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SUMMARY

Pancreatic b cell-surface expression of glu-
cose transporter 2 (Glut-2) is essential for glu-
cose-stimulated insulin secretion, thereby
controlling blood glucose homeostasis in
response to dietary intake. We show that
the murine GlcNAcT-IVa glycosyltransfer-
ase is required for Glut-2 residency on the
b cell surface by constructing a cell-type-
and glycoprotein-specific N-glycan ligand
for pancreatic lectin receptors. Loss of
GlcNAcT-IVa, or the addition of glycan-
ligand mimetics, attenuates Glut-2 cell-
surface half-life, provoking endocytosis
with redistribution into endosomes and
lysosomes. The ensuing impairment of glu-
cose-stimulated insulin secretion leads to
metabolic dysfunction diagnostic of type
2 diabetes. Remarkably, the induction of
diabetes by chronic ingestion of a high-fat
diet is associated with reduced GlcNAcT-IV
expression and attenuated Glut-2 glycosyl-
ation coincident with Glut-2 endocytosis.
We infer that b cell glucose-transporter gly-
cosylation mediates a link between diet and
insulin production that typically suppresses
the pathogenesis of type 2 diabetes.

INTRODUCTION

Glucose transporters (Gluts) are a family of integral mem-

brane glycoproteins that transport saccharides across the

cell plasma membrane by facilitative diffusion to supply met-
CellCell
abolic energy (Olson and Pessin, 1996; Joost and Thorens,

2001). Glut family members have different expression pat-

terns, and their abundance can change in response to al-

tered metabolic states. Induced Glut expression is observed

in some cancers, perhaps reflecting the need for increased

glycolysis in supporting unrestrained cell growth (Macheda

et al., 2005), while decrements in Glut transporter function

can be pathogenic markers of other disorders. Loss of

pancreatic b cell Glut expression in humans and rodents is

associated with hyperglycemia and diminished glucose-

stimulated insulin secretion (GSIS), which are early markers

in the pathogenesis of diabetes and precede the develop-

ment of insulin resistance (Johnson et al., 1990; Orci et al.,

1990a; Thorens et al., 1990; Unger, 1991; Guerra et al.,

2005). Glut-2 is essential for the primary GSIS response of

mouse b cells, and reduced Glut-2 expression abolishes this

role of the pancreas coincident with the onset of type 2 dia-

betes (Valera et al., 1994; Guillam et al., 1997, 2000).

Diminished b cell-surface Glut-2 expression has been

observed with intracellular accumulation among mice fed a

high-fat diet and b cells exposed to increased glucocorticoid

levels, implying the presence of a posttranslational mecha-

nism that modulates Glut-2 trafficking (Gremlich et al., 1997;

Reimer and Ahren, 2002). Remarkably, all vertebrate glu-

cose transporters bear a single conserved N-glycosylation

consensus site that is typically positioned in the first or fifth

extracellular loop (Joost and Thorens, 2001). Glut-2 is

N-glycosylated in the endoplasmic reticulum and Golgi appa-

ratus prior to being trafficked to the cell surface by the consti-

tutive pathway and does not normally reside among intra-

cellular vesicles (Thorens et al., 1993). N-glycosylation may

be involved in modulating Glut function, however, as altered

intracellular trafficking and glucose-transport kinetics have

been observed among Glut-1 and Glut-4 molecules engi-

neered to lack N-glycosylation consensus sites (Asano

et al., 1993; Ing et al., 1996).

Glycan structures found on secreted and cell-surface

glycoproteins such as the glucose transporters may be

branched multiantennary complex types, which are among
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Figure 1. Activity, Expression, and Mutagenesis of the Mgat4a-Encoded GnT-4a Glycosyltransferase

(A) Mammalian protein N-glycosylation begins in the endoplasmic reticulum and proceeds in the Golgi apparatus, where three types of mature N-glycan

structures are produced—high-mannose, hybrid, and complex types. The GnT-4a glycosyltransferase transfers N-acetylglucosamine in b4 linkage to un-

derlying a3-linked mannose, thereby initiating formation of this distinct N-glycan branch exemplified as a sialylated N-acetyllactosamine sequence (shaded).

(B) Expression of mouse Mgat4a RNA transcripts among total RNA samples from indicated tissues (n = 6).

(C) Mouse genomic clone of Mgat4a bearing exons 6, 7, and 8 (black boxes) used for constructing the targeting vector with the pflox plasmid as indicated.

Homologous recombination produces the Mgat4a F[tk-neo] allele. Following Cre recombination and selection, embryonic stem (ES) cell clones are isolated

containing the type 1 (D, deleted) and type 2 (F, floxed) alleles.
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the most prevalent of mature N-glycan forms (Figure 1A).

Precisely which glycan branches and which linkages are

present is determined by glycosyltransferase expression

patterns and their encoded substrate specificities, making

this enzyme family an attractive target for genetic investiga-

tions of the function of protein glycosylation (Lowe and

Marth, 2003). The Mgat4a-encoded GlcNAcT-IV glycosyl-

transferase (herein referred to as GnT-4a) is one of two iso-

zymes that synthesize the b4 N-acetylglucosamine linkage

on the a3-linked mannose, thus initiating the formation of

this distinct N-glycan branch (Minowa et al., 1998; Yoshida

et al., 1998; Figure 1A). We observed that the mouse Mgat4a

gene is selectively expressed among normal tissues, with

high levels in the pancreas (Figure 1B).

We have further examined the physiologic role of GnT-4a

activity and the N-glycan branch structure it produces by

engineering and characterizing mice lacking Mgat4a gene

function. We find that GnT-4a is essential for the production

of a complex-type glycan ligand on the pancreatic b cell

Glut-2 glycoprotein that stabilizes Glut-2 cell-surface ex-

pression by a lectin-receptor binding mechanism. Dietary

and genetic disruption of this mechanism results in Glut-2

endocytosis, loss of the first phase of GSIS, and the patho-

genesis of type 2 diabetes.

RESULTS

Mutagenesis of the Mgat4a Gene Encoding

the GnT-4a Glycosyltransferase

Elimination of GnT-4a activity from the mouse germline was

initiated by conditional mutagenesis of the Mgat4a allele

using Cre-loxP recombination in embryonic stem (ES) cells

(Figure 1C). Exon 7 of Mgat4a was flanked (F ) by loxP sites

(Figure 1D). Mice bearing the Mgat4aF allele were bred with

mates expressing the Cre recombinase in developing oo-

cytes (Shafi et al., 2000) to produce offspring bearing the de-

leted (D) Mgat4aD allele lacking exon 7 (Figure 1D). All alleles

were crossed into the C57BL/6 strain background for six or

more generations prior to study. Mutant allele segregation

among offspring was normal, and animals homozygous for

either mutation lacked overt physical, neurologic, immuno-

logic, or reproductive defects. Animals homozygous for the

Mgat4aF allele were indistinguishable from wild-type litter-

mates in all studies undertaken below (data not shown).

