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SUMMARY

Inflammasome-mediated caspase-1 activation is
involved in cell death and the secretion of the proin-
flammatory cytokine interleukin-1b (IL-1b). Although
the dynamics of caspase-1 activation, IL-1b secre-
tion, and cell death have been examined with bulk
assays in population-level studies, they remain
poorly understood at the single-cell level. In this
study, we conducted single-cell imaging using a ge-
netic fluorescence resonance energy transfer sensor
that detects caspase-1 activation. We determined
that caspase-1 exhibits all-or-none (digital) activa-
tion at the single-cell level, with similar activation ki-
netics irrespective of the type of inflammasome or
the intensity of the stimulus. Real-time concurrent
detection of caspase-1 activation and IL-1b release
demonstrated that dead macrophages containing
activated caspase-1 release a local burst of IL-1b
in a digital manner, which identified these macro-
phages as the main source of IL-1b within cell popu-
lations. Our results highlight the value of single-cell
analysis in enhancing understanding of the inflam-
masome system and chronic inflammatory diseases.

INTRODUCTION

Macrophages (MFs) play crucial roles in homeostasis by

clearing dead cells and connecting innate immunity with adap-
974 Cell Reports 8, 974–982, August 21, 2014 ª2014 The Authors
tive immunity (Mosser and Edwards, 2008). When MFs detect

pathogen-associated molecular patterns (PAMPs) derived from

infection or damage-associated molecular patterns (DAMPs)

originating from injured tissues, they secrete various types of cy-

tokines to induce inflammation or tissue repair. Interleukin-1b

(IL-1b) is a key cytokine that evokes an inflammatory response,

and its secretion is mainly regulated by caspase-1, a member

of the cysteine-protease family of caspases (Denes et al., 2012).

Caspase-1 is synthesized as an inactive zymogen and then

activated via proteolytic cleavage, a process regulated by intra-

cellular multiprotein complexes called inflammasomes (Martinon

et al., 2002; Rathinam et al., 2012); the inflammasomes detect

PAMPs and DAMPs by using distinct intracellular pattern-recog-

nition receptors such as NLRP3 (Nod-like receptor family, pyrin

domain containing 3), NLRC4 (Nod-like receptor family, CARD

domain containing 4), and AIM2 (absent in melanoma 2) (Marti-

non et al., 2002; Rathinam et al., 2012). When PAMPs or DAMPs

are detected, procaspase-1 is recruited directly through interac-

tions between the pattern-recognition receptors and procas-

pase-1 or indirectly through adaptor proteins such as ASC

(apoptosis-associated speck-like protein containing CARD)

(Schroder and Tschopp, 2010). The recruited procaspase-1 is

activated through autoproteolytic cleavage mediated by prox-

imity-induced multimerization. In addition to regulating proin-

flammatory cytokines, caspase-1 activation has been shown to

cause cell death (Miura et al., 1993). In certain cases, caspase-

1 is necessary for the execution of necrotic inflammatory cell

death, called pyroptosis, in MFs in response to intracellular bac-

terial infection (Fink and Cookson, 2005; Miao et al., 2010). How-

ever, in other cases, although caspase-1 is activated in response

to various PAMPs or DAMPs, deleting or inhibiting caspase-1 is
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insufficient for preventing cell death (Broz et al., 2010; Pierini

et al., 2012).

Given the aforementioned studies, the activation of most in-

flammasomes is considered to typically converge on caspase-1

activation, which couples the secretion of the proinflammatory

cytokine IL-1b and cell death. However, most of the information

on inflammasomes and caspase-1 has been obtained frompopu-

lation-level studies conducted using bulk assays such as western

blotting and ELISA, mainly because of technical limitations and

because of the unique characteristics of caspase-1 such as rapid

secretion after activation and rapid inactivation (Keller et al., 2008;

Walsh et al., 2011). Emerging evidence suggests that population

data do not faithfully reflect how single cells respond to stimuli

(Tay et al., 2010). Thus, the mechanism through which individual

cells activate caspase-1 by means of distinct inflammasomes

and secrete IL-1b in response to inflammatory stimuli remains un-

clear. Determining signaling dynamics at the single-cell level not

only expands the general understanding of how biological sys-

temsworkbut alsocomplements in vivostudies that examinecells

residing in complex contexts (Tay et al., 2010). Single-cell mea-

surement of caspase-1 activity at high spatiotemporal resolution

is required to fully understand the dynamics of caspase-1 activa-

tion and the direct relationship between caspase-1 activation and

its associated outcomes, IL-1b secretion and cell death.

