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0. INTRODUCTION

An essential feature for the possibility of ‘higher-dimensional group
theory’ (see the expository article [5]) is the extension of the domain of
discourse from groups to groupoids, that is from a set with a binary
operation defined on all elements, to a set with an operation defined only on
pairs satisfying a geometric condition. This fact itself leads to various
equivalent candidates for ‘higher-dimensional groups,’ namely those based
on different geometric structures, for example balls, globes, simplices, cubes
and even polyhedra. The proofs of these equivalences are non-trivial}the
basic intuitions derive from the foundations of relative homotopy theory.
Some of these equivalences have proved crucial for the applications:
theorems may be easily proved in one context and then transferred into
another, more computational context. Notable examples are the advantages
of cubical methods for providing both a convenient ‘algebraic inverse to
subdivision,’ for use in local-to-global problems [10], and also a simple
monoidal closed structure, which may then be translated into other
situations [13].

It has proved important to extend these ideas from groupoids to
categories. The standard notion of (strict) higher-dimensional category is
that of globular o-category. Our main result is that there is an adjoint
equivalence of categories

l : globular o-categories > cubical o-categories with connections : g:

Precise definitions are given below. The proof has interest because it is
certainly much harder than the groupoid case, and because at one stage it
uses braid relations among some key basic folding operations (Proposition
5.1, Theorem 5.2). The equivalence between the two forms should prove
useful. In Section 9, we use this equivalence to define the notion of
‘commutative n-cube.’ In Section 10, we follow methods of Brown and
Higgins in [13] to show that cubical o-categories with connection form a
monoidal closed category. The equivalence of categories transfers this
structure to the globular case}the resulting internal hom in the globular
case gives various higher-dimensional forms of ‘lax natural transformation.’
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Cubical o-categories with connection have been applied to concurrency
theory by Goubault [21] and by Gaucher [20], and again relations with the
globular case are important for these studies.

The origin of this equivalence is as follows.
In developing the algebra of double groupoids as a framework for

potential 2-dimensional Van Kampen Theorems, Brown and Spencer in [15]
were led to the notion of double groupoid with an extra structure of
‘connection’}this was essential to obtain an equivalence of such a double
groupoid with the classical notion of crossed module. This structure was
also essential for the proof of the 2-dimensional Van Kampen Theorem
given by Brown and Higgins [8].

The double groupoid case was generalised by Brown and Higgins [6, 9] to
give an equivalence between crossed complexes and what were called there
‘o-groupoids,’ and which we here call ‘cubical o-groupoids with con-
nections.’ It was also proved in [11] that crossed complexes are equivalent to
what were there called ‘1-groupoids,’ and which we here call ‘globular
o-groupoids,’ following current fashions. Thus, the globular and cubical
cases of o-groupoids were known in 1981 to be equivalent, but the proof
was via the category of crossed complexes.

Other equivalences with crossed complexes were established, for example
with: cubical T-complexes [6, 12]; simplicial T-complexes by Ashley [3]; and
polyhedral T-complexes by Jones [22]. In T-complexes, the basic concept is
taken to be that of thin elements which determine a strengthening of the Kan
extension condition. The notion of simplicial T-complex is due to Dakin
[17].

Spencer observed in [24] that the methods of [15] allowed an equivalence
between 2-categories and double categories with connections, using an ‘up-
square’ construction of Bastiani and Ehresmann [4, 18], but he gave no
details. The full details of this have been recently given by Brown and Mosa
in [14].

The thesis of Mosa in 1987 [23] attempted to give an equivalence between
crossed complexes of algebroids and cubical o-algebroids, and while this
was completed in dimension 2 even the case of dimension 3 proved hard,
though some basic methods were established.

This result raised the question of an equivalence between the globular o-
categories defined in 1981 in [11] and an appropriate form of cubical o-
categories with connections, of which a definition was fairly easy to
formulate as an extension of the previous definition of cubical o-groupoid.
This problem was taken up in Al-Agl’s thesis of 1989 [1]. The central idea,
based on the groupoid methods of [9], was to define a ‘folding operation’ F
from a cubical o-category G to the globular o-category gG it contained.
This definition was successfully accomplished, but the problem of establish-
ing some major properties of F; in particular the relation with the category
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structures, was solved only up to dimension 3. That is, the conjectured
equivalence was proved in dimension 3.

Steiner pursued the work of Al-Agl, and their joint paper [2] does prove
that globular o-categories are equivalent to cubical sets with extra structure,
but, as stated in that paper, this extra structure is not described in finitary
terms. Later, Steiner was stimulated by renewed interest in the cubical case
coming from concurrency theory in the work of Goubault [21] and Gaucher
[20], and by the publication of the 2-dimensional case by Brown and Mosa
in [14]. He completed the programme given in [1] and informed Brown, who
announced the result at the Aalborg ‘Workshop on Geometric and
Topological Methods in Concurrency’ in June 1999. This paper is the
result. It proves the conjecture implicit in [1] that a globular o-category is
equivalent to a cubical set with extra structure directly analogous to the
structure for cubical o-groupoids given in [6, 9].

There is considerable independent work on globular o-categories. The
thesis of Crans [16] already contains the adjoint pair ðl; gÞ and also the
closed monoidal structure on the category of globular o-categories. It also
seems to be the first time that the cube category (without connections)
together with its o-category realisation is explicitly defined by generators
and relations.

The work in Australia by Ross Street [27–30] has an initial aim to
determine a simplicial nerve NX of a globular o-category X : This developed
into finding extra structure on NX so that N gave an equivalence between
o-categories and certain structured simplicial sets, analogous to Ashley’s
equivalence [3] between o-groupoids and simplicial T-complexes. It is stated
in [30] that this programme has been completed by Dominic Verity, to verify
the conjecture stated in [28]. Street tells us that Verity also knew the
equivalence proved in the present paper, but we have no further
information. We also mention that Street’s paper [28] implicitly contains
our basic proposition (3.2), namely that the cells of the n-categorical n-cube
compose in such a way that they give rise to the hemispherical (i.e. globular)
decomposition @�1 Fn of the n-cube.

1. o-CATEGORIES

An o-category [11, 25, 27] arises when a sequence of categories C0;C1; . . .
all have the same set of morphisms X ; the various category structures
commute with one another, the identities for Cp are also identities for Cq

when q > p; and every member of X is an identity for some Cp: We write #p

for the composition in Cp: Given x 2 X ; we write d�p x and dþp x for the
identities of the source and target of x in Cp; so that d�p x#px ¼ x#pdþp x ¼
x: The structure can be expressed in terms of X ; #p and the da

p as follows.
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Definition 1.1. An o-category is a set X together with unary
operations d�p ; dþp and partially defined binary operations #p for p ¼
0; 1; . . . such that the following conditions hold:

(i) x #p y is defined if and only if dþp x ¼ d�p y;

(ii)

db
q da

p x ¼
db

q x for qop;

da
p x for q5p;

(

(iii) if x #p y is defined then

d�p ðx #p yÞ ¼ d�p x;

dþp ðx #p yÞ ¼ dþp y;

db
q ðx #p yÞ ¼ db

q x #p db
q y for qap;

(iv) d�p x #p x ¼ x #p dþp x ¼ x;

(v) ðx #p yÞ#p z ¼ x #p ðy #p zÞ if either side is defined;

(vi) if paq; then

ðx #p yÞ#q ðx0 #p y0Þ ¼ ðx #q x0Þ#p ðy #q y0Þ

whenever both sides are defined;

(vii) for each x 2 X there is a dimension dim x such that da
p x ¼ x if and

only if p5dim x:

Definition 1.2. An o-category of sets is an o-category X whose
members are sets such that x #p y ¼ x [ y whenever x #p y is defined in X :

The theory of pasting in o-categories [25, 28] associates o-categories of
sets MðKÞ with simple presentations to certain complexes K ; the members
of MðKÞ are subcomplexes of K : Various types of complexes have been
considered, but they certainly include the cartesian products of directed
paths, and we will now describe the theory in that case.

Let n be a non-negative integer. We represent a directed path of length n

by the closed interval ½0; n
; the vertices are the singleton subsets f0g;
f1g; . . ., fng and the edges are the intervals ½0; 1
; ½1; 2
; . . . ; ½n� 1; n
; where
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½m� 1;m
 is directed from m� 1 to m: We write

d�½m� 1;m
 ¼ fm� 1g; dþ½m� 1;m
 ¼ fmg:

Now let K ¼ K1 � � � � � Kp be a cartesian product of directed paths. A
product s ¼ s1 � � � � � sp; where si is a vertex or edge in Ki; is called a cell

in K: We can write a cell s in the form

s ¼ P0 � e1 � P1 � e2 � P2 � � � � � Pq�1 � eq � Pq;

where the Pj are products of vertices and the ej are edges; the dimension of s
is then q: The codimension 1 faces of s are the subsets got by replacing one
edge factor ej with d�ej or dþej : The faces with d�e1 or dþe2 or d�e3 or � � �
are called negative, and the faces with dþe1 or d�e2 or dþe3 or � � � are called
positive. The theory of pasting gives us the following result.

Theorem 1.3. Let K be a cartesian product of directed paths. Then there

is an o-category MðKÞ of subsets of K with the following presentation: the

generators are the cells of K ; if s is a cell of dimension q; then there are

relations d�q s ¼ dþq s ¼ s; if s is a cell of dimension q with q > 0; then there

are relations saying that d�q�1s and dþq�1s are the unions of the negative and

positive faces of s; respectively. Every member of MðKÞ is an iterated

composite of cells.

We will now describe the main examples.

Example 1.4. We write I ¼ ½0; 1
 and In ¼ ½0; 1
n for n51; for
completeness we also write I0 ¼ ½0; 0
: In this notation, MðI0Þ ¼ fI0g and
MðIÞ ¼ fI ; d�0 I ; dþ0 Ig; there are no members other than the generating cells.
There are morphisms

$@@
�
; $@@
þ
: MðI0Þ !MðIÞ; $ee : MðIÞ !MðI0Þ

given by

$@@
aðI0Þ ¼ da

0 I ; $eeðIÞ ¼ $eeðda
0 IÞ ¼ I0:

Example 1.5. The members of Mð½0; 2
Þ are the cells and the composite

½0; 2
 ¼ ½0; 1
#0½1; 2
:

There are morphisms

$ii�; $iiþ; $mm : MðIÞ !Mð½0; 2
Þ
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given by

$ii�ðd�0 IÞ ¼ f0g; $ii�ðIÞ ¼ ½0; 1
; $ii�ðdþ0 IÞ ¼ f1g;

$iiþðd�0 IÞ ¼ f1g; $iiþðIÞ ¼ ½1; 2
; $iiþðdþ0 IÞ ¼ f2g;

and

$mmðd�0 IÞ ¼ f0g; $mmðIÞ ¼ ½0; 2
; $mmðdþ0 IÞ ¼ f2g:

Example 1.6. The members of MðI2Þ are the cells and the composites

d�1 I2 ¼ ðd�0 I � IÞ#0ðI � dþ0 IÞ; dþ1 I2 ¼ ðI � d�0 IÞ#0ðdþ0 I � IÞ:

There are morphisms $GG
þ
; $GG
�
: MðI2Þ !MðIÞ given by

$GG
aðd�a0 I � d�a0 IÞ ¼ $GG

aðd�a0 I � IÞ ¼ $GG
aðd�a0 I � da

0 IÞ ¼ $GG
aðI � d�a0 IÞ

¼ $GG
aðda

0 I � d�a0 IÞ ¼ d�a0 I ;

$GG
aðI2Þ ¼ $GG

aðI � da
0 IÞ ¼ $GG

aðda
0 I � IÞ ¼ $GG

aðd�1 I2Þ ¼ $GG
aðdþ1 I2Þ ¼ I ;

$GG
aðda

0 I � da
0 IÞ ¼ da

0 I :

For cartesian products of members of the o-categories that we are
considering, we have the following result.