Loss of exon 7 disrupts the GnT-4a catalytic domain and

results in a frameshift followed closely by a translational

termination signal (Minowa et al., 1998; data not shown).

Among tissues surveyed, GnT-4 enzymatic activity was

found to be high in the pancreas of wild-type mice (Fig-

ure 1E). Most tissues of mice heterozygous for the Mgat4aD

allele expressed approximately 50% of wild-type GnT-4 ac-
Cel
tivity levels, while homozygote samples typically retained

2%–20%. Remaining GnT-4 activity is likely due to expres-

sion of the Mgat4b-encoded GnT-4b isozyme (Yoshida

et al., 1998). We infer that deletion of exon 7 in the mouse

Mgat4a gene eliminates GnT-4a activity.

GnT-4a Deficiency Impairs b Cell Glucose Transport

and Insulin Secretion in Causing Type 2 Diabetes

Serological analyses of 8- to 12-week-old GnT-4a-deficient

mice revealed elevated blood glucose concentrations

(Table 1). Free fatty acid and triglyceride levels were also sig-

nificantly increased, while serum insulin concentrations re-

mained below normal. These abnormalities intensified as

animals provided a standard chow diet ad libitum reached

1 year of age, while enzymatic markers of liver damage

appeared during this time. By 6–8 months of age, GnT-4a-

deficient mice gained 20% in body mass over that of wild-

type littermates without a measurable increase in food

intake. These results implied a possible defect in pancreatic

function.

The pancreas of GnT-4a-deficient mice appeared unre-

markable upon histologic analysis and were without evi-

dence of leukocyte infiltrates (Figure 2A). The abundance

and size of pancreatic islets were also normal (Figure 2B).

However, GnT-4a-deficient mice exhibited an abnormal re-

sponse in the glucose-tolerance test, yielding blood glucose

levels that were substantially and persistently elevated (Fig-

ure 2C). Remarkably, insulin failed to significantly increase

upon glucose challenge (Figure 2D). Insulin insufficiency

was not due to a defect in insulin production or the secretory

process in general as L-arginine injection produced a robust

increase in serum insulin (Figure 2E). Although insulin sensi-

tivity was normal at 8–12 weeks of age, insulin resistance

was prevalent among GnT-4a-deficient animals by 1 year

of age (Figures 2F and 2G). During this time, RNA levels en-

coding the liver gluconeogenic enzymes phosphoenolpy-

ruvate carboxykinase and glucose-6-phosphatase remained

elevated among GnT-4a-deficient mice (Figure 2H), while

hepatic steatosis was pronounced by 6 months of age (Fig-

ure 2I). These metabolic alterations indicate that GnT-4a

deficiency in the mouse causes failure of pancreatic b cell

function to appropriately secrete insulin and evokes a pheno-

type diagnostic of type 2 diabetes.

Glucose-transport and insulin-secretion kinetics were in-

vestigated by in vitro perifusion among pancreatic islet cell

cultures comprised of >90% b cells. GnT-4a-deficient islet

cells failed to undergo the primary GSIS response and ex-

hibited a reduced secondary insulin secretion response (Fig-

ure 2J). The kinetics of glucose transport by pancreatic islet

cells were therefore investigated using the fluorescent ana-

log 2-NBDG. Wild-type islet cells transported 2-NBDG
(D) Genomic Southern blotting confirmed the predicted Mgat4a allelic structures. Left and middle panels: ES cell clones bearing indicated mutant Mgat4a

alleles in comparison with R1 parental wild-type ES cells. Right panel: adult mouse genotypes with germline modifications to the Mgat4a gene, including

Mgat4aF and Mgat4aD alleles.

(E) GnT-4a enzyme activity among genotypes and tissues surveyed. Results are expressed as mean ± SD (n = 3).
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Table 1. Serology and Body Weight

8–12 Weeks of Age, Standard Chow Wild-Type (n = 20) Mgat4a Null (n = 20)

Glucose (fasting) (mg/dl) 96.20 ± 6.26 137.05 ± 5.68 (p = 0.0001)

Glucose (fed) (mg/dl) 138.82 ± 6.55 193.59 ± 8.99 (p = 0.0001)

Insulin (fasting) (ng/ml) 0.712 ± 0.048 0.633 ± 0.036

Insulin (fed) (ng/ml) 2.916 ± 0.373 1.191 ± 0.105 (p = 0.0001)

Free fatty acid (fasting) 1.04 ± 0.04 1.360 ± 0.120 (p = 0.0361)

Free fatty acid (fed) 0.58 ± 0.06 0.58 ± 0.04

Triglyceride (mg/dl) 47.3 ± 2.02 91.70 ± 10.80 (p = 0.0002)

AST (IU/l) 76.36 ± 5.68 96.31 ± 11.83

ALT (IU/l) 24.92 ± 1.03 27.85 ± 1.55

Lipase (U/l) 48.33 ± 2.15 44.62 ± 1.75

Total cholesterol (mg/dl) 94.67 ± 4.76 105.12 ± 6.80

HDL cholesterol (mg/dl) 79.72 ± 5.56 88.94 ± 7.30

Body weight (g) 27.20 ± 1.40 29.60 ± 1.75

12 Months of Age, Standard Chow Wild-Type (n = 15) Mgat4a Null (n = 15)

Glucose (fasting) (mg/dl) 108.9 ± 7.72 168.6 ± 10.14 (p = 0.0001)

Glucose (fed) (mg/dl) 193.2 ± 8.12 249.4 ± 15.41 (p = 0.0029)

Insulin (fasting) (ng/ml) 1.023 ± 0.127 0.651 ± 0.087 (p = 0.0239)

Insulin (fed) (ng/ml) 4.389 ± 0.361 1.673 ± 0.121 (p = 0.0001)

Free fatty acid (fasting) 1.10 ± 0.03 1.660 ± 0.050 (p = 0.0001)

Free fatty acid (fed) 0.62 ± 0.06 0.680 ± 0.040

Triglyceride (mg/dl) 102.6 ± 8.93 158.5 ± 18.75 (p = 0.0174)

AST (IU/l) 96.52 ± 6.58 170.8 ± 14.21 (p = 0.0003)

ALT (IU/l) 87.39 ± 6.60 173.2 ± 10.57 (p = 0.0001)

Lipase (U/l) 60.63 ± 4.81 52.82 ± 3.80

Total cholesterol (mg/dl) 190.9 ± 15.00 176.6 ± 14.32

HDL cholesterol (mg/dl) 168.0 ± 7.84 152.0 ± 12.57

Body weight (g) 47.98 ± 1.92 57.98 ± 2.27 (p = 0.0031)

12 Weeks of Age, 8 Weeks on High-Fat Chow Wild-Type (n = 14) Mgat4a Null (n = 14)

Glucose (fasting) (mg/dl) 214.5 ± 21.25 208.9 ± 8.91

Glucose (fed) (mg/dl) 237.4 ± 11.53 307.2 ± 10.45 (p = 0.0001)