Tomonitor caspase-1 activity at the single-cell level, we devel-

oped SCAT1, a genetically encoded fluorescent sensor for de-

tecting caspase-1 activation based on fluorescence resonance

energy transfer (FRET). Using peritoneal MFs (PMFs) obtained

from transgenic mice expressing SCAT1, we determined that

caspase-1 is activated in a digital manner at the single-cell level

in response to various types of inflammasomes. Interestingly,

the kinetics of caspase-1 activation was similar regardless of

the strength and type of stimuli. Moreover, by combining the

SCAT1 system and a newly developed technique to measure

protein secretion at single-cell resolution, we identified dying

MFs that contained activated caspase-1 as the source of

secreted IL-1b in PMF populations.

RESULTS

Real-Time Detection of Caspase-1 Activation through
the NLRP3 Inflammasome with SCAT1, a Genetically
Encoded Probe Developed for Monitoring
Caspase-1 Activation
Probes based on FRET technology can provide critical informa-

tion on the dynamics and activities of endogenous enzymes in

living cells (Aoki et al., 2013). We previously generated a genet-

ically encoded probe called SCAT3 (sensor for caspase-3 acti-

vation based on FRET) and monitored apoptotic caspase-3 acti-

vation in vitro and in vivo (Kuranaga et al., 2011; Nakajima et al.,

2011; Takemoto et al., 2003, 2007; Yamaguchi et al., 2011).

SCAT comprises 2 fluorescent proteins—enhanced cyan fluo-

rescent protein (ECFP) and Venus—that are connected by a

linker sequence that contains caspase cleavage sites (Figure 1A).

Upon caspase activation, the linker is cleaved and the FRET be-

tween ECFP and Venus is disrupted, which can be detected in

real time with fluorescence microscopy. To detect real-time acti-

vation of caspase-1, we constructed SCAT1 containing YVAD
(a consensus peptide sequence preferentially cleaved by cas-

pase-1) in its linker sequence instead of the DEVD sequence pre-

sent in SCAT3 (Figure 1A).

The results of in vitro cleavage assays demonstrated that

SCAT1 was preferentially cleaved by activated human cas-

pase-1 (Figure S1A). Notably, SCAT1 was barely processed by

activated human caspase-4 and caspase-5, which represent

potential functional orthologs of murine caspase-11. The speci-

ficity of SCAT1 cleavage upon caspase-1 activation was also

confirmed in living cells with the caspase-1-specific inhibitor

z-YVAD-fmk or by genetic deletion of caspase-1/11 (Figure S1B;

see below for a detailed explanation). We generated a gene-tar-

geting mouse line in which the CAG-promoter-loxP-STOP-loxP-

SCAT1 gene cassette was knocked into the Rosa26 locus. In

this knockin mouse line, SCAT1 expression depended on Cre re-

combinase expression (Figure S1C); by mating these mice with

mice that ubiquitously expressed Cre, we generated mice that

expressed SCAT1 in all tissues. We obtained peritoneal MFs

(PMFs) expressing SCAT1 from these mice. The possibility

that overexpressed SCAT1, an exogenous substrate of cas-

pase-1, might prevent the endogenous function of caspase-1

was excluded by our observation that IL-1b secretion and

caspase-1 cleavage occurred similarly in PMFs derived from

SCAT1� (wild-type) and SCAT1+ mice after inflammasome-

activation stimulated with lipopolysaccharide (LPS) + ATP or

poly(dA:dT) (Figures S1D and S1E).

Various pathogenic, endogenous, and environmental stimuli

can activate the NLRP3 inflammasome after priming with

LPS or other Toll-like receptor ligands (Latz et al., 2013). We

examined whether SCAT1 can enable real-time detection of

caspase-1 activation induced by canonical activators of the

NLRP3 inflammasome at the single-cell level. PMFs collected

fromSCAT1 knockinmicewere stimulatedwith an environmental

danger signal (silica crystals) after LPS priming and were

observed continuously under a confocal microscope to monitor

the time course of changes in SCAT1 (Venus and ECFP) inten-

sities. The SCAT1 Venus/ECFP (V/C) ratio decreased rapidly

and dramatically (Figures 1B and 1C; Movie S1) in some of the

cells after stimulation, indicating that caspase-1 was activated;

the time of caspase-1 activation varied among cells (Figures

S2A and S2B). Moreover, adding the caspase-1-specific

inhibitor z-YVAD-fmk abolished the dramatic reduction in the

SCAT1 V/C ratio and the cleavage of SCAT1 (Figures 1B, 1C,

S1B, S2A, and S2B; Movie S1), indicating that SCAT1 accurately

detected caspase-1 activation.We also confirmed that apoptotic

caspases were not activated in PMFs stimulated with LPS + sil-

ica; SCAT3, the indicator of caspase-3 activation, did not detect

apoptotic activation of caspases in these PMFs (Figure S2C).

