
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mined, in part, through the activity-dependent insertion and

endocytosis of AMPAR (Kessels and Malinow, 2009), which

regulate long-term potentiation (LTP) and long-term depression

(LTD), and the initiation and formation of long-lasting memories

(Kessels and Malinow, 2009). AMPAR are ionophores

composed of a heteromeric complex of combinations of

GluR1 through GluR4 subunits. A number of intracellular

proteins regulate the trafficking of AMPAR, thereby regulating

neuronal excitability (Kessels and Malinow, 2009; Shepherd

and Huganir, 2007).

The C-terminal PDZ-binding domain of GluR2 receptors is

important in AMPAR internalization by binding proteins such

as glutamate receptor-interacting protein (GRIP1) and protein

interacting with C-kinase-1 (PICK1) (Dong et al., 1997; Hanley,

2008; Shepherd and Huganir, 2007). Clathrin adaptor AP2, small

GTPase Rab5, Homer, CPG2, dynamin 3, and Arc/Arg3.1 are

also involved in controlling AMPAR endocytosis as is GluR1

AMPAR phosphorylation. These studies have provided insight

into the protein machinery involved in AMPAR trafficking

(Kessels and Malinow, 2009; Newpher and Ehlers, 2008; Sheng

and Hoogenraad, 2007; Shepherd and Huganir, 2007). However,

the specific mechanisms of AMPAR internalization are not well

understood.

Here we describe and characterize neuroprotective gene 6

(NPG6) (EF688601), currently annotated as Atad1, which we

named Thorase after Thor, the Norse God of Thunder and Light-

ening (Dai et al., 2010). Thorase controls AMPAR internalization

in an ATPase-dependent manner by disassembling GluR2 and

GRIP1 complexes. In the absence of Thorase, the internalization

of AMPAR is decreased, leading to increased amplitude of

miniature excitatory postsynaptic currents, enhanced LTP, and

impaired expression of LTD. These physiologic outcomes result

in deficits in learning and memory. These results define an

ATPase-dependent process that regulates the intracellular

trafficking of AMPAR.
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RESULTS

Thorase Is an AAA+ ATPase
Thorase is a 361 amino acid protein (Figure S1A available online)

containing an AAA ATPase domain composed of Walker A

(ATP-binding motif) and Walker B (ATP hydrolysis motif) motifs,

similar to other ATPases (Figure S1B). Consistent with general

ATPase structures, Thorase contains an N-linker (NL) domain,

which may transduce energy from ATP hydrolysis to the rest of

the protein, and a second region of homology (SRH) that differ-

entiates classically defined AAA proteins from the broader

AAA+ family (White and Lauring, 2007) (Figure 1A and Fig-

ure S1A). Thorase possesses ATPase activity with a Michae-

lis-Menten constant (KM) of 43.4 mM and a Vmax of 11.0 nM

ATP/min/mg protein (Figures 1B and 1C). The ATPase activity

of the Walker A (K193T) (mA-Thorase) mutant or the Walker B

(E139Q) (mB-Thorase) mutant is reduced by 60%–70% or by

greater than 92% in the mutant containing both mutations

(mAB-Thorase) (Figure 1C).

Expression Pattern and Synaptic Enrichment of Thorase
in Mouse Brain
Northern blot analysis shows that Thorase mRNA is expressed

in many tissues with the highest expression in the brain and

testes (Figure S1C). Polyclonal and monoclonal antibodies to

Thorase recognize a single band on immunoblot analysis that

is not present in Thorase gene-deleted tissues (Figure S1D,

see Figure S2D). Immunoblot analysis reveals a heterogeneous

expression of Thorase in mouse brain (Figures S1E and S1F).

Immunohistochemistry shows heterogeneous expression of

Thorase with relatively high expression in hippocampal CA1

pyramidal cells (Figures S1G–S1J).

Subcellular fractionation from whole mouse brain shows that

Thorase segregates into the P2 fraction (crude synaptosome)

but not in the P1 (nucleus) or the S2 (cytosol) fractions. Within

the P2 fraction, Thorase segregates to the LP1 fraction (synap-

tosomal membranes) with minor segregation in the P3 (light

membranes) and LP2 (synaptic vesicle-enriched fraction), and

none in the S3 (cytosol) and LS2 (synaptic cytosol) (Figure 1D).

The subcellular distribution of Thorase was compared to the

synaptic proteins: GRIP1, GluR1, GluR2, postsynaptic density

protein 95 (PSD95), vesicle-associated membrane protein 2

(VAMP2), a-synuclein, and synaptophysin 1. Histone was used

as a nuclear marker and phosphoglycerate kinase 1 (PGK1)

was used as a cytosolic marker (Figure 1D). The enrichment

of these proteins in their respective fractions indicates that

the fractionation was effective. Thorase cosegregates with the

postsynaptic proteins PSD95, GRIP1, GluR1, and GluR2 in

the LP1 fraction (Figure 1D). To investigate the localization of

Thorase with synaptic proteins, primary mouse hippocampal

neurons were costained with Thorase monoclonal antibodies

and synaptic marker antibodies. By confocal microscopy,

Thorase colocalizes with the postsynaptic marker PSD95

(Figures 1E and 1F) and the AMPARs GluR1 and GluR2 (Figures

1G and 1H), whereas it is juxtaposed to the presynaptic

marker synapsin 1. Coimmunostaining of Thorase and the

axon-specific marker SMI312 shows that Thorase is not ex-

pressed in axons (Figure S1K). Coexpression of Thorase with
postsynaptic proteins in HEK293 cells followed by coimmuno-

precipitation indicates that Thorase specifically interacts with

GRIP1 but fails to coimmunoprecipitate with GRIP2, Arc,

Homer 1, Homer 2, PICK1, and PSD95 (Figure 1I). Domain

mapping via coimmunoprecipitation experiments in HEK293

cells with Thorase and different PDZ domains of GRIP1 indi-

cates that Thorase interacts with the PDZ5 domain of GRIP1

(Figure 1J). Coimmunoprecipitation experiments indicate that

Thorase also binds to GluR2 (Figure 1K). GST-pull down of

Thorase with different C-terminal truncations of GluR2 indicates

that Thorase interacts with amino acids 832–839 of the C

terminus of GluR2 (Figure 1L). Thorase also interacts with

GluR2 and GRIP in vivo (see Figure 5). These results taken

together indicate that Thorase is a postsynaptic enriched

protein that colocalizes with AMPAR and interacts with both

GRIP1 and GluR2.