Insulin (fasting) (ng/ml) 5.838 ± 1.313 2.656 ± 0.551 (p = 0.0423)

Insulin (fed) (ng/ml) 6.617 ± 0.907 4.023 ± 0.324 (p = 0.0123)

Free fatty acid (fasting) 1.85 ± 0.09 1.780 ± 0.060

Free fatty acid (fed) 1.59 ± 0.08 1.560 ± 0.060

Triglyceride (mg/dl) 104.3 ± 8.53 98.86 ± 5.53

AST (IU/l) 100.9 ± 7.19 106.0 ± 5.62

ALT (IU/l) 72.50 ± 9.31 84.29 ± 6.87

Lipase (U/l) 64.50 ± 6.70 66.00 ± 7.27

Total cholesterol (mg/dl) 149.2 ± 10.80 171.1 ± 4.70

HDL cholesterol (mg/dl) 122.0 ± 8.49 117.9 ± 5.96

Body weight (g) 39.00 ± 1.90 47.17 ± 2.47 (p = 0.0002)
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across the plasma membrane in a glucose-dependent

manner at the nominal rate, while 2-NBDG uptake in GnT-

4a-deficient cells was significantly reduced (Figure 2K). The

Kd of 2-NBDG binding at the cell surface was not altered;

in contrast, a 9-fold decrease in Vmax occurred in GnT-4a

deficiency (Figure 2L). These findings suggested normal

glucose-transporter function in the absence of GnT-4a

and were consistent with reduced glucose-transporter

expression.

Intracellular Glut-2 Localization in GnT-4a Deficiency

The in situ expression of b cell Glut-2 glycoprotein was ana-

lyzed by fluorescent deconvolution microscopy using im-

munological markers of intracellular compartments. Glut-2

glycoprotein trafficking was profoundly altered by GnT-4a

deficiency. Normally, Glut-2 is disbursed on the b cell plasma

membrane, in contrast to the predominantly intracellular

punctate expression observed in GnT-4a deficiency (Figures

3A and 3B). Colocalization analysis indicated no major over-

lap with insulin secretory vesicles, the endoplasmic reticu-

lum, the cis-Golgi, or the trans-Golgi (Figures 3A–3P). In con-

trast, Glut-2 glycoprotein accumulation was significantly

increased in endosomes and lysosomes (Figures 3Q–3X).

These results imply that the b cell Glut-2 N-glycan plays

a role in promoting cell-surface expression of the Glut-2

glycoprotein.

Structure and Specificity of N-Glycans Promoting

b Cell-surface Expression of Glut-2

The Glut-2 protein sequence is highly conserved among ver-

tebrates, including a single N-glycosylation site in the first

extracellular loop (Figure 4A). In addition to the intracellular

accumulation of b cell Glut-2 in the absence of glycosylation

by GnT-4a, a significant reduction in total islet-cell Glut-2 gly-

coprotein level was observed (Figure 4B). This was associ-

ated with Glut-2 N-glycan structural changes detected by

plant lectin binding (reviewed in Cummings, 1999). A reduc-

tion in binding of the DSL lectin to remaining Glut-2 in

Mgat4a null islet cells indicated loss of the N-glycan branch

normally formed by Golgi GnT-4 activity (Figure 4B). Addi-

tional results with LEA, ECA, RCA, SNA, and MAH lectins

implied the absence of polylactosamine and terminal sialic

acids, along with the presence of terminal galactose linkages

that comprise Glut-2 N-glycan structures from both geno-

types. Unexpectedly, the N-glycan branch contributed by

Golgi GnT-5 activity and visualized by L-PHA lectin binding

was also absent from the Glut-2 N-glycan in GnT-4a defi-

ciency. We therefore analyzed islet-cell Glut-2 abundance

and glycan structure among Mgat5 null mice lacking GnT-5

activity (Demetriou et al., 2001). Glycan ligands of L-PHA

were deficient as expected, while no alteration in Glut-2

abundance or DSL binding was observed (Figure 4C).

The N-glycan structure of pancreatic Glut-2 from wild-

type mice inferred from plant lectin binding profiles is a

tetra-antennary complex type bearing little or no sialic acid

and instead containing terminal galactose residues linked to

underlying N-acetylglucosamine (LacNAc) (Figure 4D, left).

Absence of GnT-4a results in a biantennary-complex-type
Cell
N-glycan, while GnT-5 deficiency engenders a triantennary-

complex-type structure (Figure 4D, middle and right).

Changes to islet-cell N-glycans in GnT-4a deficiency were

not limited to Glut-2. Loss of GnT-4a activity similarly altered

N-glycan structures on other glycoproteins, including the

insulin receptor a subunit and insulin-like growth factor 1 re-

ceptor. Expression levels of these glycoproteins were never-

theless unaffected by GnT-4a deficiency (Figure 4E and data

not shown).

Intact and membrane-permeable conditions were used in

flow cytometric analyses to separately measure cell-surface

and total glycoprotein expression, respectively, among

pancreatic islet cells. Cell-surface and total Glut-2 glyco-

protein levels closely overlapped among wild-type cells. In

GnT-4a deficiency, Glut-2 cell-surface expression was re-

duced to 15% of normal, while a 40% loss of total cellular

Glut-2 glycoprotein was indicated (Figure 4F). Mgat5 null

islet cells retained normal Glut-2 expression profiles, and

these animals did not exhibit hyperglycemia (Figure 4F and

data not shown). Remarkably, none of these genetic lesions

in N-glycan branching disrupted cell-surface localization of

misglycosylated insulin receptor a or insulin-like growth fac-

tor 1 receptor (Figure 4F and data not shown). In addition,

islet cells heterozygous for the Mgat4aD allele exhibited an

intermediate phenotype, implying that altered GnT-4a ex-

pression may in some contexts limit the extent of Glut-2

glycosylation and cell-surface abundance. We therefore

evaluated Mgat4a RNA levels and Glut-2 glycosylation in re-

sponse to an altered diet.

Attenuation of GnT-4a and Glut-2 by the High-Fat Diet

Administration of a high-fat diet to mice of the C57BL/6

strain diminishes pancreatic b cell Glut-2 expression coinci-

dent with increased intracellular accumulation, resulting in

hyperglycemia and loss of GSIS early in the development of

type 2 diabetes (Lee et al., 1995; Surwit et al., 1988; Reimer

and Ahren, 2002; Winzell and Ahren, 2004). Serological find-

ings of both wild-type and GnT-4a-deficient littermates

receiving the high-fat diet for 8 weeks were consistent with

diabetes (Table 1). GnT-4a deficiency exacerbated the hy-

perglycemia, moderately reduced the hyperinsulinemia, and

increased body weight as compared to wild-type littermates.

Otherwise, diabetic disease signs were similar among mice

of both genotypes.