Time-lapse imaging showed that SCAT1 fluorescence disap-

peared after caspase-1 activation, but the fluorescence was

lost even when caspase-1 activation was prevented by its inhib-

itor (Figure 1B). This loss of fluorescence indicated cell death

accompanying membrane rupture because it coincided with

the cells becoming positive for TO-PRO-3 or propidium iodide

staining (Figure 1D; Movie S1). These data indicated that

SCAT1 can faithfully detect NLRP3 inflammasome-induced acti-

vation of caspase-1 and subsequent cell death in real time at the

single-cell level. Interestingly, the dynamics of SCAT1 V/C ratios
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in PMFs exhibited only two patterns: no decrease or dramatic

decrease.

Real-Time Detection of Caspase-1 Activation via AIM2
and NLRC4 Inflammasomes
Next, we determined whether SCAT1 detects caspase-1 acti-

vation via two other types of inflammasomes, AIM2 and

NLRC4, in addition to activation by the NLRP3 inflammasome.

The AIM2 inflammasome is activated by poly(dA:dT) transfec-

tion with or without LPS priming (Fernandes-Alnemri et al.,

2009; Hornung et al., 2009). The SCAT1 V/C ratio dramatically

decreased in some PMFs after poly(dA:dT) transfection in a

manner independent of LPS priming (Figures 2A, 2B, and

S3A–S3C; Movie S2). This decrease was abolished when the

caspase-1 inhibitor was added to SCAT1+ PMFs or SCAT1+

caspase-1/11-deficient PMFs (Figures 2A, 2B, and S3B–S3D;

Movie S2) (Kayagaki et al., 2011; Kuida et al., 1995). Regard-

less of the presence or absence of caspase-1 activity, cell

death occurred, which was indicated by the disappearance of

SCAT1 fluorescence (shown as a loss of ECFP intensity in

the SCAT1 V/C ratio graphs in Figures 1B, 1D, 2A, 2C, S2C,

S3A, S4A, and S4B).

The NLRC4 inflammasome is activated by pathogenic pro-

teins derived from various bacteria, including Salmonella sero-

type Typhimurium, Legionella pneumophila, and Pseudomonas

aeruginosa (Franchi et al., 2012). SCAT1 V/C ratios rapidly

decreased after infection with S. Typhimurium SL1344 (Fig-

ure 2C), but not after infection with S. TyphimuriumD invGsseD

(a strain that exhibits little capability to induce inflammasomes)

or when caspase-1 was inhibited (Figures S4A and S4B; Movie

S3). Taken together, these data indicate that SCAT1 detects

caspase-1 activation and subsequent cell death that occur via

activation of the AIM2, NLRC4, and NLRP3 inflammasomes.

Nearly Identical Kinetics of Caspase-1 Activation and
the Resulting Inflammatory Cell Death in Response to
Distinct Stimuli
The results of our SCAT1 imaging suggested that caspase-1

activation is a digital, all-or-none response. To quantify and char-

acterize the caspase-1 activation further, we conducted kinetic

analyses of caspase-1 activation at the single-cell level. We first

investigated whether the kinetics of caspase-1 activation varied

in relation to the distinct types of inflammasomes at the single-

cell level. The AIM2, NLRP3, and NRLC4 inflammasomes stimu-

lated similar time courses of change in the SCAT1 V/C ratio in

response to poly(dA:dT), silica, and S. Typhimurium (Figure 3A).
Figure 1. Real-Time Detection of Caspase-1 Activation through the N