Theorem 1.7. Let K and L be cartesian products of directed paths, let x

be a member of MðKÞ; and let y be a member of MðLÞ: Then x� y is a

member of MðK � LÞ and

da
p ðx� yÞ ¼

[p

i¼0
ðda

i x� d
ð�Þia
p�i yÞ:

This has the following consequence.

Theorem 1.8. (i) Let K ; K 0; L; L0 be cartesian products of directed

graphs, and let f : MðKÞ !MðK 0Þ and g : MðLÞ !MðL0Þ be morphisms of

o-categories. Then there is a unique morphism

f � g : MðK � LÞ !MðK 0 � L0Þ

such that

ð f � gÞðx� yÞ ¼ f ðxÞ � gðyÞ

for x 2MðKÞ and y 2MðLÞ:
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(ii) The assignments

ðMðKÞ;MðLÞÞ/MðK � LÞ; ð f ; gÞ/f � g

form a bifunctor.

Proof. (i) From the presentation of MðK � LÞ and Theorem 1.7, there is
a unique morphism f � g such that ð f � gÞðx� yÞ ¼ f ðxÞ � gðyÞ when x

and y are cells. The formula then holds for a general product x� y because
it is a composite of cells.

(ii) One can check bifunctoriality by considering the values of the
appropriate morphisms on generators. ]

By applying the tensor product construction, we obtain further
morphisms.

Example 1.9. Let idr denote the identity morphism from MðIrÞ to itself.
There are morphisms

$@@
�
i ;

$@@
þ
i : MðIn�1Þ !MðInÞ ð14i4nÞ

given by

$@@
a
i ¼ idi�1 � $@@

a � idn�i;

there are morphisms

$eei : MðInÞ !MðIn�1Þ ð14i4nÞ

given by

$eei ¼ idi�1 � $ee� idn�i;

there are morphisms

$ii�i ; $ii
þ
i ; $mmi : MðInÞ !MðI i�1 � ½0; 2
 � In�iÞ ð14i4nÞ

given by

$iiai ¼ idi�1 � $iia � idn�i; $mmi ¼ idi�1 � $mm� idn�i;

there are morphisms

$GG
þ
i ;

$GG
�
i : MðInÞ !MðIn�1Þ ð14i4n� 1Þ
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given by

$GG
a
i ¼ idi�1 � $GG

a � idn�i�1:

Most of the morphisms in Example 1.9 map generators to generators, and
one can verify their existence directly from Theorem 1.3. The exceptions are
the $mmi for which Theorem 1.8 is really necessary.

Remark 1.10. Suppose that K is an n-dimensional product of directed
paths. Then K can be got from a family of n-cubes by gluing along ðn� 1Þ-
dimensional faces. From the presentation of MðKÞ; one sees that it is the
colimit of a corresponding diagram in which the morphisms have the form
$@@
a
i : MðIn�1Þ !MðInÞ: In particular, $ii� and $iiþ exhibit Mð½0; 2
Þ as the push-

out of

MðIÞ 
$@@
þ

MðI0Þ!
$@@
�

MðIÞ;

and $ii�i and $iiþi exhibit MðI i�1 � ½0; 2
 � In�iÞ as the push-out of

MðInÞ 
$@@
þ
i

MðIn�1Þ!
$@@
�
i

MðInÞ:

2. CUBICAL o-CATEGORIES WITH CONNECTIONS

Suppose that X is an o-category. There is then a sequence of sets

ðlX Þn ¼ Hom½MðInÞ;X 
 ðn ¼ 0; 1; � � � Þ;

and the morphisms of Example 1.9 induce functions between the ðlX Þn: It
turns out that the ðlXÞn form a cubical o-category with connections in the
sense of the following definition. This definition is found in [1]. The origin is
in the definition of what was called ‘o-groupoid’ in [6, 9], where the
justification was the equivalence with crossed complexes [6, 9] and the use in
the formulation and proof of a generalised Van Kampen Theorem [7, 10].
The corresponding definition for categories arose out of the work of Spencer
[24] and of Mosa [23].

Let K be a cubical set, that is, a family of sets fKn; n50g with for n51
face maps @a

i : Kn ! Kn�1 ði ¼ 1; 2; � � � ; n; a ¼ þ;�Þ and degeneracy maps
ei : Kn�1 ! Kn ði ¼ 1; 2; � � � ; nÞ satisfying the usual cubical relations:

(i) @a
i @

b
j ¼ @b

j�1@
a
i ðiojÞ;
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(ii) eiej ¼ ejþ1ei ði4jÞ;

(iii) @a
i ej ¼

ej�1@
a
i ðiojÞ;

ej@
a
i�1 ði > jÞ;
id ði ¼ jÞ:

8><
>: ð2:1Þ

We say that K is a cubical set with connections if for n50 it has additional
structure maps (called connections) Gþi ;G

�
i : Kn ! Knþ1 ði ¼ 1; 2; � � � ; nÞ

satisfying the relations:

(i) Ga
i G

b
j ¼ Gb

jþ1G
a
i ðiojÞ;

(ii) Ga
i G

a
i ¼ Ga

iþ1G
a
i ;

(iii) Ga
i ej ¼

ejþ1Ga
i ðiojÞ;

ejGa
i�1 ði > jÞ;

(

(iv) Ga
j ej ¼ e2j ¼ ejþ1ej;

(v) @a
i G

b
j ¼

Gb
j�1@

a
i ðiojÞ;

Gb
j @

a
i�1 ði > j þ 1Þ;

(

(vi) @a
j G

a
j ¼ @a

jþ1G
a
j ¼ id;

(vii) @a
j G
�a
j ¼ @a

jþ1G
�a
j ¼ ej@

a
j : ð2:2Þ

The connections are to be thought of as extra ‘degeneracies.’ (A degenerate
cube of type ejx has a pair of opposite faces equal and all other faces
degenerate. A cube of type Ga

i x has a pair of adjacent faces equal and all
other faces of type Ga

j y or ejy .) Cubical complexes with these, and other,
structures have also been considered by Evrard [19].

The prime example of a cubical set with connections is the singular
cubical complex KX of a space X : Here, for n50 Kn is the set of singular
n-cubes in X (i.e. continuous maps In ! X ) and the connection Ga

i : Kn !
Knþ1 is induced by the map gai : Inþ1 ! In defined by

gai ðt1; t2; � � � ; tnþ1Þ ¼ ðt1; t2; � � � ; ti�1;Aðti; tiþ1Þ; tiþ2; � � � ; tnþ1Þ;

where Aðs; tÞ ¼ maxðs; tÞ;minðs; tÞ as a ¼ �;þ; respectively. Given below
are pictures of ga1 : I2 ! I1 where the internal lines show lines of constancy



MULTIPLE CATEGORIES 81
of the map on I2:

The complex KX has some further relevant structures, namely the
composition of n-cubes in the n different directions. Accordingly, we define
a cubical complex with connections and compositions to be a cubical set K

with connections in which each Kn has n partial compositions 8j
ð j ¼

1; 2; � � � ; nÞ satisfying the following axioms.
If a; b 2 Kn; then a 8j

b is defined if and only if @�j b ¼ @þj a , and then

@�j ða 8j
bÞ ¼ @�j a;

@þj ða 8j
bÞ ¼ @þj b;

(
@a

i ða 8j
bÞ ¼

@a
j a8j�1@

a
i b ðiojÞ;

@a
i a 8j

@a
i b ði > jÞ:

(
ð2:3Þ

The interchange laws. If iaj; then

ða 8i
bÞ 8j

ðc 8i
dÞ ¼ ða 8j

cÞ 8i
ðb 8j

dÞ ð2:4Þ

whenever both sides are defined. (The diagram

will be used to indicate that both sides of the above equation are defined and
also to denote the unique composite of the four elements.)

If iaj; then

eiða 8j
bÞ ¼

eia 8jþ1 eib ði4jÞ;

eia 8j
eib ði > jÞ;

(
ð2:5Þ

(i) Ga
i ða 8j

bÞ ¼
Ga

i a 8jþ1 G
a
i b ðiojÞ;

Ga
i a 8j

Ga
i b ði > jÞ;

(

(ii) Gþj ða 8j
bÞ ¼

Gþj a eja

ejþ1a Gþj b

" #

(iii) G�j ða 8j
bÞ ¼

G�j a ejþ1b

ejb G�j b

" #
: ð2:6Þ

These last two equations are the transport laws.3
3Recall from [15] that the term connection was chosen because of an analogy with path

connections in differential geometry. In particular, the transport law is a variation or special

case of the transport law for a path connection.
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It is easily verified that the singular cubical complex KX of a space X

satisfies these axioms if 8j
is defined by

ða 8j
bÞðt1; t2; � � � ; tnÞ ¼

aðt1; � � � ; tj�1; 2tj ; tjþ1; � � � ; tnÞ ðtj41
2
Þ;

bðt1; � � � ; tj�1; 2tj � 1; tjþ1; � � � ; tnÞ ðtj51
2
Þ

(

whenever @�j b ¼ @þj a: In this context, the transport law for G�1 ða 8 bÞ can be
illustrated by the picture:

Definition 2.1. A cubical o-category with connections G ¼ fGng is a
cubical set with connections and compositions such that each 8j

is a
category structure on Gn with identity elements ejy ðy 2 Gn�1Þ; and in
addition

Gþi x 8i
G�i x ¼ eiþ1x; Gþi x 8iþ1 G

�
i x ¼ eix: ð2:7Þ

For simplicity, a cubical o-category with connections will be called a
cubical o-category in the rest of this paper.

Remark 2.2. This list is a part of the list of structure and axioms which
first appears in the thesis of Mosa [23, Chapter V], in the context of cubical
algebroids with connection, and appears again in the thesis of Al-Agl [1].
The rules for the connections are fairly clear extensions of the axioms given
in [6, 9], given the general notion of thin structure on a double category
discussed by Spencer in [24].

Note that a cubical o-category has an underlying cubical set under its face
and degeneracy operations.

It is now straightforward to construct a functor from o-categories
to cubical o-categories. The following type of construction is well
known.

Definition 2.3. The cubical nerve of an o-category X is the cubical
o-category lX defined as follows:

ðlXÞn ¼ Hom½MðInÞ;X 
;
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and the operations @a
i ; ei; 8i

; Ga
i are induced by $@@

a
i ; $eei; $mmi; $GG

a
i according to the

formulae

@a
i x ¼ x 8 $@@

a
i : MðIn�1Þ ! X

for x : MðInÞ ! X ; etc.

In particular, in Definition 2.3, note that the domain of 8i
in

ðlXÞn � ðlX Þn is precisely

Hom½MðI i�1 � ½0; 2
 � In�iÞ;X 


according to Remark 1.10. To check that lX satisfies the conditions of
Definition 2.1, one must check the corresponding identities for the $@@

a
i ; etc.

Many relations essentially come from properties of the underlying
morphisms $@@

a
; etc. The relation @a

i ei ¼ id; for example, comes from the
easily checked relation $ee 8 $@@

a ¼ id: For relations involving composition, one
must use the morphisms $iia : MðIÞ !Mð½0; 2
Þ which present Mð½0; 2
Þ as a
push-out. Thus, to check the relation @�i ðx 8i

yÞ ¼ @�i x; which is a relation
between binary operators, one must check that

ð$ii�Þ�1 $mm $@@
�ðsÞ ¼ $@@

�ðsÞ

and

ð$iiþÞ�1 $mm $@@
�ðsÞ ¼ |

for every cell s in I0: For the associative law, one must consider morphisms
from MðIÞ to Mð½0; 3
Þ:

The functoriality of the tensor product is responsible for formulae looking
like commutation rules, such as @a

i ej ¼ ej�1@
a
i for ioj:

Remark 2.4. Any natural operation y on cubical o-categories deter-
mines an underlying homomorphism $yy between o-categories. For example,
if y maps Gn to Gm; then in particular y maps

½lMðInÞ
n ¼ Hom½MðInÞ;MðInÞ


to ½lMðInÞ
m ¼ Hom½MðImÞ;MðInÞ
 and $yy ¼ yðidÞ : MðImÞ !MðInÞ:
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3. THE o-CATEGORY ASSOCIATED TO A CUBICAL
o-CATEGORY

In this section, we construct a functor g associating an o-category to a
cubical o-category. The idea is to recover an o-category from its nerve. We
will use certain folding operations, which are defined as follows.