Littermates receiving the standard chow diet exhibited ro-

bust Glut-2 protein expression predominantly at the cell sur-

face (Figures 5A, 5E, and 5I). In contrast, b cells from mice

receiving a high-fat diet expressed markedly diminished

cell-surface Glut-2 levels coincident with intracellular accu-

mulation (Figures 5B, 5F, and 5J). Colocalization analyses

using antibodies to intracellular markers revealed that the

high-fat diet induced Glut-2 accumulation in early endo-

somes and lysosomes (Figures 5C, 5D, 5G, 5H, 5K, and

5L), replicating results obtained among GnT-4a-deficient

mice receiving the standard chow diet.

Coincident with Glut-2 endocytosis, the high-fat diet at-

tenuated Mgat4a RNA levels by 4-fold in comparison to lit-

termates maintained on the standard chow diet (Figure 5M).
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Figure 2. Type 2 Diabetic Phenotype of GnT-4a-Deficient Mice Associated with Reduced Pancreatic Islet Cell Glucose Uptake

and Diminished Insulin Secretion

(A) Insulin visualized (red) with HRP-conjugated secondary antibody in pancreatic sections of wild-type and GnT-4a-deficient mice counterstained with

hematoxylin.

(B) The size and distribution of pancreatic islets among littermates. Wild-type and Mgat4a null islets averaged 211.74 ± 29.06 mm2 and 234.03 ± 24.22

mm2, respectively (n = 6).

(C) Glucose-tolerance test comparing fasted wild-type (white circles) and Mgat4a null (black circles) littermates (n = 10; ***p < 0.0001).

(D) Serum insulin levels measured during the glucose tolerance test (n = 10; ***p < 0.0001).

(E) Insulin in circulation following L-arginine injection (n = 10).

(F and G) Serum glucose levels in mice fasted for 5 hr following insulin injection. Data are graphed as the percent of blood glucose levels pre-insulin treatment

in wild-type (white circles) and Mgat4a null (black circles) littermates. Mice (n = 10) were aged either 12 weeks (F) or 1 year (G) (**p < 0.001; *p < 0.005). In

(C)–(G), results are plotted as mean ± SEM.

(H) PEPCK and G6Pase RNA levels measured in total RNA samples from liver tissue as a percent of fed 6-month-old wild-type littermate values.

(I) Liver tissue sections from 6-month-old littermates stained with hematoxylin and eosin (HE). Lipids were visualized using Nile blue (red). Magnification

200�.
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Remarkably, impaired Glut-2 glycosylation by GnT-4a was

also evident among animals receiving the high-fat diet (Fig-

ure 5N). These findings reveal that GnT-4a expression and

Glut-2 glycosylation are under dietary regulation and imply

that loss of b cell-surface Glut-2 in response to the high-fat

diet may be a consequence of diminished GnT-4a activity.

Glut-2 Glycosylation Mediates b Cell-Surface

Retention by a Lectin Binding Mechanism

Decreased cell-surface Glut-2 expression in GnT-4a defi-

ciency may arise from a defect in trafficking from the Golgi

apparatus to the cell surface or perhaps from a reduction

in cell-surface half-life. The kinetics of Glut-2 synthesis and

cell-surface appearance were measured among pancreatic

islet cells derived from mice fed a standard chow diet using

metabolic labeling coupled with cell-surface biotinylation.

Glut-2 synthesis and trafficking to the cell surface takes

50–60 min in wild-type pancreatic islet cells. This was not al-

tered by GnT-4a deficiency (Figure 6A). In contrast, Glut-2

half-life at the cell surface in the absence of GnT-4a was de-

creased by more than 4-fold (Figure 6B). GnT-4a glycosyla-

tion therefore increases Glut-2 cell-surface half-life, implying

the possibility of a lectin binding interaction involving the

Glut-2 N-glycan structure.

To detect the presence of a lectin receptor, we incubated

pancreatic islet cell cultures established from wild-type mice

fed a standard chow diet with synthetic glycan structures

that included those present on Glut-2 N-glycan branches

at concentrations typical within the region of the cell-surface

glycocalyx. A profound reduction of cell-surface Glut-2 ex-

pression was observed within 2 hr after the addition of syn-

thetic LacNAc (Galb1-4GlcNAc) containing glycans to islet

cell cultures without loss of cell viability (Figure 6C). Increas-

ing the number of LacNAc repeats enhanced this effect,

while no significant reduction of cell-surface Glut-2 occurred

using sucrose (Fru-Glc) or LacNAc bearing terminal sialic-

acid linkages. While these results may reflect alterations in

multiple cell processes, they are consistent with competitive

inhibition of lectin-receptor binding for nonsialylated LacNAc

structures present within the Glut-2 N-glycan.

Lectins that bind nonsialylated LacNAc sequences in-

clude the family of galectins (Cooper and Barondes, 1999).

Galectin-9 is also a urate transporter (UAT) and exhibits gly-

can binding selectivity for LacNAc-bearing sequences (Sato

et al., 2002; Lipkowitz et al., 2004). Colocalization of Glut-2

and Galectin-9/UAT was detected in situ by fluorescent de-

convolution microscopy among wild-type b cells of pancre-

atic tissues and was quantifiably reduced among GnT-4a-

deficient b cells, reflecting diminished Glut-2 cell-surface
Cel
expression (Figure 6D). Cell-surface protein crosslinking and

subsequent coprecipitation further indicated that Glut-2 and

Galectin-9/UAT are normally in close proximity on the cell

surface (Figure 6E). Furthermore, the addition of nonsialy-

lated LacNAc, but not sucrose, substantially reduced Glut-

2-Galectin-9/UAT crosslinking. Together, these findings im-

ply that pancreatic b cell GnT-4a glycosylation of Glut-2

produces an N-glycan ligand for multiple lectins, including

Galectin-9/UAT, that reduces the rate of Glut-2 endocytosis

and thereby sustains the primary GSIS response.

DISCUSSION

Protein glycosylation by the Golgi-resident GnT-4a glycosyl-

transferase produces a posttranslational modification on

multiple pancreatic glycoproteins that is nevertheless selec-

tive in sustaining b cell-surface expression of Glut-2 and

thereby maintaining the primary GSIS response. Genetic de-

ficiency of GnT-4a did not affect Glut-2 glycoprotein matura-

tion but reduced Glut-2 cell-surface half-life coincident with

endocytosis and accumulation in early endosomes and lyso-

somes. Similar misglycosylation of other b cell glycoproteins,

including the insulin receptor a subunit and the insulin-like

growth factor 1 receptor, did not affect total or cell-surface

expression. It is therefore in the context of Glut-2 protein se-

quence that the LacNAc-bearing N-glycan branch contrib-

uted by GnT-4a comprises a ligand for endogenous lectin-

receptor binding that decreases the rate of endocytosis at

the b cell surface. Consistent with the disruption of this lectin

binding, loss of b cell-surface Glut-2 expression occurred

among wild-type pancreatic islets by the addition of nonsia-

lylated LacNAc-bearing glycan-ligand mimetics. Lectins that

may be responsible include Galectin-9/UAT, which colocal-

izes with and crosslinks to �40% of total b cell Glut-2 in the

presence of wild-type GnT-4a activity. Nevertheless, a mo-

lecular accounting for the vast majority of b cell-surface

Glut-2 retention likely encompasses other binding partners.