Thorase Overexpression Decreases Surface AMPAR
and AMPA Currents
To explore the possibility that Thorase could regulate AMPAR

surface expression in an ATPase-dependent manner, wild-type

(WT) Thorase or the Thorase ATPase-deficientWalker ABmutant

(mAB-Thorase) with or without a GFP-tag (Figures S1L and S1M)

were overexpressed in high-density mouse cortical and hippo-

campal neural cultures via lentiviral transduction. Expression of

Thorase with or without the GFP-tag decreases the level of

surface GluR2 AMPAR as revealed by a surface biotinylation

assay, whereas mAB-Thorase has no effect (Figures 1M and

1N). Expression of Thorase-GFP leads to a 28.1% reduction in

surface GluR2 receptor intensity in low-density mouse hippo-

campal neurons by live-cell immunohistochemistry with an

anti-GluR2 N-terminal antibody compared to GFP control

cultures (Figures 1O and 1P). Overexpression of mAB-Thorase-

GFP has no effect on surface GluR2 expression compared to

GFP control (Figures 1O and 1P). Adult mice were stereotaxically

injected with lenti-GFP, lenti-Thorase-GFP, or lenti-mAB-

Thorase-GFP virus into the hippocampi. One week later hippo-

campal slices were prepared and NMDA and AMPA currents

were recorded at 40 mV and �70 mV in GFP-positive neurons

(see Figure 6). NMDA currents are not affected by Thorase-

GFP overexpression, but AMPA currents are reduced by 20%

compared to GFP controls (Figures 1Q and 1R). mAB-Thorase-

GFP expression shows no effect on either NMDA or AMPA

currents (Figures 1Q and 1R). Taken together these results

suggest that Thorase specifically regulates AMPAR surface

expression in an ATPase-dependent manner both in vitro and

in vivo.

Generation of Conditional Thorase Knockout Mice
Conditional Thorase knockout (KO) mice were generated by

flanking exon 5 and exon 6 containing the AAA Walker A and

Walker B domains with loxP sites (Figure S2A). Genomic deletion

of Thorase was achieved by breeding to male germline Prot-

amine-Cre deletor mice. Southern blot analysis confirms the

successful targeting with a 9.3 kb WT band and an 11.8 kb tar-

geted band (Figure S2B). PCR confirms the KO of Thorase (Fig-

ure S2C). Immunoblot analysis and immunohistochemistry with

a Thorase-specific C-terminal antibody (see Figure S1D) reveals
Cell 145, 284–299, April 15, 2011 ª2011 Elsevier Inc. 285



Figure 1. The AAA+ ATPase Thorase Is a Postsynaptic Enriched Protein that Regulates AMPAR Surface Expression

(A) Schematic diagrams of Thorase constructs. WT Thorase (Thorase), Thorase with a Walker A domain mutation (K139T) (mA-Thorase), Thorase with a Walker B

domain mutation (E193Q) (mB-Thorase), and Thorase with Walker A and Walker B domains (mAB-Thorase). NL, N-linker; WA, Walker A; WB, Walker B; SRH,

second region of homology.

(B) ATPase activity of WT Thorase; Vmax (nmole/min/mg protein) and Km (mM).

(C) Analysis of ATPase activities of Thorase mutants (mean ± standard error of the mean [SEM] of three experiments performed in triplicate. n = 3. *p < 0.05,

ANOVA with Tukey-Kramer post-hoc test).

(D) Subcellular distribution of Thorase. S1, supernatant of the homogenate at low-speed centrifugation; P1, nuclei and large debris of the corresponding pellet

from S1; S2, supernatant of S1 subjected to medium-speed centrifugation; P2, crude synaptosomes of the corresponding pellet from S2; S3, cytosol, which

corresponds to the supernatant of S2 subjected to high-speed centrifugation; P3, light membranes, corresponding pellet of S3; LP1, synaptosomal membranes;

LS2, synaptic cytosol; LP2, synaptic vesicle-enriched fraction. a-Syn, a-Synuclein; synapt 1, synaptophysin 1.

286 Cell 145, 284–299, April 15, 2011 ª2011 Elsevier Inc.



loss of protein expression in the KO animal (Figures S2D and

S2E). Homozygote Thorase KO mice are viable but significantly

smaller than their WT littermates (Figure S2F). Approximately

80% of the Thorase KO mice die of a seizure-like syndrome

between postnatal days 19 and 25. The remaining 20% survive

up to 8 weeks of age (Figure S2G). No gross developmental or

behavioral defects are observed between heterozygotes and

WT littermates. There are no obvious abnormalities in other

tissues in Thorase KO mice at postnatal day 19, as assessed

by a comprehensive pathologic necropsy of heart, lung, spleen,

kidney, thymus, liver, intestine, testis, eyes, and muscle. Golgi

staining of the CA1 region of the hippocampus does not reveal

any substantial difference in the dendritic complexity of the

Thorase KO mice versus WT mice or in the number or size of

dendritic spines (Figures S2H–S2K). Thorase KO mice also

show normal density of synapses identified by colocalization of

puncta containing both the presynaptic protein synapsin 1 and

the postsynaptic protein PSD95 (Figures S2L and S2M). Hema-

toxylin and eosin (HE) or Nissl staining also show normal brain

morphology and intact hippocampi and cortices from Thorase

KO mice at P20 (Figures S2N and S2O).

Loss of Thorase Results in an Increase
in Surface AMPAR
Levels of AMPAR subunits and associated proteins were

assessed in 19- to 23-day-old Thorase KO mice and WT litter-

mates via immunoblot analysis of whole brain lysate and the

P2 fraction (Figure 2A). AMPAR subunits GluR1 and GluR2 are

increased in both whole brain lysate and the P2 fraction from

Thorase KOmice compared to WT littermates (Figure 2A). There

is a modest increase in the levels of GRIP1 in whole brain lysate

and the P2 fraction in Thorase KO, but there are no obvious

differences in PICK1, NMDA receptor 1 (NR1), NR2B, NR2A,

PSD95, or synapsin 1 (Figure 2A). In Thorase KO low-density

mouse hippocampal neurons, live-cell immuohistochemistry

with anti-N-terminal GluR1 or GluR2 antibodies reveals a

23.8% increase in surface GluR1 (Figures 2B and 2C) and a

28.9% increase in surface GluR2 (Figures 2D and 2E). Specificity
(E) Thorase juxtaposes with the presynaptic marker synapsin 1.

(F) Thorase colocalizes, in part, with the postsynaptic marker PSD95.

(G and H) Similar colocalizations with Thorase are also detected for GluR1 and G

(I) Thorase interacts with immunoprecipitated (IP) myc-GRIP1, but not other myc

(J) Immunoprecipitated Thorase interacts with the PDZ5 domain of GRIP1. Corre

(K) Immunoprecipitated Thorase interacts with GFP-GluR2, but not GFP.

(L) GST pull-down assay indicates that Thorase binds to GluR2 residues 832–83

Thorase immunoblotting of Thorase input are also shown. The illustration depict

(M) Surface biotinylation assay for GluR2 surface expression in primary high-den

Lenti-cFUGW was used as a lentivirus control.