Definition 3.1. Let G be a cubical o-category. The folding operations

are the operations

ci;Cr;Fm : Gn ! Gn

defined for 14i4n� 1; 14r4n and 04m4n by

cix ¼ Gþi @
�
iþ1x 8iþ1 x 8iþ1 G

�
i @
þ
iþ1x;

Cr ¼ cr�1cr�2 � � �c1;

Fm ¼ C1C2 � � �Cm ¼ c1ðc2c1Þ � � � ðcm�1 � � �c1Þ:

Note in particular that C1; F0 and F1 are identity operations.
Here is a picture of c1 : G2 ! G2:

The idea behind Definition 3.1 is best seen from the action of the
underlying endomorphism $FFn in the o-category of sets MðInÞ:

Proposition 3.2. The endomorphism $FFn : MðInÞ !MðInÞ underlying

the folding operation Fn is given by $FFnðInÞ ¼ In and

$FFnðs� da
0 I � IpÞ ¼ da

p In

for any cell s in In�p�1:

Proof. Let $cc : MðI2Þ !MðI2Þ be the operation underlying c1 in
dimension 2. The operations underlying ci; Cr and Fm in dimension n are
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then given by

$cci ¼ idi�1 � $cc� idn�i�1;

$CCr ¼ $cc1
$cc2 � � � $ccr�1;

$FFm ¼ $CCm
$CCm�1 � � � $CC1:

One finds that $ccðI2Þ ¼ I2; from which it follows that $cciðInÞ ¼ In and then
$FFnðInÞ ¼ In: One also finds that

$ccðt� da
0 IÞ ¼ da

0 I � da
0 I

for any cell t in I : For a cell s in In�p�1 it follows that

ð $CCn�p�1 � � � $CC1Þðs� da
0 I � IpÞDIn�p�1 � da

0 I � Ip

and

$CCn�pð $CCn�p�1 � � � $CC1Þðs� da
0 I � IpÞ ¼ ðda

0 IÞn�p � Ip:

It then follows that $FFnðs� da
0 I � IpÞ is independent of s: It now suffices to

show that

$FFn½ðda
0 IÞn�p � Ip
 ¼ da

p In:

Recall that da
n�1I

n is the union of the ðn� 1Þ-cells

t1 ¼ da
0 I � In�1; t2 ¼ I � d�a0 I � In�2; � � � :

We see that

$FFnðt2Þ ¼ $FFnðda
0 I � d�a0 I � In�2Þ � $FFnðt1Þ;

etc., so that $FFðda
n�1I

nÞ ¼ $FFðt1Þ: It follows that

$FFnðda
0 I � In�1Þ ¼ $FFnðt1Þ ¼ $FFnðda

n�1I
nÞ ¼ da

n�1
$FFnðInÞ ¼ da

n�1In:

By similar reasoning,

$FFn½ðda
0 IÞ2 � In�2
 ¼ da

n�2
$FFnðda

0 I � In�1Þ ¼ da
n�2d

a
n�1I

n ¼ da
n�2I

n;

and so on, eventually giving

$FFn½ðda
0 IÞn�p � Ip
 ¼ da

p In

as required. This completes the proof. ]
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It follows from Proposition 3.2 that $FFn : MðInÞ !MðInÞ is an idempotent
endomorphism with image

Fn ¼ fIn; d�n�1I
n; dþn�1In; � � � ; d�0 In; dþ0 Ing:

In fact, Fn is nothing else but the n-globe. For an o-category X ; it follows that

Fn½ðlX Þn
 ffi HomðFn;XÞ:

Now, it is clear that Fn has a presentation with generator In and relations
d�n In ¼ dþn In ¼ In; therefore,

FnðlX Þn ffi f x 2 X : d�n x ¼ dþn x ¼ xg:

It follows that X can be recovered from lX as the colimit of a sequence

F0½ðlX Þ0
 ! F1½ðlX Þ1
 ! � � � :

We will now explain how to perform this construction for cubical o-categories
in general. We begin with some elementary relations.

Proposition 3.3. The folding operations satisfy the following relations:

(i) cjei ¼ eicj�1 for ioj;

cjej ¼cjejþ1 ¼ cjG
�a
j ¼ ej;

cjei ¼ eicj for i > j þ 1;

@a
i cj ¼cj�1@

a
i for ioj;

@�j cjx ¼ @�j x 8j
@þjþ1x;

@þj cjx ¼ @�jþ1x 8j
@þj x;

@a
jþ1cj ¼ ej@

a
j @

a
jþ1;

@a
i cj ¼cj@

a
i for i > j þ 1;

(ii) C1e1 ¼ e1;

Cre1 ¼ e1Cr�1 for r > 1;

Crei ¼ ei�1Cr for 1oi4r;

@a
i Cr ¼Cr@

a
i for i > r;

@a
r Cr ¼ er�1

1 ð@a
1Þ

r;
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(iii) Fmei ¼ e1Fm�1 for 14i4m;

@a
i Fm ¼Fm@

a
i for i > m;

@a
mFm ¼ em�1

1 ð@a
1Þ

m:

Proof. (i) These relations are straightforward consequences of the
definitions.

(ii) Since C1 ¼ id; we have C1e1 ¼ e1:
From part (i), if r > 1; then

Cre1 ¼ ðcr�1 � � �c2Þc1e1 ¼ ðcr�1 � � �c2Þe1 ¼ e1ðcr�2 � � �c1Þ ¼ e1Cr�1:

Also from part (i), if 1oi4r; then

Crei ¼ðcr�1 � � �ciÞci�1ðci�2 � � �c1Þei

¼ðcr�1 � � �ciÞci�1eiðci�2 � � �c1Þ

¼ ðcr�1 � � �ciÞei�1ðci�2 � � �c1Þ

¼ ei�1ðcr�2 � � �ci�1Þðci�2 � � �c1Þ

¼ ei�1Cr�1:

From part (i), if i > r; then

@a
i Cr ¼ @a

i ðcr�1 � � �c1Þ ¼ ðcr�1 � � �c1Þ@a
i ¼ Cr@

a
i :

It now follows that

@a
r Cr ¼ @a

r cr�1Cr�1

¼ er�1@
a
r�1@

a
r Cr�1

¼ er�1@
a
r�1Cr�1@

a
r

¼ � � �

¼ er�1 � � � e2e1@a
1C1@

a
2 � � � @a

r

¼ er�1 � � � e2e1@a
1@

a
2 � � � @a

r

¼ er�1
1 ð@a

1Þ
r;

using (2.1).
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(iii) From part (ii), if 14i4m; then

Fmei ¼C1ðC2 � � �Cm�iþ1ÞðCm�iþ2 � � �CmÞei

¼C1ðC2 � � �Cm�iþ1Þe1ðCm�iþ1 � � �Cm�1Þ

¼C1e1ðC1 � � �Cm�iÞðCm�iþ1 � � �Cm�1Þ

¼ e1ðC1 � � �Cm�iÞðCm�iþ1 � � �Cm�1Þ

¼ e1Fm�1:

Also from part (ii), if i > m; then

@a
i Fm ¼ @a

i ðC1 � � �CmÞ ¼ ðC1 � � �CmÞ@a
i ¼ Fm@

a
i :

It now follows that

@a
mFm ¼ @a

mFm�1Cm

¼Fm�1@
a
mCm

¼Fm�1em�1
1 ð@a

1Þ
m

¼ em�1
1 F0ð@a

1Þ
m

¼ em�1
1 ð@a

1Þ
m: ]

We now observe that the operators ci are idempotent, and characterise
their images.

Proposition 3.4. Let G be a cubical o-category, and suppose that

14i4n� 1: The operator ci : Gn ! Gn is idempotent. An element x of

Gn is in ciðGnÞ if and only if @�iþ1x and @þiþ1x are in Im ei:

Proof. From Proposition 3.3(i), if x 2 ciðGnÞ then @�iþ1x and @þiþ1x are in
Im ei:

To complete the proof, suppose that @�iþ1x and @þiþ1x are in Im ei; it suffices
to show that cix ¼ x: Now,

G�ai @a
iþ1x 2 Im G�ai ei ¼ Im e2i ¼ Im eiþ1ei;
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so that the G�ai @a
iþ1x are identities for 8iþ1: It follows that

cix ¼ Gþi @
�
iþ1x 8iþ1 x 8iþ1 G

�
i @
þ
iþ1x ¼ x

as required. This completes the proof. ]

There is a similar result for Fn as follows.

Proposition 3.5. Let G be a cubical o-category. The operator Fn : Gn !
Gn is idempotent. An element x of Gn is in FnðGnÞ if and only if @a

mx 2
Im em�1

1 for 14m4n and a ¼ �:

Proof. Since Fn ¼ FmðCmþ1 � � �CnÞ; it follows from Proposition 3.3(iii)
that

Im @a
mFn � Im @a

mFm � Im em�1
1 :

Conversely, suppose that @a
mx 2 Im em�1

1 for 14m4n and a ¼ �; it suffices
to show that Fnx ¼ x; and for this it suffices to show that cix ¼ x for
14i4n� 1: But

@a
iþ1x 2 Im ei

1 ¼ Im eiei�1
1 � Im ei

for a ¼ �; so that cix ¼ x by Proposition 3.4. This completes the proof. ]

There is a useful result related to Proposition 3.5 as follows.

Proposition 3.6. If x 2 FnðGnÞ and 14m4n; then

@a
mx ¼ em�1

1 ð@a
1Þ

m
x and em@

a
mx ¼ em

1 ð@a
1Þ

m
x:

Proof. By Proposition 3.5, @a
mx ¼ em�1

1 x0 for some x0: It follows that

x0 ¼ ð@a
1Þ

m�1em�1
1 x0 ¼ ð@a

1Þ
m�1@a

mx ¼ ð@a
1Þ

m
x;

so that @a
mx ¼ em�1

1 x0 ¼ em�1
1 ð@a

1Þ
m

x and em@
a
mx ¼ emem�1

1 ð@a
1Þ

m
x ¼ em

1 ð@a
1Þ

m
x

as required. ]

We now deduce various closure properties for the family of sets FnðGnÞ:

Proposition 3.7. Let G be a cubical o-category. The family of sets

FnðGnÞ ðn50Þ is closed under the @a
i and under e1: The individual sets

FnðGnÞ are closed under ei@
a
i and 8i

for 14i4n:
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Proof. We use the characterisation in Proposition 3.5. We first show that
the family is closed under @a

1 : Indeed, if x 2 FnðGnÞ; then

@b
m@

a
1x ¼ @a

1@
b
mþ1x 2 @a

1ðIm em
1 Þ ¼ Im em�1

1 ;

since @a
1e1 ¼ id:

Next, we show that the family is closed under e1: Indeed, if x 2 FnðGnÞ;
then @b

1 e1x 2 Im e01 trivially, and for m > 1 we have

@b
me1x ¼ e1@

b
m�1x 2 e1ðIm em�2

1 Þ ¼ Im em�1
1 :

It now follows from Proposition 3.6 that the family is closed under @a
i for

all i: Similarly, FnðGnÞ is closed under ei@
a
i :

It remains to show that x 8i
y 2 FnðGnÞ when x and y are in FnðGnÞ and

the composite exists. Suppose that @b
mx ¼ em�1

1 x0 and @b
my ¼ em�1

1 y0: If moi;
then

@b
mðx 8i

yÞ ¼ @b
mx 8i�1 @

b
my ¼ em�1

1 x0 8i�1 e
m�1
1 y0

¼ em�1
1 ðx08i�m

y0Þ 2 Im em�1
1 ;

if m ¼ i; then @b
mðx 8i

yÞ is @b
mx ¼ em�1

1 x0 or @b
my ¼ em�1

1 y0; so @b
mðx 8i

yÞ is
certainly in Im em�1

1 ; and if m > i; then

@b
mðx 8i

yÞ ¼ @b
mx 8i

@b
my ¼ em�1

1 x0 8i
em�1
1 y0

¼ ei�1
1 ðem�i

1 x0 81 e
m�i
1 y0Þ ¼ ei�1

1 em�i
1 x0 2 Im em�1

1

(note that em�i
1 y0 is an identity for 81 because it lies in the image of e1).