The high-fat diet attenuated pancreatic Mgat4a RNA

abundance among wild-type C57BL/6 mice coincident

with reduced GnT-4a glycosylation of b cell Glut-2. This

was associated with diminished cell-surface Glut-2 expres-

sion and increased intracellular localization in early endo-

somes and lysosomes, similar to findings among Mgat4a

null mice inherently lacking GnT-4a activity. When provided

to various rodent strains, the high-fat diet evokes a robust

model of type 2 diabetes with loss of GSIS leading to hyper-

glycemia throughout the diet, while circulating insulin levels

are initially decreased but progressively increase over time

(Surwit et al., 1988; Winzell and Ahren, 2004). Within 8
(J) In vitro GSIS measured by perifusion performed twice in parallel with identical results using 2 � 105 isolated islet cells from wild-type (white circles) and

Mgat4a null (black circles) littermates. The glucose concentration of the perifusate was increased from 2.8 mM to 16.8 mM at 4 min.

(K) Time course of glucose analog 2-NBDG uptake (500 mM extracellular concentration) by wild-type islet cells in the absence (white circles) and presence

(white squares) of 10 mM nonlabeled D-glucose and by Mgat4a null islet cells (black circles). Fluorescence intensities are expressed as relative fluorescence

units (RFU). Data are represented as the means ± SEM from three experiments (p = 0.0001).

(L) Lineweaver-Burke plot of 2-NBDG uptake by islet cells from wild-type (white circles) and Mgat4a null (black circles) littermates. The Kd value for wild-type

and Mgat4a null islet cells are 9.525 and 9.104 mM, respectively. Vmax values in nmol/5 min/0.5� 105 cells are 16.95 for wild-type islets and 1.86 for Mgat4a

null islets. All mice used in these studies were 8–12 weeks of age except for those analyzed in (G), (H), and (I), as indicated.
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Figure 3. In Situ Localization of Glut-2 in Wild-Type and Mgat4a Null Pancreatic b Cells

Pancreatic islet sections of 12-week-old wild-type mice (A, C, E, G, I, K, M, O, Q, S, U, W) and Mgat4a null littermates (B, D, F, H, J, L, N, P, R, T, V, X) fed

a standard chow diet ad libitum were analyzed by fluorescence deconvolution microscopy for b cell Glut-2 (green) and various intracellular compartments

(red), including secretory vesicular insulin (A–D), endoplasmic reticulum protein disulfide isomerase (E–H), cis-Golgi Calnuc (I–L), trans-Golgi adaptin g

(M–P), early endosome antigen EEA-1 (Q–T), and lysosome LAMP2 (U–X). Colocalization (yellow) of Glut-2 with each these markers is depicted in separate

panels (C, D, G, H, K, L, O, P, S, T, W, X). DNA is stained by DAPI (blue). Inset boxes have been enlarged to enhance visualization of early endosome or

lysosome signals. The percentage of Glut-2 colocalization with the relevant cellular marker is indicated in white numbers.
1314 Cell 123, 1307–1321, December 29, 2005 ª2005 Elsevier Inc.



Figure 4. Glut-2 Glucose-Transporter Structure, Glycosylation, and Expression

(A) Conservation and predicted topology of vertebrate Glut-2 orthologs. The orientation of Glut-2 in the lipid bilayer was proposed from its homology to

Glut-1 and Glut-4 and by the hydropathy plot of its amino acid sequence (modified from Olson and Pessin, 1996). A single N-glycosylation site is conserved

in the first large extracellular domain of Glut-2. Black and white circles indicate identical or nonidentical amino acids, respectively, among human, rat, and

chicken orthologs compared to the mouse Glut-2 sequence.

(B) Pancreatic islet Glut-2 abundance and lectin binding analysis of Glut-2 N-glycan structure in wild-type and Mgat4a null littermates.

(C) Pancreatic islet Glut-2 abundance and lectin blot analysis of N-glycan structure in wild-type and Mgat5 null littermates.

(D) Pancreatic Glut-2 N-glycan structures inferred from lectin binding profiles among wild-type, Mgat4a null, and Mgat5 null islet cells.

(E) Abundance and lectin binding analysis of N-glycan structures of insulin receptor a chain in pancreatic islet cells of wild-type and Mgat4a null littermates.

(F) Flow cytometric analysis of pancreatic islet cells for Glut-2 or insulin receptor a subunit expression. Cell autofluorescence (black), secondary antibody

nonspecific binding (green), cell-surface expression (red), and total (membrane-permeable) cell expression (blue) are plotted. Mean fluorescence level is

indicated in each histogram.
weeks on the high-fat diet, intracellular Glut-2 accumulation

occurs with loss of the first phase of GSIS, recapitulating the

early diabetic pathology in GnT-4a-deficient mice (Reimer

and Ahren, 2002). These findings are consistent with the

possibility that the pathogenesis of type 2 diabetes in re-
Cell
sponse to a high-fat diet may be contingent upon diminished

cell-surface Glut-2 levels due to reduced GnT-4a activity.

Attenuated glucose-transporter expression and loss of

GSIS are characteristic of early pancreatic b cell dysfunc-

tion in multiple manifestations of type 2 diabetes among
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Figure 5. Dietary Regulation of GnT-4a Expression Is Associated with Altered Glut-2 Glycosylation and Trafficking
Pancreatic islet sections of 3-month-old wild-type mice fed ad libitum a standard diet (A, C, E, G, I, K) or a high-fat diet for 8 weeks (B, D, F, H, J, L)

were analyzed by fluorescence deconvolution microscopy for b cell Glut-2 expression (green) and various intracellular compartments (red), including insulin-

bearing secretory vesicles (A and B), early endosomes (E and F), or lysosomes (I and J). Colocalization (yellow) of Glut-2 with each these markers is shown in

separate panels (C, D, G, H, K, L). DNA is stained by DAPI (blue). Inset boxes have been enlarged to enhance visualization of early endosome or lysosome

signals. The percentage of Glut-2 colocalization with the relevant cellular marker is indicated in white numbers.

(M) Pancreatic islet Mgat4a and b-actin RNA levels from 4-month-old wild-type mice fed ad libitum either a standard chow diet or a high-fat diet for 8 weeks.

Total RNA was used for ERT-PCR. Amplified products were quantified by 32P incorporation and graphed as a percentage of RNA abundance compared to

littermates fed the standard chow diet.