(N) Quantification of surface levels of GluR2 (mean ± SEM) shown in (M). Studen

(O) Representative images of surface GluR2 expression in low-density hippocam

Thorase-GFP. SurfaceGluR2 expression is shown using aGlow scale from black (

resolution images = 20 mm. Scale bar for high-resolution images = 5 mm.

(P) Quantification of surface GluR2 expression (mean ± SEM) shown in (O). Stude

expressing GFP.

(Q) Representative traces of NMDA and AMPA currents of hippocampal CA1 neu

mAB-Thorase-GFP.

(R) Quantification of AMPA amplitudes of hippocampal CA1 neurons in slices from

(mean ± SEM). n = 5 neurons from three different animals for each experimental

See also Figure S1.
of these AMPAR increases in Thorase KO neurons is shown by

similar expression of surface NR1 between Thorase KO and

WT neurons (Figures 2F and 2G). In vivo AMPAR surface expres-

sion was assessed by a Bis(sulphosuccinimidyl)suberate (BS3)

crosslinking assay that enables the quantification of surface

and intracellular receptor pools. The ratio of surface GluR2/intra-

cellular GluR2 is dramatically increased in the cortex, hippo-

campus, and cerebellum from Thorase KO mice compared to

WT littermates (Figures 2H and 2I). These data suggest that

Thorase regulates the distribution of AMPAR and loss of Thorase

results in an increase in the steady-state levels of these recep-

tors at the cell surface.

To evaluate the functional outcome of increased AMPAR

surface expression, spontaneous miniature excitatory postsyn-

aptic currents (mEPSCs) were assessed in CA1 hippocampal

pyramidal neurons from Thorase KO versus WT littermates

(Figures 2J–2M). The amplitudes of mEPSCs are increased in

Thorase KO compared to WT controls by 70% (Figure 2K), and

the frequencies of mEPSCs are similar in neurons from Thorase

KO and WT mice (Figure 2L). There is a rightward shift of the

cumulative probability distributions of mEPSCs in Thorase KO

versus WT neurons, indicating that the increase in amplitude is

distributed across the range of recorded events (Figure 2M).

The increase in mEPSC amplitude is not due to altered presyn-

aptic activity because paired-pulse facilitation (PPF) was not

affected in Thorase KO neurons (see Figure 6B) and no signifi-

cant difference in the input/output (I/O) curves or amplitude of

the field excitatory postsynaptic potentials (fEPSPs) was found

in slices from Thorase KO mice compared to WT mice

(Figure 6A).

Thorase Regulates Synaptic Scaling
Homeostatic scaling of AMPAR was assessed in WT and

Thorase KO low-density hippocampal neurons treated for 48 hr

with TTX (1 mM), which blocks all evoked neuronal activity, or

bicuculline (20 mM), which increases neuronal firing and blocks

inhibitory neurotransmission mediated by GABAA receptors

(Shepherd et al., 2006). WT neurons exhibit a robust increase
luR2. Scale bar = 20 mM. High-power images, scale bars = 5 mM.

-tagged synaptic proteins.

sponding protein regions of the fragments are depicted.

9 in the C-terminal tail. Coomassie stain of input GST fusion proteins and anti-

s the binding region of Thorase on GluR2.

sity cortical cultures infected with different Thorase lentiviruses as indicated.

t’s t test. n = 3. *p < 0.05 when compared with cFUGW.

pal neurons infected with lentivirus expressing GFP, Thorase-GFP, or mAB-

zero) to red (low pixel intensity) andwhite (high pixel intensity). Scale bar for low-

nt’s t test, n = 10–12 cells each group, *p < 0.01, when compared with neurons

rons in slices from mice injected with lenti-GFP, lenti-Thorase-GFP, and lenti-

mice injected with lenti-GFP, lenti-Thorase-GFP, and lenti-mAB-Thorase-GFP

group, Student’s t test, *p < 0.05 when compared with lenti-GFP.
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Figure 2. Knockout of Thorase Increases AMPAR Surface Expression and AMPAR Currents

(A) Western blots of synaptic proteins in total brain lysates and P2 fractions obtained from WT and Thorase knockout (KO) mice. Data represent mean ± SEM.

Student’s t test, n = 3, *p < 0.05, compared with WT mice.

(B) Representative pictures of surface GluR1 in WT and KO primary hippocampal neurons shown using a Glow scale from black (zero) to red (low pixel intensity)

and white (high pixel intensity). Scale bar = 20 mm.

(C) Quantification of surfaceGluR1 levels (mean ±SEM) shown in (B). Student’s t test, n = 12–16 neurons each group, *p < 0.05, when comparedwithWT neurons.

(D) Representative pictures of surface GluR2 in WT and KO primary hippocampal neurons. Scale bar = 20 mm.

(E) Quantification of surface GluR2 levels (mean ± SEM). Student’s t test, n = 12–16 cells each group, *p < 0.05, when compared with WT neurons.

(F) Representative pictures of surface NR1 in WT and KO primary hippocampal neurons. Scale bar = 20 mm.

(G) Quantification of surface NR1 levels (mean ± SEM). n = 10–12 neurons each group. Student’s t test, p > 0.05, when compared with WT neurons.

(H) BS3-crosslinking assay to assess surface (sGluR2) and intracellular (iGluR2) GluR2 in WT and Thorase KO brain tissues. Tubulin serves as a loading control

between WT and KO. Hippo, hippocampus; Cereb, cerebellum.

(I) Quantification of surface and intracellular GluR2 pools shown in (H) in WT and Thorase KO brain tissues (mean ± SEM, three experiments from three WT and

three KO mice, Student’s t test, *p < 0.05, when compared with WT neurons).
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in surface GluR1 (Figures 3A and 3B) and surface GluR2 (Figures

3C and 3D) with TTX treatment. Bicuculline treatment signifi-

cantly lowers surface levels of GluR1 (Figures 3A and 3B) and

GluR2 (Figures 3C and 3D). In Thorase KO neurons, TTX further

increases the surface expression of GluR1 and GluR2 (Figures

3A–3D) but bicuculline has no effect (Figures 3A–3D). These

results suggest that in response to activity, AMPAR can be

inserted into surface membranes, but removal or endocytosis

of AMPAR is blocked in Thorase KO neurons.

Loss of Thorase Results in Reduced Endocytosis
of AMPAR
An ‘‘antibody feeding’’ internalization assay for endocytosis of

surface GluR2 receptors was performed in live neurons incu-

bated with an anti-GluR2 N-terminal antibody followed by treat-

ment with NMDA (20 mM) and glycine (10 mM) to trigger AMPAR

endocytosis (Biou et al., 2008). In WT neurons there is a robust

internalization of surface GluR2 but significantly less in Thorase

KO neurons (Figure 3E), resulting in a 50% reduction in the

internalization index in Thorase KO neurons compared to WT

neurons (Figure 3F). These results suggest that Thorase regu-

lates AMPAR scaling by controlling AMPAR endocytosis. No

significant difference in internalization of transferrin receptors

after stimulation with Alexa 568-conjugated transferrin (Hanley

et al., 2002) was detected between Thorase KO andWT neurons

(Figures 3G and 3H), indicating that Thorase actions on endocy-

tosis are specific to AMPAR.