This completes the proof. ]

We now obtain the desired sequence of o-categories.

Theorem 3.8. Let G be a cubical o- category. Then there is a sequence of

o-categories and homomorphisms

F0ðG0Þ!
e1 F1ðG1Þ!

e1 F2ðG2Þ ! � � �

with the following structure on FnðGnÞ: if 04pon; then

da
p x ¼ ðe1Þn�pð@a

1Þ
n�p

x

and x #p y ¼ x 8n�p
y where defined; if p5n; then da

p x ¼ x and the only

composites are given by x #p x ¼ x:
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Proof. We first show that for a fixed value of n the given structure maps
da

p and #p make FnðGnÞ into an o-category. By Proposition 3.7, FnðGnÞ is
closed under the structure maps for 04pon; and the same result holds
trivially for p5n:

From the identities in Section 2, if 04pon; then the triple

ðd�p ; dþp ; #p Þ ¼ ðen�p@
�
n�p; en�p@

þ
n�p; 8n�p

Þ

makes FnðGnÞ into the morphism set of a category (with d�p x and dþp x the
left and right identities of x and with #p as composition), and these
structures commute with one another. Trivially, the triples ðd�p ; dþp ; #p Þ for
n5p provide further commuting category structures. To show that these
structures make FnðGnÞ into an o-category, it now suffices to show that an
identity for#p is also an identity for#q if q > p; in other words, it suffices to
show that db

q da
p x ¼ da

p x for x 2 FnðGnÞ and q > p: For q5n; this is trivial;
we may therefore assume that 04poqon: But Proposition 3.6 gives us

db
q da

p x ¼ en�q
1 ð@

b
1 Þ

n�qen�p
1 ð@a

1Þ
n�p

x

¼ en�q
1 eq�p

1 ð@a
1Þ

n�p
x

¼ en�p
1 ð@a

1Þ
n�p

x

¼ da
p x

as required.
We have now shown that the FnðGnÞ are o-categories. We know from

Proposition 3.7 that e1 maps FnðGnÞ into Fnþ1ðGnþ1Þ; and it remains to show
that this function is a homomorphism. That is to say, we must show
that e1da

p x ¼ da
p e1x for x 2 FnðGnÞ; and we must show that e1ðx #p yÞ ¼

e1x #p e1y for x #p y a composite in FnðGnÞ: But if 04pon; then

e1da
p x ¼ e1en�p@

a
n�px ¼ en�pþ1@

a
n�pþ1e1x ¼ da

p e1x

and

e1ðx #p yÞ ¼ e1ðx 8n�p
yÞ ¼ e1x 8n�pþ1 e1y ¼ e1x #p e1y

by identities in Section 2; if p ¼ n we get

e1da
n x ¼ e1x ¼ e1@a

1e1x ¼ da
n e1x

and

e1ðx#nxÞ ¼ e1x ¼ e1x 81 e1x ¼ e1x#ne1x;
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and if p > n; then

e1da
p x ¼ e1x ¼ da

p e1x

and

e1ðx #p xÞ ¼ e1x ¼ e1x #p e1x

trivially. This completes the proof. ]

We can now define a functor from cubical o- to o-categories.

Definition 3.9. Let G be a cubical o-category. The o-category gG

associated to G is the colimit of the sequence

F0ðG0Þ!
e1 F1ðG1Þ!

e1 F2ðG2Þ ! � � � :

Remark 3.10. In Definition 3.9, one can identify FnðGnÞ with the subset
of gG consisting of elements x such that d�n x ¼ dþn x ¼ x: Indeed, the e1 are
injective, because @a

1e1 ¼ id; so that FnðGnÞ can be identified with a subset of
gG; if x 2 FnðGnÞ; then d�n x ¼ dþn x ¼ x by Theorem 3.8; if x 2 FmðGmÞ with
m > n and d�n x ¼ dþn x ¼ x; then

x ¼ em�n@
�
m�nx ¼ em�n

1 ð@�1 Þ
m�n

x

(Proposition 3.6) with ð@�1 Þ
m�n

x 2 FnðGnÞ (Proposition 3.7), and x can be
identified with ð@�1 Þ

m�n
x:

Remark 3.11. It is convenient to describe the o-category gG in terms of
the folding operations, but one can get a more direct description by using
Proposition 3.5. The more direct description needs face maps, degeneracies
and compositions, but not connections.

4. THE NATURAL ISOMORPHISM A : glX ! X

Let X be an o-category. From Definition 2.3 there is a cubical o-category
lX ; and from Definition 3.9 there is an o-category glX : We will now
construct a natural isomorphism A : glX ! X :

Let Fn be the o-category with one generator In and with relations d�n In ¼
dþn In ¼ In: By Proposition 3.2, Fn can be realised as a sub-o-category of
MðInÞ; and the morphism $FFn : MðInÞ !MðInÞ associated to the folding
operation Fn is an idempotent operation with image equal to Fn: Recalling
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that ðlX Þn ¼ Hom½MðInÞ;X 
; we see that

Fn½ðlX Þn
 ¼ f x 2 Hom½MðInÞ;X 
 : x $FFn ¼ x g:

Let

A :Fn½ðlX Þn
 ! X

be the function given by

AðxÞ ¼ xðInÞ;

we see that A is an injection with image equal to

fx 2 X : d�n x ¼ dþn x ¼ xg:

These functions are compatible with the sequence

� � � ! Fn½ðlXÞn
!
e1 Fnþ1½ðlX Þnþ1
 ! � � � ;

indeed, if x 2 Fn½ðlXÞn
; then

Aðe1xÞ ¼ ðe1xÞðInþ1Þ ¼ x$ee1ðInþ1Þ ¼ xðInÞ ¼ AðxÞ:

The functions A :Fn½ðlXÞn
 ! X therefore induce a bijection A : glX ! X :
We will now prove the following result.

Theorem 4.1. The functions A : glX ! X form a natural isomorphism of

o-categories.

Proof. We have already shown that A : glX ! X is a bijection, and it is
clearly natural. It remains to show that A is a homomorphism. It suffices to
show that

A:Fn½ðlXÞn
 ! X

is a homomorphism for each n; in other words, we must show that Aðda
p xÞ ¼

da
p AðxÞ for x 2 Fn½ðlXÞn
 and that Aðx #p yÞ ¼ AðxÞ#p AðyÞ for x #p y a

composite in Fn½ðlX Þn
:
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Suppose that x 2 Fn½ðlXÞn
 and 04pon: Noting that x ¼ x $FFn and using
Proposition 3.2, we find that

Aðda
p xÞ ¼Aðen�p@

a
n�pxÞ

¼ ðen�p@
a
n�pxÞðInÞ

¼ x $@@
a
n�p$een�pðInÞ

¼ xðIn�p�1 � da
0 I � IpÞ

¼ x $FFnðIn�p�1 � da
0 I � IpÞ

¼ xðda
p InÞ

¼ da
p xðInÞ

¼ da
p AðxÞ:

Suppose that x 2 Fn½ðlXÞn
 and p5n: Then

Aðda
p xÞ ¼ AðxÞ ¼ xðInÞ ¼ xðda

p InÞ ¼ da
p xðInÞ ¼ da

p x:

Suppose that x #p y is a composite in Fn½ðlX Þn
 with 04pon: Let

ðx; yÞ : MðIn�p�1 � ½0; 2
 � IpÞ ! X

be the morphism such that ðx; yÞ$ii�n�p ¼ x and ðx; yÞ$iiþn�p ¼ y; then

Aðx #p yÞ ¼ Aðx 8n�p
yÞ ¼ ðx; yÞ $mmn�pðInÞ:

Let Z : Fn !MðInÞ be the inclusion and let p : MðInÞ ! Fn be $FFn with its
codomain restricted to Fn; so that $FFn ¼ Zp: Since x and y are in Fn½ðlXÞn
;
we have x $FFn ¼ x and y ¼ y $FFn; we therefore get

ðx; yÞ $mmn�pðInÞ ¼ ðxZp; yZpÞ $mmn�pðInÞ:

Now let Fp be the o-category with one generator z and with relations d�p z ¼
dþp z ¼ z: We see that there is a factorisation

ðxZp; yZpÞ ¼ ðxZ; yZÞðp; pÞ

through the obvious push-out of

Fn  Fp ! Fn:
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We also see that

ðp; pÞ $mmn�pðInÞ ¼ p$ii�n�pðInÞ#p p$iiþn�pðInÞ:

It now follows that

ðxZp; yZpÞ $mmn�pðInÞ ¼ ðxZ; yZÞðp; pÞ $mmn�pðInÞ

¼ ðxZ; yZÞ½p$ii�n�pðInÞ#p p$iiþn�pðInÞ


¼ ðxZ; yZÞp$ii�n�pðInÞ#p ðxZ; yZÞp$iiþn�pðInÞ

¼ xZpðInÞ#p yZpðInÞ

¼ xðInÞ#p yðInÞ

¼AðxÞ#p AðyÞ;

therefore,

Aðx #p yÞ ¼ AðxÞ#p AðyÞ:

Finally, suppose that x #p y is a composite in Fn½ðlXÞn
 with p5n: We
must have x ¼ y; and we get

Aðx #p xÞ ¼ AðxÞ ¼ AðxÞ#p AðxÞ:

This completes the proof. ]

5. FOLDINGS, DEGENERACIES AND CONNECTIONS

According to Theorem 4.1, there are natural isomorphisms A : glX ! X

for o-categories X : To prove that o-categories are equivalent to cubical
o-categories, we will eventually construct natural isomorphisms B : G !
lgG for cubical o-categories G: We will need properties of the folding
operations, and we now begin to describe these.

We first show that the operations ci behave like the standard generating
transpositions of the symmetric groups (except of course that they are
idempotent rather than involutory, by Proposition 3.4). There are two types
of relation, the first of which is easy.

Proposition 5.1. If ji � jj52; then

cicj ¼ cjci:

Proof. This follows from the identities in Section 2. ]
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The next result is harder.

Theorem 5.2. If i > 1; then

cici�1ci ¼ ci�1cici�1:

Proof. Recall the matrix notation used for certain composites: if

ða11 8i
� � � 8i

a1nÞ 8iþ1 � � � 8iþ1 ðam1 8i
� � � 8i

amnÞ

and

ða11 8iþ1 � � � 8iþ1 am1Þ 8i
� � � 8i

ða1n 8iþ1 � � � 8iþ1 amnÞ

are equal by the interchange law, then we will write

a11 . . . a1n

..

. ..
.

am1 . . . amn

2
664

3
775 :

for the common value. In such a matrix, we write � for elements in the
image of ei (which are the identities for 8i

), and we write j for elements in the
image of eiþ1 (which are the identities for 8iþ1).