Monitoring Caspase-1 Activation

(A) Schematic representation of SCAT1, a fluorescence resonance energy tra

sequences of SCAT3 (caspase-3 cleavage site DEVD) and SCAT1 (caspase-1 cl

(B and C) Live-imaging analysis of SCAT1+macrophages (PMFs) primed with lipo

ratio images of PMFs treated with LPS (1 mg/ml) + silica (0.5 mg/ml) and LPS (

intensities of ECFP and Venus or SCAT1 V/C ratio changes of PMFs indicated by a

ratio are presented asmeans and standard deviation (SD) (C). YVAD: z-YVAD-fmk

representative of three or more independent experiments in (B); n > 4 under eac

(D) Live-imaging analysis of TO-PRO-3 staining of SCAT1+ PMFs under the LPS +

and TO-PRO-3 uptake. Right, time-course of SCAT1 V/C-ratio change and TO-P

independent experiments.
Next, we examined whether varying the stimulus intensity

affects the dynamics of caspase-1 activation at the single-cell

level. We used poly(dA:dT) as a model stimulus because it

does not require LPS priming, which may induce unexpected

disparities in cellular competence to stimulus. We transfected

poly(dA:dT) into PMFs at five concentrations and measured

the kinetics of caspase-1 activation. The results revealed that

the kinetics of caspase-1 activation (change in the relative

SCAT1 V/C ratio over time) was similar across all stimulus inten-

sities (Figure 3B). However, stimulus intensity affected the num-

ber of PMFs that contained activated caspase-1 and subse-

quently underwent cell death, and this number increased in a

dose-dependent manner (Figure 3C). Moreover, IL-1b produc-

tion measured using ELISA, a bulk assay, exhibited a similar

trend in the number of PMFs that contained activated cas-

pase-1 and underwent cell death under LPS-primed conditions

(Figure 3D), as previously reported (Nyström et al., 2013).

These results further indicated that caspase-1 is activated in a

digital manner. Varying the stimulus intensity or the inflamma-

some type did not affect the kinetics of caspase-1 activation at

the single-cell level; however, at the population level, it influ-

enced the frequency of cell death as a result of inflammasome

activation.

Dying PMFs Containing Activated Caspase-1 as the
Main Source of Secreted IL-1b
Our results raised the possibility that PMFs undergoing cell

death immediately after caspase-1 activation are the main

source of secreted IL-1b. Although this possibility has long

been considered, single-cell studies are required to test the pos-

sibility directly and precisely, and few such investigations have

been conducted because of technical limitations (Perregaux

and Gabel, 1994). Our SCAT1 system allowed us to perform

concurrent live imaging of caspase-1 activation, cell death,

and IL-1b secretion and combine it with quantitative monitoring

of IL-1b secretion in real time at single-cell resolution using a

method that we recently developed (Shirasaki et al., 2014).

SCAT1+ PMFs seeded on a microwell device were used to mea-

sure caspase-1 activation and IL-1b secretion at single-cell res-

olution on total internal reflection fluorescent microscopy. After

stimulation with poly(dA:dT), the cellular activity of caspase-1

and subsequent IL-1b release from single cells were successfully

detected (Figure 4A; Movie S4). IL-1b was secreted in massive

amounts immediately after caspase-1 activation, and we there-

fore called this release an IL-1b burst. Notably, the IL-1b burst

coincided with the time of cell death, which was indicated by
LRP3 Inflammasome with SCAT1, a Genetically Encoded Probe for

nsfer biosensor developed for monitoring caspases activation. Right, linker

eavage site YVAD).

polysaccharide (LPS) and stimulated with silica. Top, SCAT1 Venus/ECFP (V/C)

1 mg/ml) + silica (0.5 mg/ml) + YVAD (50 mM). Bottom, time course of relative

rrowheads. The percentages of cells in a field that showed reduced SCAT1 V/C

, caspase-1 inhibitor. Scale bar, 50 mm; arrowhead: representative cell. Data are

h condition, and ***p < 0.001 (one-way analysis of variance [ANOVA]) in (C).

silica stimulation condition. Left, time-lapse images of SCAT1 V/C ratio, ECFP,

RO-3 uptake in the PMF. Scale bar, 50 mm. Data are representative of three
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Figure 2. Real-Time Detection of Caspase-1 Activation through the AIM2 and NLRC4 Inflammasomes

(A and B) Live-imaging analysis of SCAT1+ PMFs under AIM2 inflammasome activation. Top, SCAT1 V/C ratio changes of SCAT1+ PMFs transfected with LPS

(1 mg/ml) + poly(dA:dT) (1 mg/ml) and LPS (1 mg/ml) + poly(dA:dT) (1 mg/ml) + YVAD (50 mM). Bottom, time course of changes in the relative intensity of ECFP and

Venus or SCAT1 V/C ratios of PMFs indicated by arrowheads. The percentages of cells in a field that showed a reduction in the SCAT1 V/C ratio are presented as

means and SD (B). Scale bar, 50 mm; arrowhead: representative cell. Data are representative of three independent experiments in (A); n > 3 under each condition,