AMPAR Trafficking Is ATPase Dependent
pH-sensitive GFP (pHluorin) fused at the N-terminal extracellular

domain of GluR1 or GluR2 serves as a spatiotemporal indicator

of AMPAR distribution by fluorescing at pH 7.4 at the extracel-

lular surface and becoming nonfluorescent in endosomes where

the pH is less than 6.0 (Lin and Huganir, 2007). At baseline,

Thorase KO neurons show significantly higher levels of pH-

GluR1 and pH-GluR2 signal intensity than WT neurons (Fig-

ure S3A). In WT hippocampal cultures, NMDA-stimulated

internalization of AMPAR leads to loss of the fluorescent signal

for pH-GluR1 or pH-GluR2 (Figures 4A–4E and Figures S3B–

S3F), and washout of NMDA leads to recovery of fluorescence

consistent with AMPAR endocytosis and recycling as previously

described (Lin and Huganir, 2007). In Thorase KO hippocampal

cultures, NMDA causes a significantly smaller reduction in fluo-

rescence intensity of both pH-GluR1 and pH-GluR2 and fluores-

cence recovery is significantly faster than inWT cultures (Figures

4A–4E and Figures S3B–S3F). These results indicate that

Thorase is required for AMPAR internalization and that Thorase

may inhibit GluR1 and GluR2 recycling back to the plasma

membrane.
(J) RepresentativemEPSC recordings in CA1 hippocampal neurons in brain slices

neurons held at�70mV in the presence of 50 mMTTX and 100 mMPicrotoxin. 2060

KO mice (3 mice, 12 slices, and 20 neurons) were recorded.

(K) Average mEPSC amplitudes are significantly increased in KO hippocampal n

(L) The mEPSC frequency is not significantly increased in KO hippocampal neur

(M) Cumulative probability distributions of mEPSC amplitudes for WT and KO ne

See also Figure S2.
Rescue experiments were performed in Thorase KO hippo-

campal cultures with a TdTomato WT Thorase fusion protein

with similar ATPase activity to WT Thorase (Figure S3G) and

a TdTomato mAB-Thorase fusion protein with an 80% reduction

of ATPase activity (Figure S3G) in the presence of either the pH-

GluR1 or pH-GluR2 in Thorase KO cultures (Figures 4F–4I and

Figures S3G and S3H). NMDA-stimulated AMPAR trafficking in

Thorase KO cultures is restored to WT levels by WT Thorase,

whereas the mAB-Thorase fails to alter AMPAR trafficking defi-

cits in Thorase KO cultures (Figures 4F–4I and Figure S3H).

These results taken together indicate that NMDA-stimulated

AMPAR internalization is mediated by Thorase in an ATPase-

dependent manner and that inhibition of GluR1 and GluR2

recycling back to the plasma membrane by Thorase is ATPase

dependent.
Thorase Provides a Driving Force to Disassemble
the AMPAR Complex
AAA+ ATPases often assist in the assembly or disassembly of

protein complexes (Ogura and Wilkinson, 2001; White and

Lauring, 2007). To explore whether Thorase may function as an

energy motor that dissociates the AMPAR complex to facilitate

endocytosis, AMPAR complexes were prepared from brains of

WT and Thorase KO mice in the presence or absence of ATP

or nonhydrolyzable ATPgS (Figure 5A). Immunobloting with

anti-GluR2 antibody shows that AMPAR complexes were well

prepared andmigrate at approximately 700 kDa. In the presence

of ATP, a substantial portion of the AMPAR complex from WT

mouse brains shifts to approximately 300 kDa (Figure 5A).

However, in the presence of ATPgS, the position of the AMPAR

complex remains stable. In contrast, AMPAR complexes from

Thorase KO mouse brains show no difference in the presence

or absence of ATP or ATPgS (Figure 5A). Coimmunoprecipitation

from mouse hippocampal extracts with an anti-GluR2 antibody

shows that GluR2, GRIP1, and Thorase coexist as a complex

in vivo (Figure 5B). The binding of GRIP1 and Thorase to the

GluR2 complex is sensitive to ATP hydrolysis as there is more

binding in the presence of ATPgS and less binding in the pres-

ence of ATP (Figures 5B and 5C). These results taken together

support the notion that the ATPase activity of Thorase is required

for the disassembly of native AMPAR complexes in vivo.

To confirm whether Thorase directly interacts with GluR2 and

GRIP1, GST-GluR2 C terminus (R2C) and GST-GRIP1 were

expressed and immobilized on the glutathione agarose beads,

respectively. Thorase binds GluR2C in the presence of non-

hydrolyzable Mg2+/ATPgS or EDTA/ATP (Figure 5D). In the

presence of hydrolyzable ATP, Thorase is not retained by

GST-GluR2C (Figure 5D). Thorase weakly binds GRIP1 in the

presence of ATPgS (Figure 5E). However, when GluR2C is
fromWT andKOmice (postnatal days 19–21). Recordings weremade for 10 s in

events fromWTmice (4mice, 16 slices, and 22 neurons) and 1816 events from

eurons compared with WT neurons (mean ± SEM). Student’s t test, *p < 0.05.

ons compared with WT neurons (mean ± SEM). Student’s t test, p > 0.05.

urons show scaled-up amplitudes in KO neurons.
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Figure 3. Deficits in Homeostatic Synaptic Scaling and Endocytosis of AMPAR in Thorase KO Neurons

(A) Representative images of surface GluR1 in hippocampalWT and KOneurons treatedwith TTX (1 mM) or bicuculline (20 mM) for 48 hr. No treatment was used as

control. Surface AMPAR expression is shown using aGlow scale from black (zero) to red (low pixel intensity) andwhite (high pixel intensity). Low-resolution image

scale bar = 20 mm. High-resolution image scale bar = 5 mm.

(B) Quantification analysis of surface levels of GluR1 in WT and KO neurons in (A) after TTX or bicuculline treatment (mean ± SEM). Two-way ANOVA,

n = 10–16 cells each group,*p < 0.05.

(C) Representative images of surfaceGluR2 in hippocampal WT andKO neurons treated for 48 hr with TTX (1 mM) or bicuculline (20 mM). No treatment was used as

control. Surface GluR2 expression is shown using a Glow scale from black (zero) to red (low pixel intensity) and white (high pixel intensity). Scale bar = 20 mm;

High-resolution image scale bar = 5 mm.

(D) Quantification analysis of surface GluR2 intensities in WT and KO neurons after TTX and bicuculline treatment (mean ± SEM). Two-way ANOVA,

n = 10–16 cells each group, *p < 0.01.