We first compute cici�1cix: It is straightforward to check that

ci�1cix ¼
j Gþi @

�
iþ1x G�i�1@

�
iþ1x

Gþi�1@
�
i x x G�i�1@

þ
i x

Gþi�1@
þ
iþ1x G�i @

þ
iþ1x j

2
64

3
75

It follows that

Gþi @
�
iþ1ci�1cix ¼Gþi ðGþi�1@�i @�i x 8i

ei@
�
i @
�
i x 8i

G�i�1@
�
i @
�
i xÞ

¼Gþi ðGþi�1@�i @�i x 8i
G�i�1@

�
i @
�
i xÞ

¼Gþi ei�1@
�
i @
�
i x

¼ ei�1Gþi�1@
�
i @
�
i x

and

G�i @
þ
iþ1ci�1cix ¼ ei�1G�i�1@

þ
i @
þ
i x;
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therefore,

cici�1cix ¼ ei�1Gþi�1@
�
i @
�
i x 8iþ1 ci�1cix 8iþ1 ei�1G�i�1@

þ
i @
þ
i x:

Similarly, ci�1cici�1x is as a composite

� Gþi�1G
þ
i�1@

�
i @
�
i x � � G�i�1G

þ
i�1@

�
i @
�
i x

� j Gþi @
�
iþ1x � G�i�1@

�
iþ1x

� j j Gþi G
�
i�1@

�
i @
þ
i x G�i G

�
i�1@

�
i @
þ
i x

� Gþi�1@
�
i x x G�i�1@

þ
i x �

Gþi G
þ
i�1@

þ
i @
�
i x G�i G

þ
i�1@

þ
i @
�
i x j j �

Gþi�1@
þ
iþ1x � G�i @

þ
iþ1x j �

Gþi�1G
�
i�1@

þ
i @
þ
i x � � G�i�1G

�
i�1@

þ
i @
þ
i x �

2
666666666664

3
777777777775
:

We now evaluate the rows of the matrix for ci�1cici�1x: The first and last
rows yield ei�1Gþi�1@

�
i @
�
i x and ei�1G�i�1@

þ
i @
þ
i x: The composite of the non-

identity elements in the third row is eiþ1G�i�1@
�
i @
þ
i x; which is an identity for

8iþ1; so the third row can be omitted. Similarly, the fifth row can be omitted.
The second, fourth and sixth rows have the same values as the rows of the
matrix for ci�1cix: It follows that

ci�1cici�1x ¼ ei�1Gþi�1@
�
i @
�
i x 8iþ1 ci�1cix 8iþ1 ei�1G�i�1@

þ
i @
þ
i x

also. Therefore, cici�1cix ¼ ci�1cici�1x: This completes the proof. ]

Remark 5.3. Proposition 5.1 and Theorem 5.2 in some sense explain the
formula for Fm in Definition 3.1. The ci behave like the generating
transpositions ði; i þ 1Þ in the symmetric group of permutations of f1; � � � ;
mg; and, as in the symmetric group, there are m! distinct composites of
c1; � � � ;cm�1 given by

C1;lð1Þ � � �Cm;lðmÞ

for 14lðrÞ4r; where Cr;lðrÞ ¼ cr�1cr�2 � � �clðrÞ:

The composite Fm corresponds to the order-reversing permutation p/
mþ 1� p: In our context, we can characterise Fm as the zero element in the
semigroup generated by c1; � � � ;cm�1 as follows.
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Theorem 5.4. If 14i4m� 1; then

Fmci ¼ Fm:

Proof. If r > 1; then

Crc1 ¼ ðcr�1 � � �c2Þc1c1 ¼ ðcr�1 � � �c2Þc1 ¼ Cr;

since c1 is idempotent by Proposition 3.4. For 1oior; it follows from
Proposition 5.1 and Theorem 5.2 that

Crci ¼ðcr�1 � � �ciþ1Þcici�1ðci�2 � � �c1Þci

¼ðcr�1 � � �ciþ1Þcici�1ciðci�2 � � �c1Þ

¼ ðcr�1 � � �ciþ1Þci�1cici�1ðci�2 � � �c1Þ

¼ci�1ðcr�1 � � �ciþ1Þcici�1ðci�2 � � �c1Þ

¼ci�1Cr:

For 14i4m� 1; it now follows that

Fmci ¼C1ðC2 � � �Cm�iÞCm�iþ1ðCm�iþ2 � � �CmÞci

¼C1ðC2 � � �Cm�iÞCm�iþ1c1ðCm�iþ2 � � �CmÞ

¼C1ðC2 � � �Cm�iÞCm�iþ1ðCm�iþ2 � � �CmÞ

¼Fm;

as required. ]

We can now give some interactions between Fm; degeneracies and
connections. First we have the following result.

Proposition 5.5. For all i there is a relation

ciG
a
i ¼ ei:
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Proof. From the definitions we get

ciG
þ
i x ¼Gþi @

�
iþ1G

þ
i x 8iþ1 G

þ
i x 8iþ1 G

�
i @
þ
iþ1G

þ
i x

¼Gþi ei@
�
i x 8iþ1 G

þ
i x 8iþ1 G

�
i x

¼ e2i @
�
i x 8iþ1 eix

¼ eiþ1ei@
�
i x 8iþ1 eix

¼ eix;

and we similarly get ciG
�
i x ¼ eix: ]

We draw the following conclusions.

Theorem 5.6. If 14i4m; then

Fmei ¼ e1Fm�1:

If 14i4m� 1; then

FmGa
i ¼ e1Fm�1:

Proof. The first of these results was given in Proposition 3.3(iii). The
second result then follows from Theorem 5.4 and Proposition 5.5: indeed,
we get

FmGa
i ¼ FmciG

a
i ¼ Fmei ¼ e1Fm�1

as required. ]

6. FOLDINGS, FACE MAPS AND COMPOSITIONS

In this section, we describe interactions between the Fn; face maps and
compositions. For face maps, the basic results are given in Proposition 3.3.
For compositions, the basic results are as follows, of which the first two
cases correspond to the 2-dimensional case in [14, Proposition 5.1].

Proposition 6.1. In a cubical o-category

ciðx 8j
yÞ ¼

ðcix 8iþ1 ei@
þ
iþ1yÞ 8i

ðei@
�
iþ1x 8iþ1 ciyÞ if j ¼ i;

ðei@
�
i x 8iþ1 ciyÞ 8i

ðcix 8iþ1 ei@
þ
i yÞ if j ¼ i þ 1;

cix 8j
ciy otherwise:

8>><
>>:
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Proof. Note that we have @þj x ¼ @�j y for x 8j
y to be defined.

The proof for the cases j ¼ i and j ¼ i þ 1 consists in evaluating in two
ways each of the matrices

Gþi @
�
iþ1x ei@

�
iþ1x

eiþ1@
�
iþ1x Gþi @

�
iþ1y

x y

G�i @
þ
iþ1x eiþ1@

þ
iþ1y

ei@
þ
iþ1y G�i @

þ
iþ1y

2
6666664

3
7777775

eiei@
�
i @
�
i x Gþi @

�
iþ1x

ei@
�
i x x

Gþi @
�
iþ1y G�i @

þ
iþ1x

y ei@
þ
i y

G�i @
þ
iþ1y eiei@

þ
i @
þ
i y

2
6666664

3
7777775

(Note that eiei@
�
i @
�
i x and eiei@

þ
i @
þ
i y are identities for 8iþ1 because eiei ¼

eiþ1ei:Þ The other case follows from the identities in Section 2. ]

Because of Proposition 6.1, it is convenient to regard ei@
a
i and ei@

a
iþ1 as

generalisations of ci: We extend this idea to Cr and Fm; and arrive at the
following definition.

Definition 6.2. A generalised ci is an operator of the form ci or ei@
a
i or

ei@
a
iþ1: A generalised Cr is an operator of the form c0r�1c

0
r�2 � � �c

0
1; where c

0
i

is a generalised ci: A generalised Fm is an operator of the form C01C
0
2 � � �C0m;

where C0r is a generalised Cr:

From (2.3) and (2.5), there are results for ei and @a
i analogous to

Proposition 6.1: eiðx 8j
yÞ is a composite of eix and eiy; if j ¼ i; then @a

i ðx
8j

yÞ is @a
i x or @a

i y; if jai; then @a
i ðx 8j

yÞ is a composite of @a
i x and @a

i y:
From these observations and from Proposition 6.1 we immediately get the
following result.

Proposition 6.3. Let c0i be a generalised ci: Then c0iðx� 8j
xþÞ is

naturally equal to a composite of factors c00i xa with c00i a generalised ci:
Let C0r be a generalised Cr: Then C0rðx� 8j

xþÞ is naturally equal to a

composite of factors C00r xa with C00r a generalised Cr:
Let F0m be a generalised Fm: Then F0mðx� 8j

xþÞ is naturally equal to a

composite of factors F00mxa with F00m a generalised Fm:

We will eventually express a generalised Fn in terms of the genuine folding
operators Fm: In order to do this, we now investigate the faces of generalised
foldings.

Proposition 6.4. Let c0j be a generalised cj : If ioj; then @a
i c
0
j ¼ c00j�1@

a
i

with c00j�1 a generalised cj�1: If i ¼ j; then @a
i c
0
jx is naturally equal to @b

j x or
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@b
jþ1x for some b; or to a composite of two such factors. If i > j; then @a

i c
0
j ¼

c00j @
b
i for some b; with c00j a generalised cj:

Proof. We use relations from Section 2 and Proposition 3.3.
For ioj; we have @a

i cj ¼ cj�1@
a
i or @a

i ej@
g
j ¼ ej�1@

a
i @

g
j ¼ ej�1@

g
j�1@

a
i or

@a
i ej@

g
jþ1 ¼ ej�1@

a
i @

g
jþ1 ¼ ej�1@

g
j @

a
i :

For i ¼ j; we have @�j cjx ¼ @�j x 8j
@þjþ1x or @þj cjx ¼ @�jþ1x 8j

@þj x or
@a

j ej@
g
j x ¼ @g

j x or @a
j ej@

g
jþ1x ¼ @g

jþ1x:
For i ¼ j þ 1; we have @a

jþ1cj ¼ ej@
a
j @

a
jþ1 or @

a
jþ1ej@

g
j ¼ ej@

a
j @

g
j ¼ ej@

g
j @

a
jþ1 or

@a
jþ1ej@

g
jþ1 ¼ ej@

a
j @

g
jþ1:

For i > j þ 1; we have @a
i cj ¼ cj@

a
i or @a

i ej@
g
j ¼ ej@

a
i�1@

g
j ¼ ej@

g
j @

a
i or

@a
i ej@

g
jþ1 ¼ ej@

a
i�1@

g
jþ1 ¼ ej@

g
jþ1@

a
i : ]

For a generalised Cr we get the following results.

Proposition 6.5. Let C0r be a generalised Cr: If i5r; then @a
i C
0
r ¼ C00r @

b
i

for some b; with C00r a generalised Cr: If ior; then @a
i C
0
rx is naturally equal to

a composite of factors C00r�1@
b
h x with h4r and with C00r�1 a generalised Cr�1:

Proof. If i5r; then @a
i C
0
r ¼ @a

i ðc0r�1 � � �c
0
1Þ with c0j a generalised cj; and

the result is immediate from Proposition 6.4.
Now suppose that ior: Then

@a
i C
0
rx ¼ @a

i ðc
0
r�1 � � �c

0
iþ1Þc

0
iC
0
ix;

with c0j a generalised cj and with C0i a generalised Ci: By Proposition 6.4

@a
i C
0
rx ¼ ðc

00
r�2 � � �c

00
i Þ@a

i c
0
iC
0
ix

with c00j a generalised cj: By Propositions 6.4 and 6.3, this is a composite of
factors of the form

ðc000r�2 � � �c
000
i Þ@

g
hC
0
ix;

with i4h4i þ 14r and with c000j a generalised cj: Since h5i; it follows from
the case already covered that the factors can be written as

ðc000r�2 � � �c
000
i ÞC00i @

b
h x;

with C00i a generalised Ci: The factors now have the form C00r�1@
b
h x with C00r a

generalised Cr; as required. ]

By iterating Proposition 6.5, we get the following result.
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Proposition 6.6. If i4m4n and C0r is a generalised Cr for mor4n;
then @a

i ðC0mþ1 � � �C0nÞx is naturally equal to a composite of factors ðC00m � � �
C00n�1Þ@

b
h x with h4n and with C00r a generalised Cr:

Proof. This follows from Propositions 6.5 and 6.3. ]

Now let F0n be a generalised Fn; we aim to express F0n in terms of the
genuine folding operators Fm: If n ¼ 0 or 1, then necessarily F0n ¼ Fn

already. In general, we use an inductive process; the inductive step is as
follows.