(N) Glut-2 expression and N-glycosylation among islets of wild-type mice treated as above. The absolute integrated optical density (IOD) of each band was

measured and tabulated as either total Glut-2 protein expression (left) or ratios of lectin binding to Glut-2 protein levels (right). Data in (M) and (N) are plotted

as means ± SEM.
humans and rodents, including Zuker diabetic fatty rats, bio-

breeding/Worcester diabetic rats, and db/db mice lacking

the leptin receptor (Orci et al., 1990b; Thorens, et al.,

1990, 1992; Unger, 1991; Guerra et al., 2005). It is not known
1316 Cell 123, 1307–1321, December 29, 2005 ª2005 Elsevier In
whether these diabetic conditions are also associated with

a similar deficit of Glut-2 N-glycosylation due to diminished

GnT-4a expression. Nevertheless, the influence of Glut-2 ex-

pression in pathogenesis is known from genetic studies in
c.



the mouse in which b cells bearing 20% or less of normal

Glut-2 levels lacked the primary GSIS response and devel-

oped type 2 diabetes signs, similar to GnT-4a deficiency

(see Table S1 in the Supplemental Data available with this

article online). This pathogenic route evoked by b cell failure

initially leads to hyperglycemia and insulin insufficiency. Ele-

vations in liver gluconeogenesis and circulating free fatty

acids further result, and hepatic steatosis subsequently de-

velops while hyperinsulinemia occurs from compensatory

and secondary GSIS secretion mechanisms. The insulin re-

sistance observed in aging GnT-4a-deficient mice likely re-

flects gluco- and lipotoxicity among muscle and liver tissue.

Altered glycosylation of glucose transporters may be in-

volved in the pathogenesis of human diabetes. However,

this may not arise from mutations identified in glucose-

transporter protein sequences, which thus far do not alter

the N-glycosylation consensus site. MGAT4A and MGAT4B

genes encoding the human GnT-4 isozymes reside at chro-

mosomal positions 2q11-12 and 5q35, respectively, regions

of linkage to recently identified type 2 diabetes susceptibility

loci (McCarthy, 2003; Reynisdottir et al., 2003; Van Tilburg

et al., 2003). Moreover, the predicted promoter sequence

of Mgat4a contains DNA binding sites for transcriptional fac-

tors that are mutated in human mature onset diabetes of the

young, also termed MODY. Additionally, an alteration in the

repertoire of glycosyltransferase expression among b cells

may also cause diabetes by a dominant genetic mechanism.

For example, pancreatic Glut-2 N-glycan structures appear

deficient in terminal sialic-acid linkages, while sialylated

LacNAc N-glycans failed to induce Glut-2 endocytosis.

Hence, a mutational event that induced sialic-acid linkage

formation on the Glut-2 N-glycan would likely mask the lectin

ligand and thereby attenuate cell-surface Glut-2 expression.

The coordinated expression patterns of glycosyltrans-

ferases and proteins in the secretory pathway among diverse

cell types generate posttranslational modifications that oper-

ate as regulatory elements in metabolism and disease. Nev-

ertheless, our findings imply that a proportion of protein gly-

cosylation attributed to any one glycosyltransferase such as

GnT-4a may be physiologically inert. This may reflect the ab-

sence of a selective advantage in eliminating innocuous post-

translational protein modifications in evolution or perhaps an

inherent value of such structural variation in evolving protein

function. While a specific glycan linkage may structurally if

not functionally modify many proteins, this combinatorial

assortment permits the formation of unique glycoprotein

configurations that, in some contexts, comprise ligands for

endogenous lectin receptors. Pancreatic b cell N-glycosyla-

tion of Glut-2 in the Golgi apparatus by the GnT-4a glycosyl-

transferase appears to produce such a lectin-receptor ligand

that, in cis and perhaps in trans, is essential for Glut-2 reten-

tion at the cell surface. The specificity of GnT-4a function fur-

ther appears to be cell type specific. No expression of GnT-4

activity or associated N-glycan branching could be demon-

strated in hepatocytes, and hepatic Glut-2 cell-surface ex-

pression was unaltered by GnT-4a deficiency (Figure S1).

Glut-2 N-glycan structures in the liver appear to be hetero-

genic biantennary-complex-type forms bearing terminal ga-
Cel
lactose and sialic-acid linkages among both wild-type and

GnT-4a-deficient mice. Therefore, the mechanistic features

comprising cell-type-specific control of Glut-2 endocytosis

by GnT-4a glycosylation likely involve a specialized infra-

structure in pancreatic b cells that engages membrane cyto-

skeletal and scaffolding proteins. Further identifying the mo-

lecular nature of dietary and genetic factors that influence

GnT-4a expression will reveal additional components of this

mechanism and perhaps a rationale for its disengagement

in response to the high-fat diet. Should enforced b cell

GnT-4 expression enhance Glut-2 cell-surface levels, it may

be possible to intervene in the early pancreatic dysfunction

associated with the loss of GSIS that is a harbinger of further

metabolic alterations to follow in the pathogenesis of type 2

diabetes.

EXPERIMENTAL PROCEDURES

Mgat4a Expression and Mutagenesis

Mouse Mgat4a cDNA clones GT4F7/GT4R6 and GT4F3/GB5 were ob-

tained by RT-PCR and used as probes to isolate an 11 kb Mgat4a clone

from a 129/SvJ genomic DNA bacteriophage library (Stratagene, San

Diego, CA). Chimeric mice were generated from C57BL/6 blastocyst-

stage embryos and ES cells bearing the conditional (F, type 2) Mgat4a

mutation (Figures 1C and 1D). Female mice bearing a germline Mgat4aF

allele and the Zp3-Cre transgene (Shafi et al., 2000) were bred to acquire

offspring containing the Mgat4aD allele. In RNA expression analyses using

a mouse Mgat4a cDNA probe (nt 181–339), total RNA was subjected to

1% formaldehyde-denaturing agarose gel electrophoresis.

Mouse Breeding and Maintenance

The Mgat4aD and Mgat4aF alleles were bred into the C57BL/6 back-

ground at least six generations prior to producing offspring for study.

Mice lacking GnT-5 (Demetriou et al., 2001) were provided by James

Dennis (Toronto). Mice were housed in specific-pathogen-free conditions

and provided either a standard chow diet (16.4% protein, 73.1% carbo-

hydrates, and 10.5% fat with 4.07 kcal/g [D12329, Research Diets, New

Brunswick, NJ]) or a high-fat chow diet (16.4% protein, 25.5% carbohy-

drates, and 58.0% fat with 5.56 kcal/g [D12331, Research Diets]).

GnT-4 Enzymology

GnT-4 activity was measured in tissue homogenates by reverse-phase

HPLC in a modification of previous methods (Oguri et al., 1997). The sub-

strate GlcNAcb1-2Mana1-6(GlcNAcb1-2Mana1-3) Manb1-4GlcNAcb1-

4GlcNAcb1-2-aminopyridine was prepared as described (Tokugawa

et al., 1996).

Serum Chemistry

Blood was collected in the absence of anticoagulants by orbital sinus

bleed or cardiac puncture and was allowed to clot in a serum separator

tube in which the serum was collected by centrifugation (Becton Dickin-

son, Mountain View, CA). Blood-chemistry analysis was performed using

a Beckman CX-7 automated analyzer with a general coefficient of varia-

tion of <5%.