(E) Representative images of NMDA-induced endocytosis of AMPAR in WT or KO neurons. Robust internalization of GluR2 was induced inWT neurons by NMDA

treatment (20 mM, 5 min), whereas KO neurons show less internalization. Scale bar = 20 mm; High-resolution image scale bar = 5 mm.
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preincubated with GRIP1 to form GluR2C-GRIP1 complexes,

Thorase shows robust binding to GluR2C-GRIP1 complexes in

the presence of ATPgS (Figure 5F), indicating that Thorase

prefers to bind to AMPAR complexes containing GRIP1.

However, in the presence of ATP, Thorase binding to GluR2C-

GRIP1 complexes is disrupted, suggesting that this binding is

sensitive to ATP hydrolysis (Figure 5F).

To test whether, in the presence of ATP, Thorasemight disrupt

GluR2-GRIP1 interactions, His6-GRIP1 protein was immobilized

on Dynabeads, incubated with GST-GluR2C to form His6-

GRIP1/GST-GluR2C complexes, and then incubated with

GST-Thorase in the presence of ATP or ATPgS (Figure 5G). In

the presence of ATPgS, the complex of His6-GRIP1/GST-

GluR2C is stable (Figure 5Gb), but in the presence of ATP

there is a striking dissociation of GST-GluR2C from His6-GRIP1

(Figure 5Gb). Additionally, in the presence of ATPgS, the His6-

GRIP1/GST-GluR2C complexes are stable even at high concen-

tration of GST-Thorase. In contrast, in the presence of ATP,

200 nM of GST-Thorase causes 75% disassembly of His6-

GRIP1/GST-GluR2C complexes, with nearly complete disas-

sembly in the presence of 400 nM of GST-Thorase (Figure 5H).

Taken together, these results indicate that dissociation of

GRIP1andAMPARcomplexes requires ThoraseATPase activity.
Loss of Thorase Blocks LTD at Schaffer Collateral
Synapses
To determine whether Thorase plays a role in regulating synaptic

plasticity, postsynaptic responses of CA1 neurons were re-

corded during and after stimulation of presynaptic Shaffer collat-

eral axons in hippocampal slices fromWT and Thorase KOmice.

There are no significant differences in the input/output (I/O)

curves or amplitudes of fEPSPs or paired-pulse facilitation

(PPF) in slices from Thorase KO mice compared to WT mice

(Figures 6A and 6B). Collectively, these findings suggest that

Thorase does not play a major role in basal transmission at

CA1 synapses.

LTD and LTPwere evaluated in Thorase KO andWTmice. LTD

was induced in slices from WT littermates with persistent

depression of evoked response (74.9% ± 12.1%of the baseline),

whereas LTD was absent in slices from Thorase KO mice

(105.7% ± 14.3% of the baseline) (Figure 6C). LTP was induced

in slices from WT and Thorase KO mice with the magnitude of

LTP greater in slices from Thorase KO mice (204.2% ± 28.6%)

compared to WT mice (169.9% ± 27.7%) (Figure 6D). These

changes were not due to alterations in gross anatomy (Figures

S2N and S2O) or normal basal synaptic transmission.

NMDA and AMPA currents were recorded simultaneously by

whole-cell patch-clamp during a series of voltage steps. The

NMDA receptor antagonist D-AP5 blocks the current induced

at a positive potential (Figure 6E). The AMPAR antagonist,
(F) Quantification of internalization index shown in (E) as measured as the ratio of i

intensity (integrated fluorescence intensity of internalizedGluR2 plus surfaceGluR

t test, *p < 0.001).

(G) Thorase KO hippocampal neurons show normal transferrin receptor endocyto

37�C. Scale bar = 20 mm.

(H) Quantitation of internalized transferrin receptors in neurons shown in (G). Valu

n = 10, Student’s t test, p > 0.05).
CNQX, abolishes currents at all stimulation voltages; this effect

is reversed during a 20–30 min washout period (Figure 6E). The

maximum amplitude of the AMPA current is significantly

greater in slices from the Thorase KO mice compared to the

WTmice at all stimulus voltages tested (Figure 6F). No significant

change was found in the amplitude of NMDA currents. The ratio

of AMPA current/NMDA current was increased about 30% (Fig-

ure 6F). There is a significant rightward shift in the current-voltage

(I-V) curve at negative stimulation potentials in slices from

Thorase KO mice compared to WT mice (Figure 6G). There is

still a significant rightward shift in the I-V curve at negative stim-

ulation potentials in the presence of the NMDA inhibitor D-AP5

in ThoraseKOslices, confirming that the increasedAMPAcurrent

is caused by increased surface AMPAR (Figure 6H).

The AMPAR rectification index was measured by dividing the

excitatory postsynaptic current (EPSC) amplitude at +40 mV by

that at �70 mV (Isaac et al., 2007). There is no significant differ-

ence in the rectification index betweenWT and Thorase KOmice

(Figure 6I), suggesting that there is no alteration in the synaptic

AMPAR composition in Thorase KO mice. Philanthotoxin 433

(PhTx), a specific antagonist of the GluR2-lacking AMPAR, did

not alter the I-V curves in neurons fromWT and KOmice (Figures

S4A–S4C), suggesting that GluR2-containing AMPAR predomi-

nated in both WT and KO neurons. Although the surface levels

of GluR1 and GluR2 in KO neurons are higher than those of

WT neurons evaluated by immunohistochemistry, there is no

significant change in the ratio of surfaceGluR2 toGluR1 between

WT and KO neurons (Figures S4D and S4E). These results taken

together indicate that knockout of Thorase does not affect

AMPAR subunit composition.

Thorase was reintroduced into Thorase KO hippocampus by

stereotaxic injection of lenti-GFP, lenti-Thorase-GFP, and lenti-

mAB-Thorase-GFP virus. One week later, hippocampal slices

were generated for physiology. There is no effect on AMPAR

currents from lenti-GFP (Figures 6J and 6K); however Thorase-

GFP restores AMPAR currents back to WT levels, whereas,

mAB-Thorase-GFP has no rescue effect (Figures 6J and 6K). In

hippocampal culture, the increased surface expression of GluR2

in ThoraseKOneurons could also be rescued by lentiviral expres-

sion of Thorase-GFP but not by mAB-Thorase-GFP or GFP (Fig-

ures S4F and S4G). Taken together, these results indicate that

the increase in AMPA current in Thorase KO mice results from

lackof Thorase and not a nonspecific process due to the absence

of Thorase, and the functional effects are ATPase dependent.
Thorase Is Essential for Learning and Memory
To avoid the lethality of Thorase KO mice, Thoraseflox/+ mice

were crossed with CaMKIIa-iCre transgenic mice to restrict the

temporal and spatial deletion of Thorase to the adult forebrain.