Proposition 6.7. Let F0n be a generalised Fn which is distinct from Fn:
Then F0nx is naturally a composite of factors e1F0n�1@

b
h x with F0n�1 a

generalised Fn�1:

Proof. By considering the first place where F0n and Fn differ, we see that

F0nx ¼ ½Fm�1ðcm�1 � � �cjþ1Þej
½@a
i C
0
jðC0mþ1 � � �C0nÞx


for some m and j such that 14jom4n; with i ¼ j or i ¼ j þ 1 and with C0r a
generalised Cr: Since j4m� 1; it follows from Proposition 3.3 that

Fm�1ðcm�1 � � �cjþ1Þej ¼ Fm�1ejðcm�2 � � �cjÞ ¼ e1Fm�2ðcm�2 � � �cjÞ;

since j4i4m; it follows from Propositions 6.5, 6.6 and 6.3 that

@a
i C
0
jðC0mþ1 � � �C0nÞx

is a composite of factors C00j ðC00m � � �C00n�1Þ@
b
h x with C00r a generalised Cr: By

Proposition 6.3, F0nx is then a composite of factors of the form

e1F0m�2ðc0m�2 � � �c0jÞC00j ðC00m � � �C00n�1Þ@
b
h x

with F0m�2 a generalised Fm�2 and with c0k a generalised ck: These factors
have the form e1F0n�1@

b
h x with F0n�1 a generalised Fn�1; as required. ]

We can now describe the interaction of Fn with compositions and face
maps in general terms as follows.

Proposition 6.8. If a composite x� 8i
xþ exists, then Fnðx� 8i

xþÞ is

naturally equal to a composite of factors en�m
1 FmDxa with D an ðn�mÞ-fold

product of face operators. If i4n; then @a
i Fnx is naturally equal to a composite

of factors en�m�1
1 FmDx with D an ðn�mÞ- fold product of face operators.
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Proof. The result for Fnðx� 8i
xþÞ comes from Proposition 6.3 by

iterated application of Proposition 6.7; recall from (2.5) that e1ðy� 8j
yþÞ is a

composite of e1y� and e1yþ:
Now suppose that i4n: By Proposition 3.3(iii)

@a
i Fnx ¼ @a

i FiðFiþ1 � � �FnÞx ¼ ei�1
1 ð@a

1Þ
iðFiþ1 � � �FnÞx:

From Proposition 6.6, this is a composite of factors ei�1
1 F0n�iD

0x with F0n�i a
generalised Fn�i and with D0 an i-fold product of face operators. By repeated
application of Proposition 6.7, there is a further decomposition into factors
en�m�1
1 FmDx with D an ðn�mÞ-fold product of face operators.
This completes the proof. ]

We will now specify the composites in Proposition 6.8 more precisely. Let
G be a cubical o-category, and consider Fnðx� 8i

xþÞ; where x�8x
þ is a

composite in Gn: The factors en�m
1 FmDxa lie in FnðGnÞ (see Proposition 3.7),

and their composite can be regarded as a composite in the o-category
FnðGnÞ (see Theorem 3.8). To identify the composite, we take the universal
case

G ¼ lMðI i�1 � ½0; 2
 � In�iÞ;

we may then identify FnðGnÞ with MðI i�1 � ½0; 2
 � In�iÞ by Theorem 4.1.
The universal elements

xa 2 ½lMðI i�1 � ½0; 2
 � In�iÞ
n ¼ Hom½MðInÞ;MðI i�1 � ½0; 2
 � In�iÞ


are the inclusions $iiai representing MðI i�1 � ½0; 2
 � In�iÞ as a push-out.
Evaluating Fnðx� 8i

xþÞ and the corresponding composite on In; and using
Proposition 3.2, we see that Fnðx�8x

þÞ gives us I i�1 � ½0; 2
 � In�i and the
factors give us cells in I i�1 � ½0; 2
 � In�i: The composite for Fnðx� 8i

xþÞ in
Proposition 6.8 is an o-category formula expressing I i�1 � ½0; 2
 � In�i as a
composite of cells. All such formulae are equivalent in all o-categories
because of the presentation of MðI i�1 � ½0; 2
 � In�iÞ in Theorem 1.3. The
formula uses #p only for 04pon (see Theorem 3.8). Similarly, the formula
for @a

i Fnx is an o-category formula expressing da
n�iI

n as a composite of cells
(see Propositions 3.6 and 3.2).

In order to state these results more clearly, we introduce the following
notation.

Definition 6.9. Let s be a cell in In; and let the dimension of s
be m: Then @s : Gm ! Gn is the cubical o-category operation of the form
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@
að1Þ
ið1Þ � � � @

aðn�mÞ
iðn�mÞ such that the underlying homomorphism

$@@s : MðImÞ !MðInÞ

sends Im to s:

Note that @s is uniquely determined by s because of relation 2.1(i).
In this notation, we can state the following theorem.

Theorem 6.10.

(i) Let f be a formula expressing I i�1 � ½0; 2
 � In�i as a ð#0; � � � ;#n�1Þ-
composite of cells $ii�i ðsÞ and $iiþi ðsÞ; where

$iiai : MðInÞ !MðI i�1 � ½0; 2
 � In�iÞ

are the inclusions expressing MðI i�1 � ½0; 2
 � In�iÞ as a push-out. Let x� 8i
xþ be a composite in a cubical o-category. Then Fnðx 8i

yÞ can be got from f

by replacing $iiai ðsÞ with en�m
1 Fm@sxa; where m ¼ dim s; and by replacing #p

with 8n�p
:

(ii) Let g be a formula expressing da
n�iI

n as a ð#0; � � � ;#n�2Þ-composite

of cells, where 14i4n: In a cubical o-category, @a
i Fnx can be got from g by

replacing s with en�m�1
1 Fm@sx; where m ¼ dim s; and by replacing #p

with 8n�p
:

7. THE NATURAL HOMOMORPHISM B : G ! lgG

Let G be a cubical o-category. We will now use Theorem 6.10 to construct
a natural homomorphism B : G ! lgG: Let x be a member of Gn: We must
define

BðxÞ 2 ðlgGÞn ¼ Hom½MðInÞ; gG
:

Now, MðInÞ is generated by the cells in In (see Theorem 1.3), and gG is the
colimit of the sequence

F0ðG0Þ!
e1 F1ðG1Þ!

e1 F2ðG2Þ ! � � �

(see Definition 3.9). We can therefore define BðxÞ by giving a suitable value
to ½BðxÞ
ðsÞ for s a cell in In; these values must lie in the FmðGmÞ; and a
value es

1y can be identified with y: The precise result is as follows.
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Theorem 7.1. There is a natural homomorphism B : G ! lgG for G a

cubical o-category given by

½BðxÞ
ðsÞ ¼ Fm@sx

for s a cell in In; where m ¼ dim s:

Proof. We first show that the values prescribed for the ½BðxÞ
ðsÞ really
define a homomorphism on MðInÞ; in other words, we must show that they
respect the relations given in Theorem 1.3. Let s be an m-dimensional cell in
In: We must show that da

mðFm@sxÞ ¼ Fm@sx; if m > 0 we must also show
that da

m�1ðFm@sxÞ is the appropriate composite of the Fl@tx; where t � s:
The first of these equations, da

mðFm@sxÞ ¼ Fm@sx; is an immediate
consequence of Theorem 3.8.

For the second equation, let s be a cell of positive dimension m: By
Theorem 3.8,

da
m�1ðFm@sxÞ ¼ e1@a

1Fm@sx;

which may be identified with @a
1Fm@sx: By Theorem 6.10, this is the

appropriate composite of the Fl@tx; as required.
We have now constructed functions B : Gn ! ðlgGÞn; and we must show

that these functions form a homomorphism of cubical o-categories. We
must therefore show that Bð@a

i xÞ ¼ @a
i BðxÞ; that BðeixÞ ¼ eiBðxÞ; that

Bðx� 8i
xþÞ ¼ Bðx�Þ 8i

BðxþÞ; and that BðGa
i xÞ ¼ Ga

i BðxÞ:
First we consider Bð@a

i xÞ; where x 2 Gn: Let s be a cell in In�1 of

dimension m; and let t ¼ $@@
a
i ðsÞ: We then have t ¼ $@@

a
i
$@@sðImÞ; so $@@t ¼ $@@

a
i
$@@s

and @t ¼ @s@
a
i : It follows that

½Bð@a
i xÞ
ðsÞ ¼ Fm@s@

a
i x ¼ Fm@tx

and

½@a
i BðxÞ
ðsÞ ¼ ½BðxÞ
½ $@@a

i ðsÞ
 ¼ ½BðxÞ
ðtÞ ¼ Fm@tx;

therefore, ½Bð@a
i xÞ
ðsÞ ¼ ½@a

i BðxÞ
ðsÞ as required.
Next we consider BðeixÞ; where x 2 Gn: Let s be a cell in Inþ1 of

dimension m: From Definition 2.1, we see that @sei has the form id @t or ej@t:
Let l ¼ dim t; so that l ¼ m in the first case and l ¼ m� 1 in the second
case. Let y : Gl ! Gm be id or ej : Gl ! Gm as the case may be, and let
$yy : MðImÞ !MðI lÞ be the underlying o-category homomorphism. We now
see that @sei ¼ y@t and $eei

$@@s ¼ $@@t
$yy with $yyðImÞ ¼ I l : It follows that

$eeiðsÞ ¼ $eei
$@@sðImÞ ¼ $@@t

$yyðImÞ ¼ $@@tðI lÞ ¼ t:
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Using Theorem 5.6, we also see that Fmy ¼ em�l
1 Fl : We now get

½BðeixÞ
ðsÞ ¼ Fm@seix ¼ Fmy@tx ¼ em�l
1 Fl@tx ¼ Fl@tx

(recall that es
1y is to be identified with y) and

½eiBðxÞ
ðsÞ ¼ ½BðxÞ
½$eeiðsÞ
 ¼ ½BðxÞ
ðtÞ ¼ Fi@tx;

so that ½BðeixÞ
ðsÞ ¼ ½eiBðxÞ
ðsÞ as required.
Next we consider Bðx� 8i

xþÞ; where x� 8i
xþ is a composite in Gn: Let s

be a cell in In of dimension m: From Definition 2.1,

½Bðx� 8i
xþÞ
ðsÞ ¼ Fm@sðx� 8i

xþÞ

is equal to Fm@sx� or Fm@sxþ or to Fmð@sx� 8j
@sxþÞ for some j: In any

case, using Theorem 6.10 if necessary, we see that ½Bðx� 8i
xþÞ
ðsÞ is a

composite of factors Fl@tx
a such that $mmiðsÞ is the corresponding composite

of the $iiai ðtÞ; where

$ii�i ; $ii
þ
i : MðInÞ !MðI i�1 � ½0; 2
 � In�iÞ

are the functions expressing MðI i�1 � ½0; 2
 � In�iÞ as a push-out. Let

ðBðx�Þ;BðxþÞÞ : MðI i�1 � ½0; 2
 � In�iÞ ! gG

be the function such that

ðBðx�Þ;BðxþÞÞ$iiai ¼ BðxaÞ;

we see that

½Bðx� 8i
xþÞ
ðsÞ ¼ ðBðx�Þ;BðxþÞÞ $mmiðsÞ ¼ ½Bðx�Þ 8i

BðxþÞ
ðsÞ

as required.
Finally, we consider BðGa

i xÞ; where x 2 Gn: Let s be a cell in Inþ1 of
dimension m: From Definition 2.1, @sGa

i has the form @t or ei@t or Ga
i @t: We

can now use the same argument as for BðeixÞ; noting that $GG
a
i ðImÞ ¼ Im�1

and that FmGa
i ¼ e1Fm�1 by Theorem 5.6.