***p < 0.001 (one-way ANOVA) in (B).

(C) Live-imaging analysis of SCAT1+ PMFs under NLRC4 activation. Left, SCAT1 V/C ratio images of PMFs primed with LPS (1 mg/ml) and infected with

Salmonella Typhimurium (MOI 20). Right, time course of changes in the relative intensities of ECFP and Venus or SCAT1 V/C ratios of the PMFs indicated by

arrowheads. Scale bar, 50 mm; arrowhead: representative cell. Data are representative of three independent experiments.
the disappearance of SCAT1 fluorescence (52 min in Figures 4A

and 4B). To investigate whether all the cells that exhibited the IL-

1b burst died, we examined the relationship between the IL-1b

signal and cell death. Our results indicated that the cells that
978 Cell Reports 8, 974–982, August 21, 2014 ª2014 The Authors
secreted IL-1b also died and that no surviving cells secreted

IL-1b under this condition (Figure 4C). Furthermore, inhibiting

caspase-1 activation did not inhibit cell death but prevented

IL-1b release (Figure 4C). These results clearly demonstrated



Figure 3. Almost Identical Kinetics of Cas-

pase-1 Activation and Resulting Inflamma-

tory Cell Death Induced by Distinct Stimuli

(A and B) Relative SCAT1 V/C ratio changes

before and after caspase-1 activation. PMFs were

stimulated with distinct inflammasome activators

(NLRP3: LPS [1 mg/ml] + silica [0.5 mg/ml], NLRC4:

LPS [1 mg/ml] + S. Typhimurium [MOI 20], and

AIM2: poly[dA:dT] [1 mg/ml]) (A) or transfected with

poly(dA:dT) (0.1, 1, 10, 100, and1,000 ng/ml) (B) and

thenexamined live for 4 hr.Numbers of cells (n) used

for quantifying SCAT1 V/C ratios under various

conditions were (A) 32 for LPS + silica, 26 for LPS +

S. Typhimurium, and 115 for poly(dA:dT). For

poly(dA:dT) in (B), n = 42 (0.1 ng/ml), 78 (1 ng/ml), 64

(10 ng/ml), 88 (100 ng/ml), and 119 (1,000 ng/ml).

x axis, time (min). Data were collected from two or

more independent experiments and are presented

as mean and SD.

(C) Percentages of PMFs that contained activated

caspase-1 and died, as determined based on

the loss of fluorescence in all cells examined under

the microscope. PMFs were transfected with

poly(dA:dT) (0.1, 1, 10, 100, and 1,000 ng/ml) and

imaged live for 3 hr. Data were collected from four

independent experiments and are presented as

mean and SD.

(D) ELISA performed on interleukin (IL)-1b that was secreted into cell culture supernatants from SCAT1+ PMFs. The PMFs were primed with LPS (1 mg/ml) for 4 hr

and transfected with poly(dA:dT) (0.1, 1, 10, 100, 1000 ng/ml) for 3 hr. Data were collected from four independent experiments and are presented as mean and SD.
that inflammasome-mediated digital activation of caspase-1

couples the IL-1b burst with cell death and that dying cells con-

taining activated caspase-1 are the main source of secreted

IL-1b in PMF populations.

DISCUSSION

This study, which used a probe designed to detect caspase-1

activation, showed that caspase-1 activation is an all-or-none

response at the single-cell level in PMFs. It also demonstrated

that the kinetics of caspase-1 is essentially the same irrespective

of the intensity or types of stimulus. The output of caspase-1

activation is a burst of IL-1b release, which also occurs in an

all-or-none manner as a consequence of digital activation of

caspase-1. However, the mechanisms underlying these digital,

all-or-none responses remain unclear. The assembly of large

oligomeric signalosomes containing members of the Toll-like re-

ceptor interleukin-1 receptor superfamily has been suggested to

be a structural basis for a digital all-or-none response (Ferrao

et al., 2012; Wu, 2013). As well, such higher-order signalosomes

have recently been reported to exist in inflammasomes (Lu et al.,

2014), whichmay be themechanism that dictates the digital acti-

vation of caspase-1.