Immunoblot analysis and immunohistochemistry verify that
ntegrated fluorescence intensity of internalized GluR2 to the total fluorescence

2). Data represent mean ±SEM (n = 6–11 neurons for each condition. Student’s

sis induced by stimulation with Alexa 568-conjugated transferrin for 15 min at

es represent total internalized Alexa 568-conjugated transferrin (mean ± SEM,
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Figure 4. NMDA-Induced AMPAR Internalization Is Reduced in an ATPase-Dependent Manner in Thorase KO Neurons

(A) Representative images of hippocampal neurons transfected with pHluorin (pH)-GluR1 or pH-GluR2 andmCherry subjected to a NMDA (20 mM, 5min)/washout

cycle. Scale bar = 50 mm.

(B) Time trace of pH-GluR1 fluorescence change in response to NMDA perfusion for the experiment presented in (A) (mean ± SEM, n = 6 neurons for each

experimental group from three individual experiments).

(C) Maximum amplitudes of pH-GluR1 fluorescence intensity changes to NMDA stimulation and average recycling half-time (T1/2, the time taken from maximum

endocytosis to 50% recycling) after NMDAwashout (mean ± SEM, n = 6 neurons from three experiments. *p < 0.01, compared withWT neurons, Student’s t test).

(D) Time trace of pH-GluR2 fluorescence change in response to NMDA perfusion for the experiment presented in (A).
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Thorase is largely eliminated from forebrain structures including

the hippocampus and cortex but not in other regions such as the

cerebellum (Figure S5). There are no gross anatomical changes

in the hippocampus or other forebrain structures in the condi-

tional Thorase KO (cKO) mice compared to WT control

(Figure S5).

The general activity of Thorase cKO mice was assessed in

open field testing (Pletnikov et al., 2008) in which Thorase cKO

mice spend more time at the margins of the open field and less

time in the center and show less rearing activity (Figures 7A–

7C). This is not due to altered anxiety as there was no significant

difference in performance on the elevated plus maze (Walf and

Frye, 2007) in the total distance, percent open time, percent

entrance to open arms, or the number of rearing behaviors

(Figures 7D–7G). These results suggest that the deficits in the

open field could be due to the inability to form immediate memo-

ries in a novel environment. Assessment of spatial memory using

the Morris Water Maze test was not possible due to seizures in

the conditional Thorase KO mice. Accordingly, spatial memory

was determined in spontaneous alteration in a Y-maze using

a continuous trials procedure. The Thorase cKO mice have

a lower percentage of correct alternating arm entries compared

to the littermate WTmice (Figure 7H), indicating that the Thorase

cKOmice are amnesic when reintroduced into a previously novel

environment. Seven days after exposure to the Y-maze, mice

were placed for 5 min into a Y-maze in which the third arm was

closed to acquire contextual memory (Etkin et al., 2006).

Whereas the WT mice spent more time in the novel arm that

was previously blocked, the Thorase cKO mice spent signifi-

cantly less time in the novel arm (Figure 7I), suggesting deficits

in short-term memory. To exclude the possibility for a Y-maze

side preference, a T-maze nonmatching-to-place task was per-

formed to test hippocampal-dependent spatial working memory

(Deacon and Rawlins, 2006; Reisel et al., 2002). WT mice show

a strong nonmatching-to-place performance for a sweet milk

reward, attaining a 90% correct choice by the end of training

(Figure 7J). In contrast, the Thorase cKO mice are impaired

and remain at chance levels at the end of training (Figure 7J)

(58%, F1, 44 = 15.1, p < 0.002). These behavioral data indicate

that the knockout of Thorase has profound effects on learning

and memory, consistent with the effects of Thorase on AMPAR

function.

DISCUSSION

The major finding of this paper is that the AAA+ ATPase Thorase

is a significant and important regulator of AMPAR trafficking,
(E) Maximum amplitudes of pH-GluR2 fluorescence changes to NMDA and T1/2
*p < 0.01, compared with WT neurons, Student’s t test).

(F) Fluorescence changes for pH-GluR1 in hippocampal WT and KO neurons tra

perfusion/washout experiments (mean ± SEM, n = 5 neurons from three experim

(G) Maximum amplitudes of pH-GluR1 fluorescence changes to NMDA and T1/
*p < 0.01, two-way ANOVA with Tukey-Kramer post-hoc test).

(H) Fluorescence changes for pH-GluR2 in hippocampal WT and KO neurons tr

washout experiments (mean ± SEM, n = 5 neurons from three experiments).

(I) Maximum amplitudes of pH-GluR2 fluorescence changes to NMDA and T1/2
*p < 0.01, two-way ANOVA with Tukey-Kramer post-hoc test).

See also Figure S3.
synaptic plasticity, and behavior. A major mechanism regulating

synaptic strength is the net balance between the insertion and

internalization of AMPAR in the postsynaptic membrane

(Kerchner and Nicoll, 2008; Sudhof and Malenka, 2008). Our

data show that surface levels of AMPAR in Thorase KO neurons

are increased with chronic TTX treatment, whereas bicuculline

treatment fails to lower the surface levels of AMPAR in Thorase

KO neurons, indicating that the process of AMPAR insertion is

intact and that internalization is impaired. This is also strongly

supported by the impaired NMDA-stimulated internalization of

GluR2 receptors as detected by the ‘‘antibody feeding’’ assay.

Moreover, the spatiotemporal indicators of AMPAR distribution,

pH-GluR1 or pH-GluR2, indicate that Thorase is involved in

AMPAR internalization and that Thorase may inhibit GluR1 and

GluR2 recycling back to the plasma membrane in an ATPase-

dependent manner. In addition, the impaired LTD in Thorase

KO neurons occurs immediately during the 1 Hz stimulation

protocol, indicating that the absence of LTD is due to a deficit

in the mechanism of LTD induction. Because LTD in hippo-

campal CA1 neurons is mainly initiated postsynaptically by the

removal of surface AMPAR through endocytosis (Kessels and

Malinow, 2009; Massey and Bashir, 2007), these findings taken

together suggest that Thorase is involved in the process of

AMPAR endocytosis and that the lack of Thorase causes

impaired internalization of AMPAR.

Thorase belongs to an AAA+ ATPase family that often

performs chaperone-like functions, including membrane

dynamics, protein transport, and assembly or disassembly of

protein complexes without unfolding or destroying their target

proteins (Ogura and Wilkinson, 2001; White and Lauring, 2007).

Numerous ATPases are expressed in neurons that regulate

many key cellular functions. In this study, two-dimensional gel

separations show that the ATPase activity of Thorase is required

for the disassembly of AMPAR complexes in vivo, suggesting

that Thorase plays a crucial role in disassembly of the AMPAR

complex. Endogenous coimmunoprecipitation assays show

that GluR2, GRIP1, and Thorase coexist as a complex in vivo

and the binding of Thorase to GluR2 is sensitive to ATP hydro-

lysis. In vitro binding experiments further confirmed that Thorase

can directly bind to GluR2 and GRIP1 and that this binding is

highly sensitive to ATP hydrolysis. Intriguingly, Thorase prefers

to bind the GluR2-GRIP1 complex in the presence of nonhydro-

lyzable ATPgS, and Thorase robustly disassembles GluR2-

GRIP1 complexes in the presence of ATP, indicating that

Thorase may mainly function on surface AMPAR complexes.