Histology and Microscopy

For determining pancreatic morphology and islet abundance, 3 mm pan-

creatic tissue sections were stained with anti-insulin antibody (Linco Re-

search, St. Charles, MO) followed by secondary horseradish peroxidase

(HRP) conjugated anti-guinea pig antibody (ICN Biomedicals, Irvine, CA)

and visualized using ABC staining (Vector, Burlingame, CA). Cell nuclei

were counterstained with hematoxylin. Islet cross-sectional areas were

measured using KS300 software (Carl Zeiss, Jena, Germany). For immu-

nofluorescence analyses of pancreatic islets, tissue sections were
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incubated with Glut-2 antibody (Chemicon, Temecula, CA) combined

with antibodies to either insulin, PDI (Stressgen, Victoria, Canada), Calnuc

(a gift from Marilyn G. Farquhar, University of California, San Diego, CA),

adaptin g (BD Transduction Laboratories, San Diego, CA), EEA1 (BD

Transduction Laboratories), or LAMP2 (Santa Cruz Biotechnology, Santa

Cruz, CA) at 1:200 dilution. Glut-2 was visualized using FITC-conjugated

sheep anti-rabbit IgG (ICN Biomedicals). PDI, adaptin g, EEA1, and

LAMP2 were visualized with rhodamine-conjugated goat anti-mouse

IgG (ICN Biomedicals). Calnuc was visualized with rhodamine-conjugated

goat anti-chicken IgY (Molecular Probes, Eugene, OR). Insulin was visu-

alized with rhodamine-conjugated goat anti-guinea pig IgG (ICN Biomed-

icals). Cryostat-sectioned (3 mm) liver was stained with hematoxylin and

eosin or Nile blue. Galectin-9 antibodies (M20, Santa Cruz Biotechnology)

were used with rhodamine-conjugated donkey anti-goat IgG (Molecular

Probes). Images were analyzed by deconvolution using a Delta Vision

Restoration microscope (Applied Precision Inc., Issaquah, WA) and Delta

Vision SoftWork software (Version 2.50). Colocalization was quantified by

object-based analysis at multiple exclusion thresholds spanning the linear

range of fluorescent signals using MetaMorph algorithms (Universal Imag-

ing Corporation, Downington, PA).

Glucose and Insulin Homeostasis

Mice were fasted for 16 hr followed by intraperitoneal glucose injection

(1.5 g/kg body weight). Serum samples were obtained at 0, 30, 60,

120, and 240 min after the injection, and measurements of glucose and

insulin were determined, the latter using a rat insulin ELISA assay with

a mouse insulin standard (Crystal Chem, Chicago). In testing insulin toler-

ance, intraperitoneal injections of 2 U/kg body weight of human insulin

(Calbiochem, La Jolla, CA) were performed. In arginine-tolerance tests,

mice were fasted for 16 hr followed by intraperitoneal injection (3 g/kg

body weight) of L-arginine (Sigma, St. Louis).

Islet Cell Preparation, Culture, and In Vitro Insulin Secretion Assay

Mouse islet cells were obtained as described (Josefsen et al., 1996) and

cultured in b cell media containing RPMI-1640 with 10% FCS, 2 mM L-

glutamine, 0.1 mM 2-mercaptoethanol, and 11 mM glucose. In the peri-

fusion assay, 2 � 105 islet cells were preincubated in HEPES-buffered

Krebs-Ringer bicarbonate solution (KRBH) (10 mM HEPES [pH 7.4],

129 mM NaCl, 4.7 mM KCl, 1.2 mM KH2PO4, 1.2 mM MgSO4, 2 mM

CaCl2, 5 mM NaHCO3, and 0.1% BSA) containing 2.8 mM glucose for

30 min at 37ºC, then placed in a 0.2 mm syringe filter (Sartorius). The filter

was connected to a peristaltic pump for which the flow rate was adjusted

to 1 ml/min and equilibrated with KRBH containing 2.8 mM glucose for

10 min before increasing the glucose concentration to 16.8 mM. Frac-

tions were collected and insulin was quantified by ELISA.

Flow Cytometry

Isolated islet cells were analyzed by flow cytometry with antibodies to

Glut-2 (Chemicon) and the insulin receptor a subunit (Santa Cruz Biotech-

nology) and were found to be between 90% and 95% pancreatic b cells.
Cell
Cultured islet cells (24 hr) were harvested with ice-cold 2 mM EDTA in

PBS and washed with ice-cold FACS buffer (2% FCS in PBS). Cell mem-

branes were rendered permeable using BD Cytofix/Cytoperm solution for

20 min at 4ºC, followed by washing cells twice with Perm/Wash solution

(BD Biosciences Pharmingen, San Diego, CA). In analyzing the effects of

synthetic glycans, islet cells were cultured in FACS buffer with various gly-

can concentrations for 2 hr at 37ºC. Cell labeling by antibody binding was

subsequently carried out in 100 ml with 50,000 cells in FACS buffer on ice

for 10 min. Data were acquired using a FACSCalibur Flow Cytometer and

analyzed by CellQuest Software (Becton Dickinson). Antibodies to Glut-2

(Chemicon) and the insulin receptor a subunit (Santa Cruz Biotechnology)

were used with FITC-conjugated sheep anti-rabbit IgG at 1.0 mg/ml and

0.5 mg/ml, respectively.

Islet Cell Glucose Transport

Glucose transport was measured using 2-[N-(7-nitrobenz-2-oxa-1,3-

diazol-4-yl)amino]-2-deoxy-D-glucose (2-NBDG, Molecular Probes) as

described (Yamada et al., 2000). Islet cells were incubated in glucose-

free-KRBH for 20 min at 37ºC and then with various concentrations

of 2-NBDG. To measure the time course of 2-NBDG transport, islet

cells were incubated with 500 mM of 2-NBDG in KRBH in the presence

or absence of 10 mM D-glucose for the indicated times, then washed

three times with glucose free-KRBH, and intracellular fluorescence (exci-

tation 485–495 nm, emission 515–525 nm) was measured using a Versa-

Fluor Fluorometer (Bio-Rad, Hercules, CA). Concentration dependence

was determined using identical conditions and either 100 mM, 200 mM,

400 mM, 800 mM, 1.6 mM, 3.2 mM, or 6.4 mM 2-NBDG for 5 min.

mRNA Quantitation

Total RNA (1 mg) was subjected to reverse transcription using the Super-

Script III first-strand synthesis system (Invitrogen). The transcripts were

amplified by PCR in the presence of 10 mCi of [a-32P]dATP (3000 Ci/mmol;

PerkinElmer Life and Analytical Sciences, Boston) in 30 ml of reaction mix-

ture containing primers for PEPCK (sense, 50-ATGCCTCCTCAGCTGCA

TAA-30; antisense, 50-GAACCTGGCGTTGAATGCTT-30), G6Pase (sense,

50-AGTCGACTCGCTATCTCCAA-30; antisense, 50-ACCGGAATCCATA

CGTTGGC-30),Mgat4a (sense, 50-TGAAGCCATTGCTTCTCAAGGTCC-30;

antisense, 50-GGCCCAAACAGCTGAGTTCTGAAT-30), or b-actin (sense,

50-CGTAAAGACCTCTATGCCAA-30; antisense, 50-GGGATGTTTGCTC

CAACCAA-30). The cycle number was set in the linear amplification range

(19 to 24 cycles). The relative amount of product was measured as the

incorporated 32P by liquid scintillation counting.