This completes the proof. ]

8. THE NATURAL ISOMORPHISM B : G ! lgG

In Theorem 4.1, we have constructed a natural isomorphism A : glX ! X

for X an o-category. In Theorem 7.1, we have constructed a natural
homomorphism B : G ! lgG for G a cubical o-category. We will now show
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that o-categories and cubical o-categories are equivalent by showing that B

is an isomorphism.
We begin with the following observation.

Proposition 8.1. Let G be a cubical o-category. Then gB : gG ! glgG is

an isomorphism.

Proof. Consider the composite

A8ðgBÞ : gG ! gG:

By Theorem 4.1, A is an isomorphism; it therefore suffices to show that the
composite A8ðgBÞ is the identity. This amounts to showing that ABðxÞ ¼ x

for x 2 FnðGnÞ: Now, from the definitions of A and B; we find that

ABðxÞ ¼ ½BðxÞ
ðInÞ ¼ Fnx;

since x 2 FnðGnÞ and Fn is idempotent (Proposition 3.5), it follows that
ABðxÞ ¼ x as required. This completes the proof. ]

Because of Proposition 8.1, to show that B is an isomorphism it suffices to
show that a cubical o-category G is determined by the o-category gG:
Because of Remark 3.10, this is the same as showing that G is determined by
the FnðGnÞ: We will work inductively, showing that an element x of Gn is
determined by Fnx and by its faces. To handle the family of faces of x; we
will use the following terminology.

Definition 8.2. Let G be a cubical o-category and let n be a positive
integer. An n-shell in G is an ordered ð2nÞ-tuple:

z ¼ ðz�1 ; zþ1 ; � � � ; z�n ; zþn Þ

of members of Gn�1 such that @a
i z

b
j ¼ @b

j�1z
a
i whenever ioj: The set of

n-shells is denoted & Gn�1:

Remark 8.3. This construction is used in [9, Section 5] to construct a
coskeleton functor from ðn� 1Þ-truncated cubical o-groupoids to
n-truncated o-groupoids determined by

ðG0;G1; � � � ;Gn�1Þ/ðG0;G1; � � � ;Gn�1;&Gn�1Þ;

and the same construction clearly works for the category case. It follows
that the folding operations are also defined on &Gn�1: In the following, we
take a slightly more direct route.
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First, by Definition 2.1, it is easy to check the following result.

Proposition 8.4. Let G be a cubical o-category and let n be a positive

integer. There is a boundary map @ : Gn ! &Gn�1 given by

@x ¼ ð@�1 x; @þ1 x; � � � ; @�n x; @þn xÞ:

Now we define folding operations on shells directly.

Proposition 8.5. Let G be a cubical o-category. For 14j4n� 1; the

cubical structure of ðG0; � � � ;Gn�1Þ yields a natural function cj :&Gn�1 !
&Gn�1 such that

cj@ ¼ @cj : Gn ! &Gn�1:

Proof. Let z ¼ ðzai Þ be an n-shell. Guided by Proposition 3.3(i), we let
ciz be the ð2nÞ-tuple w ¼ ðwa

i Þ such that

wa
i ¼

cj�1z
a
i for ioj;

z�j 8j
zþjþ1 for ða; iÞ ¼ ð�; jÞ;

z�jþ1 8j
zþj for ða; iÞ ¼ ðþ; jÞ;

ej@
a
j zajþ1 for i ¼ j þ 1;

cjz
a
i for i > j þ 1:

8>>>>>>>><
>>>>>>>>:

From Proposition 3.1(i) and the identities in Section 2, it is straightforward
to check that cj is a well-defined function from &Gn�1 to itself, and it is easy
to see that cj@ ¼ @cj: ]

We will now show that the n-dimensional elements ðn > 0Þ in a cubical o-
category are determined by the lower-dimensional elements and by the
image of Fn:

Theorem 8.6. Let G be a cubical o-category, let n be a positive integer,
and let Fn :&Gn�1 ! &Gn�1 be the function given by

Fn ¼ c1ðc2c1Þðc3c2c1Þ � � � ðcn�1 � � �c1Þ:

Then there is a bijection x/ð@x;FnxÞ from Gn to the pull-back

&Gn�1 �Gn
FnðGnÞ ¼ f ðz; yÞ 2 &Gn�1 � FnðGnÞ :Fnz ¼ @y g:
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Proof. This amounts to showing that

Fn : @
�1ðzÞ ! @�1ðFnzÞ

is a bijection for each z in &Gn�1: Since Fn is a composite of operators cj; it
suffices to show that

cj:@
�1ðzÞ ! @�1ðcjzÞ

is a bijection for each z in &Gn�1:
Given y 2 @�1ðcjzÞ; it is straightforward to check that there is a

composite

yy ¼ ðejz
�
j 8jþ1 G

þ
j zþjþ1Þ 8j

y 8j
ðG�j z�jþ1 8jþ1 ejz

þ
j Þ;

and that yy 2 @�1ðzÞ: We will carry out the proof by showing that ycjx ¼ x

for x 2 @�1ðzÞ and that cjyy ¼ y for y 2 @�1ðcjzÞ:
Let x be a member of @�1ðzÞ: Then

ycjx

j Gþj z�jþ1 G�j z�jþ1

ejz
�
j x ejz

þ
j

Gþj zþjþ1 G�j zþjþ1 j

2
664

3
775

The first and third rows are in the image of ejþ1 by (2.5) and (2.7), so they are
identities for 8jþ1 and can therefore be omitted. This leaves the second row
in which ejz

�
j and ejz

þ
j are identities for 8j

: It follows that ycjx ¼ x:
Now let y be a member of @�1ðcjzÞ: By (2.2)(vi) and (2.1)(ii), ej@

�
j G
þ
j ¼

ejej@
�
j ¼ ejþ1ej@

�
j ; so

Gþj @
�
jþ1yy ¼Gþj z�jþ1

¼ ej@
�
j G
þ
j z�jþ1 8j

ej@
�
j G
þ
j z�jþ1 8j

Gþj z�jþ1

¼ ejþ1ej@
�
j z�jþ1 8j

ejþ1ej@
�
j z�jþ1 8j

Gþj z�jþ1:

Similarly,

G�j @
þ
jþ1yy ¼ G�j zþjþ1 8j

ejþ1ej@
þ
j zþjþ1 8j

ejþ1ej@
þ
j zþjþ1:
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It follows that

cjyy ¼Gþj @
�
jþ1yy 8jþ1 yy 8jþ1 G

�
j @
þ
jþ1yy

¼

j j Gþj z�jþ1

ejz
�
j 8jþ1 Gþ�jz

þ
jþ1 y G�j z�jþ1 8jþ1 ejz

þ
j

G�j zþjþ1 j j

2
664

3
775

By (2.7) and (2.5), the first and third columns are in the image of ej; so they
are identities for 8j

and can be omitted. This leaves the second column so
that cjyy ¼ y:

This completes the proof. ]

From Theorem 8.6, we deduce the following result.

Theorem 8.7. Let f : G ! H be a morphism of cubical o-categories such

that gf :gG ! gH is an isomorphism. Then f is an isomorphism.

Proof. By Remark 3.10, f induces isomorphisms from FnðGnÞ to
FnðHnÞ: Since F0 is the identity operation, f induces a bijection from G0

to H0: By an inductive argument using Theorem 8.6, f induces a bijection
from Gn to Hn for all n: Therefore, f is an isomorphism. ]

It follows from Proposition 8.1 and Theorem 8.7 that B : G ! lgG is a
natural isomorphism for cubical o-categories G: From Theorem 4.1, A :
glX ! X is a natural isomorphism for o-categories X : We draw the
following conclusion.

Theorem 8.8. The categories of o-categories and of cubical o-categories

are equivalent under the functors l and g:

9. THIN ELEMENTS AND COMMUTATIVE SHELLS IN A
CUBICAL o-CATEGORY

In this section,we use the equivalence of Theorem 8.8 to clarify two
concepts in the theory of cubical o-categories: thin elements and
commutative shells. Thin elements (sometimes called hollow elements) were
introduced in the thesis of Dakin [17], and were developed in the cubical
o-groupoid context by Brown and Higgins [6, 9, 10]. They are used by
Ashley [3] and by Street [27]. In the cubical nerve of an o-category they arise
as follows.
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Throughout this section, let G be a cubical o-category. Whenever
convenient, we will identify G with the nerve of gG; in other words, each
element x of Gn is identified with a homomorphism x : MðInÞ ! gG:

First, we deal with thin elements. Intuitively, an element is thin if its real
dimension is less than its apparent dimension. In the nerve of an o-category
we can make this precise as follows.

Definition 9.1. Let x be a member of Gn: Then x is thin if

dim xðInÞon:

Given an element x of Gn; we can identify xðInÞ with Fnx by Theorem 7.1.
By Remark 3.10, dimFnxon if and only if Fnx is in the image of e1: We
therefore have the following characterisation.

Proposition 9.2. Let x be a member of Gn: Then x is thin if and only if

Fnx is in the image of e1:

There is also a less obvious characterisation in more elementary cubical
terms: the thin elements of Gn are those generated by the Gm with mon: The
precise statement is as follows.

Theorem 9.3. Let x be a member of Gn: Then x is thin if and only

if it is a composite of elements of the forms eiy and Ga
j z for various values of

i; j; a; y; z:

Proof. Suppose that x is a composite of elements of the forms eiy and
Ga

j z: Then Fnx is in the image of e1 by Theorems 5.6 and 6.10, so x is thin by
Proposition 9.2.

Conversely, suppose that x is thin. It follows from the proof of Theorem
8.5 that x is a composite of Fnx with elements of the forms eiy and Ga

j z: By
Proposition 9.2, Fnx is in the image of e1; so x is itself a composite of
elements of the forms eiy and Ga

j z: ]

Next, we deal with commutative shells. There is an obvious concept of
commutative square, or commutative 2-shell; we want commutative n-shells
for arbitrary positive n: Now an n-shell z in G can be identified with a
homomorphism z : Mðd�n�1In [ dþn�1InÞ ! gG; and we must obviously define
a commutative n-shell as follows.

Definition 9.4. For n > 0 an n-shell z in G is commutative if

zðd�n�1InÞ ¼ zðdþn�1InÞ:
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By Theorem 6.10(ii), if z is an n-shell with n > 0; then zðda
n�1Þ can be

identified with ðFnzÞa1; the ða; 1Þ face of the n-shell Fnz as in Theorem 8.6.
We can therefore describe commutative n-shells in cubical terms as follows.