GRIP1 acts as an AMPAR anchor stabilizing AMPAR at the

plasma membrane and limits the endocytosis rate of AMPAR
after NMDA washout (mean ± SEM, n = 6 neurons from three experiments.

nsfected with tdTomato (Td), Thorase-Td, or mAB-Thorase-Td during NMDA

ents).

2 after NMDA washout (mean ± SEM, n = 5 neurons from three experiments.

ansfected with Td, Thorase-Td, or mAB-Thorase-Td during NMDA perfusion/

after NMDA washout (means ± SEM, n = 5 neurons from three experiments.
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Figure 5. Thorase Provides a Driving Force to Disassemble the AMPAR Complex

(A) Thorase WT or KO hippocampal homogenates solubilized in NativePAGE sample buffer containing either 1 mM ATP or ATPgS were separated by blue-native

two-dimensional PAGE (BN-2DE-PAGE) and immunoblotted with anti-GluR2 antibody. Blue arrowhead demarcates AMPAR complex and red arrowhead

indicates disrupted AMPAR complex. Repeated with similar results, n = 3.

(B) Thorase, GluR2, and GRIP1 form an ATP-dependent complex in mouse hippocampus. Hippocampal homogenates were immunoprecipitated with anti-GluR2

with 1 mM ATP or ATPgS. Protein interaction was analyzed by immunoblot using anti-GRIP1 or anti-Thorase antibodies.

(C) Binding data from (B) were quantitated by scanning densitometry. Values are relative to the ATPgS condition (mean ± SEM, n = 4, *p < 0.05, **p < 0.01,

***p < 0.001, Student’s t test).

(D) ATP-dependent interaction between Thorase and a GST fusion protein containing the C terminus (amino acids 832–883) of GluR2 (GST-R2C). One hundred

nanomoles GST-R2C or GST alone was immobilized on glutathione agarose beads and then 200 nM Thorase was applied to the beads in Buffer A containing
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by its association with GluR2 (Dong et al., 1997; Osten et al.,

2000; Shepherd and Huganir, 2007). Therefore, we propose

a mechanism in which GluR2, GRIP1, and Thorase form

a complex in the presence of ATP and Thorase provides the

ATP-driving force to disrupt GluR2-GRIP1 interactions, resulting

in dissociation of the AMPAR complex. Thorase-mediated disas-

sembly of AMPAR complexes appears to play a crucial role in

limiting endocytosis of AMPAR to adjust the level of AMPAR at

the synaptic membrane. The regulation of disassembly of

AMPAR by Thorase is likely to account for its essential roles in

LTD and regulation of synaptic plasticity and learning memory

because LTD is at least partly expressed by removal of AMPAR

from the synapse by endocytosis (Turrigiano, 2000).

The related AAA+ ATPase NSF is another postsynaptic protein

that is required for disassembly of the SNARE complex (Unger-

mann et al., 1998) and for AMPAR trafficking (Nishimune et al.,

1998). NSF binds to the AMPAR subunit GluR2 and disassem-

bles the GluR2-PICK1 protein complex and regulates excitatory

synaptic plasticity by stabilizing or recycling AMPAR into post-

synaptic membranes (Hanley et al., 2002). In contrast, Thorase

acts at GluR2-GRIP1 complexes to control the endocytosis

and removal of AMPAR from the postsynaptic membrane. The

identification of Thorase as a major regulator of AMPAR traf-

ficking offers new opportunities to enhance the understanding

and to identify additional regulators of AMPAR turnover.

EXPERIMENTAL PROCEDURES

Antibodies

Monoclonal and polyclonal Thorase antibodies were generated as described

in Extended Experimetnal Procedures. GluR1-N (mAb) was a gift from

Dr. Richard L. Huganir. Other antibodies were acquired commercially: GluR2-

N (mAb, Chemicon) and GluR2 (pAb, Millipore), PSD95 (mAb, NeuroMab), syn-

aptophysin 1 (mAb, Sigma), synapsin 1 (pAb, mAb, BD Tranduction Laborato-

ries), PICK1 (mAB, NeuroMab), NR1 (pAb, Sigma), NR2A (mAb, Sigma), NR-2B

(mAb, NeuroMab), b-tubulin (mAb, Sigma), and GRIP1 (pAb, Chemicon).

ATPase Activity Assay

The ATPase activities of Thorase and its mutants were determined by the

measurement of the amount of [g-32P]-Pi obtained from [g-32P]-ATP hydrolysis

using EasyRad Phosphate Assay Biochem Kit (Cytoskeleton Inc, Denver,
Mg2+ or EDTA plus ATP or ATPgS as indicated. (a) Input proteins were analyzed

Thorase was detected by immunoblotting using anti-Thorase antibody. (c) Quanti

n = 3, *p < 0.05 by ANOVA with Tukey-Kramer’s post-hoc test).

(E) Thorase strongly binds to GST-R2C rather than GST-GRIP1. Fifty nanomoles o

beads and then incubated with 200 nM Thorase in Buffer B plus ATP or ATPgS

Thorase antibody. (b) Quantification of immunoblots in (a); values are relative to

Kramer’s post-hoc test).

(F) Thorase binds to GST-R2C/GRIP1 complex more strongly than GST-R2C alo

presence or absence of His6-GRIP1 (50 nM), followed by incubation with 200 nM

immunoblotting using anti-Thorase and anti-His antibodies. (b) Quantification of i

lane (mean ± SEM, n = 3, *p < 0.05 by ANOVA with Tukey-Kramer’s post-hoc te

(G) Thorase disrupts the GST-R2C/GRIP1 complex in an ATP-dependent manner

tag Isolation and then GST-R2C was sequentially applied as indicated. (a) Two

complex plus ATP or ATPgS as indicated. GST alone was not detected by immun

His6-GRIP1/GST-R2C complex in buffer B plus ATP or ATPgS as indicated. Bou

(H) Dose-response curve for Thorase dissociation of GRIP1/GST-R2C complexe

GST-Thorase (nM) as indicated. A plus sign (+) denotes the addition of the His6-G

disassembling GRIP1/GST-R2C complexes shows data of quantification of immu

zero [Thorase] condition.
CO, USA) according to the instruction from the manufacturer (Extended

Experimetnal Procedures).

Primary Neuronal Cultures and Transduction of Cultured Neurons

with Recombinant Lentivirus

Primary cortical neuron cultures were prepared from embryonic day 15 (E15)

mouse pups as described (Shepherd et al., 2006). Low-density hippocampal

neurons fromE18 or postnatal day 0–1mouse pupswere prepared as reported

previously (Shepherd et al., 2006). Neurons were infected with different

lentivirus 10 days after plating.