Immunoprecipitation and Glycan Analysis

Isolated islets were suspended in lysis buffer containing 50 mM Tris-HCl

(pH 7.5), 150 mM NaCl, 1.2% Triton X-100, 0.05% SDS, and proteinase

inhibitor cocktail (Roche, Mannheim, Germany) and sonicated. Solubi-

lized proteins were recovered in supernatants following a 15 min centrifu-

gation at 13,000 rpm in a tabletop centrifuge at 4ºC. Total protein (200 mg)

was subjected to immunoprecipitation with antibody to the C-terminal
Figure 6. GnT-4a Glycosylation Promotes Glut-2 Stability at the Cell Surface by a Lectin-Receptor Binding Mechanism

(A) Production and trafficking of newly synthesized Glut-2 in pancreatic islet cells are normal in GnT-4a deficiency. Thirty-five mice of each genotype were

analyzed.

(B) Glut-2 cell-surface half-life on intact islet cells was measured following cell-surface biotinylation, then graphed as a percentage of biotinylated Glut-2

present immediately after biotinylation. Data are represented as the means ± SD from three separate experiments.

(C) Glut-2 expression on the surface of wild-type pancreatic islet cells was monitored by flow cytometry following a 2 hr incubation period with various con-

centrations of indicated glycan structures. Top panels: plots of cell autofluorescence (black), secondary antibody binding (green), cell-surface expression

with no addition (blue), and cell-surface expression with addition of indicated glycan at 10 mM (red). Mean fluorescence level is indicated in matching colored

text. Bottom panel: in a dose-response analysis, only LacNAc-bearing N-glycans lacking sialic-acid termini significantly reduced Glut-2 cell-surface expres-

sion. Data are plotted as means ± SEM of triplicate measurements representing one of three separate littermate cell comparisons.

(D) Pancreatic islet sections of 3-month-old wild-type mice and Mgat4a null littermates fed a standard chow diet ad libitum were analyzed by fluorescence

deconvolution microscopy for Glut-2 expression (green) and Galectin-9/UAT (red). Colocalization (yellow) is presented in separate panels. The percentage of

Glut-2 colocalization with Galectin-9/UAT is indicated.

(E) Glut-2 association with Galectin-9/UAT at the pancreatic islet cell surface was assayed by protein crosslinking. Incubation of islet cells at 4ºC in the pres-

ence of 10 mM of LacNAc (Galb1-4GlcNAc), but not sucrose, diminished Glut-2 crosslinking to Galectin-9/UAT. The amount of protein coprecipitated is

indicated as a percentage of the total detected.
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region of Glut-2 (Santa Cruz Biotechnology). The precipitates were ana-

lyzed by blotting with antibody to Glut-2 (Chemicon) or lectins DSL,

L-PHA, LEA, ECA, RCA-1, SNA, or MAH (Vector Laboratories). In using

biotinylated DSL and L-PHA, blots were rinsed with TBS and incubated

with 20 mU/ml of neuraminidase (Vibrio choleae, Sigma) in 50 mM

sodium-acetate buffer (pH 5.5) at 37ºC for 16 hr, then treated with

125 mU/ml of endo-b-galactosidase (Escherichia freundii, Calbiochem)

in 50 mM sodium-acetate buffer (pH 5.5) at 37ºC for 16 hr. After washing

with T-TBS (0.05% Tween 20 in TBS), blots were incubated with 5% BSA

in T-TBS followed by 2 mg/ml of either DSL or L-PHA in T-TBS with 1%

BSA. After incubating with HRP-streptavidin (BD Pharmingen), blots

were washed and developed by enhanced chemiluminescence (Amer-

sham Biosciences, Buckinghamshire, England). For quantifying signals,

the absolute integrated optical density (IOD) was measured using Lab-

works software (UVP Bioimaging Systems, Upland, CA).

Pulse-Chase Analysis, Cell-Surface Half-Life, and Protein

Crosslinking

Islet cells were washed twice with HBSS, then incubated with RPMI 1640

medium depleted of methionine (Sigma) with 10% dialyzed fetal calf se-

rum (GIBCO/Invitrogen, Carlsbad, CA) for 2 hr at 37ºC. Pulse labeling

was performed with 400 mCi/ml [35S]methionine for 10 min at 37ºC,

and cells were then washed twice in ice-cold HBSS. Cells were lysed

or returned to above culture conditions containing 2 mM methionine for

10, 20, 30, 40, 50, or 60 min. Cells used in chase samples were washed

twice with ice-cold PBS and incubated with 1 mg/ml of sulfo-NHS-LC-

biotin (Pierce Chemical, Rockford, IL) at 4ºC for 30 min. Biotinylation

was stopped by three washes with 15 mM glycine in ice-cold PBS. Cells

were homogenized in lysis buffer, and biotinylated proteins were purified

using immobilized monomeric avidin gel (Pierce Chemical). Eluates iso-

lated in the presence of D-biotin (Pierce Chemical) were incubated with

anti-Glut-2 C-terminal antibody. Immunoprecipitates were subjected to

SDS-PAGE, and gels were fixed before drying and autoradiography at

�70ºC for 3 to 7 days. For cell-surface half-life analysis, islet cells were

washed twice with ice-cold PBS and biotinylated with sulfo-NHS-LC-

biotin as described above. Cells were further cultured for 3, 6, 12, or 24

hr, then homogenized in lysis buffer, followed by immunoprecipitation us-

ing the anti-Glut-2 C-terminal antibody. Glut-2 immunoprecipitates were

visualized with HRP-conjugated streptavidin. For cell-surface protein

crosslinking, islet cells were washed twice with HBSS and then incubated

with synthetic glycans in RPMI 1640 medium for 2 hr at 4ºC. Cells were

washed twice with ice-cold PBS, then incubated with 2 mM dithio-

bis-sulfosuccinimydylpropionate in PBS for 2 hr on ice. Crosslinking

was terminated by the addition of 1 M Tris-HCl (pH 7.5) to a final concen-

tration of 10 mM. Cells were then homogenized in lysis buffer, and Glut-2

or Galectin-9 was precipitated using antibodies to the C-terminal residues

of Glut-2 or Galectin-9.

Statistical Analysis

Data were plotted as the mean of the number (n) of samples analyzed ±

the standard error unless otherwise indicated. Student’s t test was used

to calculate indicated p values.

Supplemental Data

Supplemental Data include Supplemental References, one table, and one

figure and can be found with this article online at http://www.cell.com/cgi/

content/full/123/7/1307/DC1/.
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