Proposition 9.5. For n > 0 an n-shell z in G is commutative if and only if

ðFnzÞ�1 ¼ ðFnzÞþ1 :

10. MONOIDAL CLOSED STRUCTURES

In [2], Al-Agl and Steiner constructed a monoidal closed structure on the
category o-Cat* of (globular) o-categories by using a cubical description of
that category. Now that we have a more explicit cubical description we can
give a more explicit description of the monoidal closed structure; we modify
the construction which is given by Brown and Higgins [13] for the case of a
single connection and for groupoids rather than categories. Following the
method there, we first define the closed structure on the category o-Cat& of
cubical o-categories using a notion of n-fold left homotopy which we outline
below, and then obtain the tensor product as the adjoint to the closed
structure. This gives:

Theorem 10.1. The category o-Cat& admits a monoidal closed structure

with an adjoint relationship

o-Cat&ðG �H;KÞ ffi o-Cat&ðG;o-CAT&ðH;KÞÞ

in which o-CAT&ðH;KÞ0 is the set of morphisms H ! K ; while for

n51 o-CAT& ðH;KÞn is the set of n-fold left homotopies H ! K :

The proof is given below.
Because of the equivalence between o-Cat& and the category o-Cat8 of o-

categories we have:

Corollary 10.2. The category o-Cat* admits a monoidal closed

structure with an adjoint relationship

o-Cat*ðX � Y ;ZÞ ffi o-Cat*ðX ;o-CAT*ðY ;ZÞÞ

in which o*-CATðY ;ZÞ0 is the set of morphisms Y ! Z; while for n51
o-CAT*ðY ;ZÞn is the set of n-fold left homotopies Y ! Z corresponding to

the cubical homotopies.
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The tensor product in Corollary 10.2 is an extension of the tensor product
in Theorem 1.8.

Note that by Remark 3.11, the set o-CAT*ðY ;ZÞn of globular n-fold left
homotopies may be thought of as an explicitly described subset of the set of
cubical n-fold left homotopies lY ! lZ: Because of the complications of
the folding operations, explicit descriptions of the globular monoidal closed
structure are not so easy, but have been partly accomplished by Steiner [26].
See also Crans [16].

We now give details of these cubical constructions, following directly the
methods of [13].

Let H be a cubical o-category and n be a non-negative integer. We can
construct a cubical o-category PnH called the n-fold (left) path cubical

o-category of H as follows: ðPnHÞr ¼ Hnþr; the operations @
a
i ; ei; Ga

i and 8i
of PnH are the operations @a

nþi; enþi; Ga
nþi and 8nþi

of H: The operations
@a
1 ; � � � ; @a

n not used in PnH give us morphisms of cubical o-categories from
PnH to Pn�1H; etc., and we get an internal cubical o-category

PH ¼ ðH;P1H;P2H; � � �Þ

in the category o-Cat&:
For any cubical o-categories G;H we now define

o-CAT&ðG;HÞ ¼ o-Cat&ðG;PHÞ;

that is, o-CAT&
mðG;HÞ ¼ o-Cat&ðG;PmHÞ; and the cubical o-category

structure on o-CAT&
mðG;HÞ is induced by the internal cubical o-category

structure on PH: Ultimately, this means that the operations @a
i ; etc. on

o-CAT&
mðG;HÞ are induced by the similarly numbered operations on H: In

dimension 0; o-CAT&ðG;HÞ consists of all morphisms G ! H; while in
dimension n it consists of n-fold (left) homotopies G ! H: We make o-
CAT&ðG;HÞ a functor in G and H (contravariant in G) in the obvious way.

The definition of tensor product of cubical o-categories is harder. We
require that �� G be left adjoint to o-CAT&ðG;�Þ as a functor from o
-Cat& to o-Cat&; and this determines � up to natural isomorphism.
Its existence, that is, the representability of the functor o-Cat&ðF ;o-CAT&

ðG;�ÞÞ; can be asserted on general grounds. Indeed, o-Cat& is an
equationally defined category of many sorted algebras in which the domains
of the operations are defined by finite limit diagrams, and general theorems
on such algebraic categories imply that o-Cat& is complete and cocomplete.

We can also specify the tensor product cubical o-category by a
presentation; that is, we give a set of generators in each dimension and a
set of relations of the form u ¼ v; where u; v are well-formed formulae of the
same dimension made from generators and the operators @a

i ; ei;Ga
i ; 8i

: This
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is analogous to the standard tensor product of modules over a ring, and the
universal property of the presentation gives the required adjointness.

The details are as follows.

Definition 10.3. Let F ;G be cubical o-categories. Then F � G is the
cubical o-category generated by elements in dimension n50 of the form
x� y where x 2 Fp; y 2 Gq and pþ q ¼ n; subject to the following defining
relations (plus, of course, the laws for cubical o-categories):

(i)

@a
i ðx� yÞ ¼

ð@a
i xÞ � y if 14i4p;

x� ð@a
i�pyÞ if pþ 14i4n;

(

(ii) eiðx� yÞ ¼ ðeixÞ � y if 14i4pþ 1;
x� ðei�pyÞ if pþ 14i4nþ 1;

�

(iii) Ga
i ðx� yÞ ¼ ðGa

i xÞ � y if 14i4p;
x� ðGa

i�pyÞ ifpþ 14i4n;

�

(iv) ðx 8i
x0Þ � y ¼ ðx� yÞ 8i

ðx0 � yÞ if 14i4p; and x 8i
x0 is defined

in F ;

(v) x� ðy 8j
y0Þ ¼ ðx� yÞ8pþj

ðx� y0Þ if 14j4q; and y 8j
y0 is defined

in G;
we note that the relation

(vi) ðepþ1xÞ � y ¼ x� ðe1yÞ follows from (ii).

An alternative way of stating this definition is to define a bimorphism

ðF ;GÞ ! A; where F ;G;A are cubical o-categories, to be a family of maps
Fp � Gq ! Apþq ðp; q50Þ; denoted by ðx; yÞ/wðx; yÞ such that

(a) for each x 2 Fp; the map y/wðx; yÞ is a morphism of cubical
o-categories G ! PpA;

(b) for each g 2 Gq the map x/wðx; yÞ is a morphism of cubical
o-categories F ! TPqTA;

where the cubical o-category TX has the same elements as X but its cubical
operations, connections and compositions are numbered in reverse order.
The cubical o-category F � G is now defined up to natural isomorphisms by
the two properties:

(i) the map ðx; yÞ/x� y is a bimorphism ðF ;GÞ ! F � G;

(ii) every bimorphism ðF ;GÞ ! A is uniquely of the form ðx; yÞ/
sðx� yÞ where s : F � G ! A is a morphism of cubical o-categories.
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In the definition of a bimorphism ðF ;GÞ ! A; condition (a) gives maps
Fp ! o-CAT&

p ðG;AÞ for each p; and condition (b) states that these combine
to give a morphism of cubical o-categories F ! o-CAT&ðG;AÞ: This
observation yields a natural bijection between bimorphisms ðF ;GÞ ! A and
morphisms F ! o-CAT&ðG;AÞ: Since we also have a natural bijection
between bimorphisms ðF ;GÞ ! A and morphisms F � G ! A; we have

Proposition 10.4. The functor �� G is left adjoint to the functor

o-CAT&ðG;�Þ from o-Cat& to o-Cat&:

Proposition 10.5. For cubical o-categories F ;G;H; there are natural

isomorphisms of cubical o-categories

(i) ðF � GÞ �H ffi F � ðG �HÞ; and

(ii) o-CAT&ðF � G;HÞ ffi o-CAT&ðF ;o-CAT&ðG;HÞÞ giving o-Cat&

the structure of a monoidal closed category.

Proof. (i) This isomorphism may be proved directly, or, as is well
known, be deduced from the axioms for a monoidal closed category.

(ii) In dimension r there is by adjointness a natural bijection

o-CAT&
r ðF � G;HÞ ¼o-Cat&ðF � G;PrHÞ

ffio-Cat&ðF ;o-CAT&ðG;PrHÞÞ

¼o-Cat&ðF ;Prðo-CAT&ðG;HÞÞÞ

¼o-CAT&
r ðF ;o-CAT&ðG;HÞÞ:

These bijections combine to form the natural isomorphism (ii) of cubical
o-categories because, on both sides, the cubical o-category structures are
induced by the corresponding operators @a

i ; ej; etc. in H: ]

We can also relate the construction to the category of cubical sets, which
we denote Cub. The underlying cubical set functor U :o-CAT& ! Cub has
a left adjoint s : Cub! o-Cat&; and we call sðKÞ the free cubical o-
category on the cubical set K: The category Cub has a monoidal closed
structure in the same way as o-Cat& (see [13]); the internal hom CUB is
given by CUBðL;MÞr ¼ CubðL;PrMÞ where Pr is now the n-fold path
functor on cubical sets. We have the following results.

Proposition 10.6. For a cubical set L and cubical o-category G; there is

a natural isomorphism of cubical sets

Uðo-CAT&ðsðLÞ;GÞÞ ffi CUBðL;UGÞ:
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Proof. The functor s : Cub! o-Cat& is left adjoint to U :o-Cat& !
Cub; and this is what the proposition says in dimension 0. In dimension r;
we have a natural bijection

o-CAT&
r ðsðLÞ;GÞ ¼o-Cat&ðsðLÞ;PrGÞ

ffiCubðL;UPrGÞ

¼CUBrðL;UGÞ

and these bijections are compatible with the cubical operators. ]

Proposition 10.7. If K ;L are cubical sets, there is a natural isomorphism

of cubical o-categories

sðKÞ � sðLÞ ffi sðK � LÞ:

Proof. For any cubical o-category G; there are natural isomorphisms of
cubical sets

Uðo-CAT&ðsðKÞ � sðLÞ;GÞÞ ffiUðo-CAT&ðsðKÞ;o-CAT&ðsðLÞ;GÞÞÞ

ffiCUBðK ;Uðo-CAT&ðsðLÞ;GÞÞÞ

ffiCUBðK ;CUBðL;UGÞÞ

ffiCUBðK � L;UGÞ

ffiUðo-CAT&ðsðK � LÞ;GÞ:

The proposition follows from the information in dimension 0; namely

o-Cat&ðsðK � LÞ;GÞ ffi o-Cat&ðsðKÞ � sðLÞ;GÞÞ: ]

The o-categories MðInÞ of Section 1 can be fitted into this framework if
one regards them as cubical o-categories. Indeed, as a cubical o-category,
MðInÞ is freely generated by one element in dimension n; therefore, MðInÞ ¼
sðInÞ where In is the cubical set freely generated by one element in dimension
n: Calculations with cubical sets show that Im � In ffi Imþn; and we get the
following result.

Corollary 10.8. These are natural isomorphisms of cubical o-categories

MðImÞ �MðInÞ ffiMðImþnÞ: ]
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Proposition 10.9.

(i) MðInÞ � � is left adjoint to Pn :o-Cat& ! o-Cat&:

(ii) ��MðInÞ is left adjoint to o-CAT&ðMðInÞ;�Þ:
(iii) o-CAT&ðMðInÞ;�Þ is naturally isomorphic to TPnT :

Proof. (i) There are natural bijections

o-Cat&ðMðInÞ �H;KÞ ffio-Cat&ðMðInÞ;o-CAT&ðH;KÞÞ

ffio-CAT&
n ðH;KÞ

¼o-Cat&ðH;PnKÞ:

(ii) This is a special case of Proposition 10.4.

(iii) It follows from (i) that TPnT :o-Cat& ! o-Cat& has left adjoint
TðMðInÞ � Tð�ÞÞ ffi � � TMðInÞ: But the obvious isomorphism TI! I

induces an isomorphism TMðInÞ ffiMðInÞ; so �� TMðInÞ is naturally
isomorphic to ��MðInÞ: The result now follows from (ii). ]

The free cubical o-category on a cubical set is important in applications
to concurrency theory. The data for a concurrent process can be given as a
cubical set K ; and the evolution of the data can be reasonably described by
the free cubical o-category sðKÞ; indeed, sðKÞ is the higher-dimensional
analogue of the path category on a directed graph. The idea is pursued by
Gaucher in [20].
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