Electrophysiology

Thorase KO and WT littermates with the age of postnatal days 19–22 were

used for all electrophysiological experiments. Transverse hippocampal slices

(350 mm) were prepared and maintained recordings were performed as

described in our previous studies (Wang et al., 2004) (Extended Experimetnal

Procedures). Excitatory postsynaptic currents (EPSCs) were recorded from

CA1 pyramidal neurons (Wang et al., 2009) (Extended Experimetnal

Procedures).
Behavioral Experiments

All behavioral experiments were done in 3- to 4-month-old cKO

(ThoraseFlox/Flox, cre+) mice (n = 20, 10 males and 10 females) and WT

(Thorase+/+, cre+) littermates (n = 19, 9 males and 10 females), which were

obtained by mating heterozygous ThoraseFlox/+, cre+ mice. Both the sex and

the age were matched between two groups.
Open Field

Open field test was performed to assess the general activity of Thorase KO

mice using Photobeam Activity System (San Diego Instruments Inc., La Jolla,

CA, USA), which records both horizontal and vertical activities simultaneously

(Extended Experimetnal Procedures).
Elevated Plus Maze

Anxiety-like behavior was evaluated in Elevated Plus Maze (San Diego

Instruments Inc.) as described previously (Singer et al., 2009) (Extended

Experimetnal Procedures).
Y-Maze

Spontaneous alternationwas assessed by Y-maze test using a protocol similar

to those previously described (Holcomb et al., 1998; Hsiao et al., 1996)

(Extended Experimetnal Procedures).
by immunoblotting with anti-Thorase and anti-GST-HRP antibodies. (b) Bound

fication of immunoblots in (b). Values are relative to Mg2+/ATPgS (mean ± SEM,

f GST-R2C, GST-GRIP1, or GST alonewas immobilized on glutathione agarose

as indicated. (a) Bound Thorase was detected by immunoblotting using anti-

ATPgS in the first lane (mean ± SEM; n = 3, *p < 0.05 by ANOVA with Tukey-

ne. Fifty nanomoles of GST-R2C immobilized on glutathione agarose beads in

Thorase plus ATP or ATPgS. (a) Bound Thorase or His-GRIP1 was detected by

mmunoblots in (a); values are relative to GST-R2C/GRIP1 condition in the third

st).

. Either 50 nM or 25 nM of His6-GRIP1 was immobilized on Dynabeads for His-

hundred nanomoles of GST was incubated with the His6-GRIP1/GST-R2C

oblotting using an anti-GST antibody. (b) GST-Thorase was incubated with the

nd GST-Thorase was detected by immunoblotting using anti-GST antibody.

s. (a)The same assay as in (G) was carried out with different concentrations of

RP1 (50 nM)/GST-R2C (50 nM) complex. (b) Dose-response curve for Thorase

noblots from three experiments in (a) (mean ± SEM, n = 3), values are relative to
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Figure 6. Thorase Deficiency Enhances AMPAR Currents and LTP and Impairs LTD without Affecting Basal Synaptic Transmission at CA1

Hippocampal Synapses

(A) Thorase KOCA1 neurons exhibit normal basal synaptic transmission. The amplitude of the fiber volley is plotted against fEPSP slopes. The input/output curves

for neurons in slices from WT (n = 8 slices, 8 mice) or KO (n = 6 slices, 6 mice) were not significantly different (mean ± SEM, p > 0.05, Student’s t test).

(B) Thorase KO does not affect paired-pulse facilitation (PPF) (WT, n = 8 slices, 6 mice; KO, n = 12 slices, 8 mice) (mean ± SEM, p > 0.05, Student’s t test).

(C) Thorase is necessary for LTD induction. LTD was induced by stimulation (1 Hz, 15 min) in slices fromWTmice but not in slices from Thorase KOmice (mean ±

SEM, KO, n = 8 slices from five mice; WT, n = 6 slices from four mice).

(D) Thorase is a negative regulator of LTP. LTP was induced by a tetanic train (100 Hz, 1 s). Themagnitude of LTP for slices from KOmice was significantly greater

than that for WT mice (mean ± SEM, KO, n = 8 slices from 4 mice; WT, n = 6 slices from three mice. p < 0.01, Student’s t test).
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T-Maze

To avoid side preferences of some animals in Y-maze test, spatial nonmatch-

ing-to-place testing was performed on an elevated T-maze according to the

protocol previously described (Deacon and Rawlins, 2006; Reisel et al.,

2002) (Extended Experimetnal Procedures).

Statistics

Quantitative data are presented as the mean ± standard error of the mean

(SEM). Statistical significance was either assessed via an unpaired two-tailed

Student’s t test or an ANOVA test with Tukey-Kramer post-hoc analysis. All

behavioral data were first subjected to a Kolmogorov-Smirnov normality and

an equal variance test. For open field and T-maze test, repeated-measures

two-way ANOVAs were conducted and significant differences were deter-

mined at p < 0.05 for groupmain effects. The points with significant differences

were identified by post-hoc analysis using the Holm-Sidak method for multiple

comparisons. For elevated plus maze and Y-maze tests, all data were

analyzed using a Student’s t test. Assessments were considered significant

with a p < 0.05.

SUPPLEMENTAL INFORMATION

Supplemental information includes Extended Experimental Procedures and

five figures and can be found with this article online at doi:10.1016/j.cell.

2011.03.016.
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Figure 7. Thorase Is Required for Spatial Working Memory

(A–C) Open field assessments in Thorase conditional knockout mice (cKO, ThoraseFlox/Flox, iCre +, n = 20) versus WT littermates (WT, Thorase+/+, iCre +, n = 19,

mean ± SEM).

(A) Central activity.

(B) Peripheral activity.

(C) Rearing activity. Significance between cKO and WT mice was determined, *p < 0.05, two-way ANOVA.

(D–G) Elevated plus maze testing in cKO versus WT littermates. No significant difference as determined by a Two-way ANOVA was found between cKO and WT

(mean ± SEM).

(D) Total travel distance.

(E) Percent time in open arms.

(F) The percentage of entries into open arms.

(G) Number of rears.

(H) Mean percent correct spontaneous alternation ± SEM for cKO (n = 8) or WT (n = 9) mice in a Y-maze, *p < 0.05, Student’s t test.

(I) Mean percent time ± SEM spent in a previously blocked arm in the first 2 min during the second acquisition phase of the Y-maze, *p < 0.05, Student’s t test.

(J) Mean percent correct rewarded alternation ± SEM for Thorase cKO (n = 8) and WT (n = 9) mice during spatial nonmatching-to-place testing on the elevated

T-maze, *p < 0.05, two-way ANOVA with Tukey-Kramer post-hoc test.
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