Caspase-1 activation has long been considered to induce IL-

1b secretion and cell death, and IL-1b secretion is correlated

with cell death (Brough and Rothwell, 2007; Hogquist et al.,

1991; Nyström et al., 2013). However, whether individual cells

that contain activated caspase-1 secrete IL-1b and die has

remained unclear because the investigative methods available

to date have been bulk assays, which cannot address these

questions. Recently, two biosensors that monitor caspase-1
and inflammasome activation were reported: a bioluminescence

resonance energy transfer sensor to detect pro-IL-1bprocessing

and a sensor fusion protein of luciferase and pro-IL-1b (Bartok

et al., 2013; Compan et al., 2012). Such luminescence-based

probes are superior to fluorescent probes in that they allow ex-

amination of bulk activity in cell populations or at the tissue level;

however, the cellular resolution and sensitivity of these probes

are insufficient for single-cell analysis within tissues. Further-

more, these sensors appear inadequate from a time-resolution

standpoint for determining the kinetics of rapid caspase-1 acti-

vation within a single cell. By comparison, the indicator we devel-

oped, SCAT1, enables visualization of caspase-1 activation and

measurement of its kinetics at high temporal resolution on the

single-cell level. Although we do not exclude the possibility

that our SCAT1 and IL-1b imaging are insensitive to weak or local

activations of caspase-1 and very low amounts of IL-1b secre-

tion, previous bulk assays including western blotting and ELISA

are less sensitive than our single-cell imaging system and almost

impossible to use to test this possibility. Addressing these issues

requires further technical developments.

Elevated local or systemic IL-1b release caused by compro-

mised inflammasome activation is associated with various

chronic inflammatory diseases such as cryopyrin-associated pe-

riodic syndrome, metabolic disorders, and carcinogenesis in hu-

man and mouse models (Wen et al., 2012; Zitvogel et al., 2012).

Recently, mutations in an NLRP3 protein associated with cryo-

pyrin-associated periodic syndrome were shown to induce

necrotic cell death, which in turn leads to neutrophilic inflamma-

tion (Satoh et al., 2013). Our study clearly demonstrates that

dying MFs containing activated caspase-1 exhibit IL-1b bursts.

Thus, cells located near suchMFs would receive amaximal level
Cell Reports 8, 974–982, August 21, 2014 ª2014 The Authors 979



Figure 4. Dying PMFs Containing Activated Caspase-1 as the Main Source of Secreted IL-1b

(A and B) Simultaneous live imaging of SCAT1 V/C-ratio changes and IL-1b secretion in SCAT1+ PMFs primed using LPS (1 mg/ml) and stimulated with

poly(dA:dT) (1 mg/ml). (A) The montage shows time-dependent changes in the intensities of ECFP (the middle row), SCAT1 V/C ratios (the top row), and IL-1b

secretion (the bottom row). (B) The time course of changes in the intensities of ECFP and Venus, SCAT1 V/C ratios, and IL-1b secretion in a representative cell, as

in (A). Scale bar, 50 mm.

(C) Dot-plot representation of the signal intensity of IL-1b secreted from single cells, classified according to cell viability in the absence and presence of treatment

with the caspase-1 inhibitor YVAD. LPS-primed SCAT1+ PMFs were introduced into a microwell array with a fluorescent detection antibody and stimulated with

poly(dA:dT). After incubation for 4 hr, all microwells were scanned to detect the signals of IL-1b secretion and the SCAT1 probe. Cell viability was determined

based on the intensity of SCAT1.
of IL-1b locally, even when a low level of circulating IL-1b is

detected systemically. This scenario is highly likely to occur un-

der chronic disease conditions. If the local cells receiving the

burst-released IL-1b exhibit oncogenic potential, strong stimula-

tion by high levels of IL-1b could trigger cellular transformation

under conditions of chronic inflammation. Studies of inflamma-

tory cell death and local bursts of cytokine release in vivo could

offer intriguing and crucial perspectives that will help reveal

the mechanisms underlying chronic inflammatory diseases.

Applying SCAT1 imaging analysis to various chronic inflamma-
980 Cell Reports 8, 974–982, August 21, 2014 ª2014 The Authors
tory disease models in vivo is challenging but would enhance

our understanding of the involvement of local and continuous in-

flammatory cell death in the pathology of these diseases.
EXPERIMENTAL PROCEDURES

Live Imaging of Peritoneal MF Cultures

Live imaging was conducted using an inverted confocal microscope (TCS

SP5; Leica) equipped with a galvo stage and a resonant scanner designed

for fast scanning using an HC PL APO 203/0.70 CS dry objective (Leica).



During imaging, dishes of cells were placed in a humidified cell-culture incu-

bator and continuously supplied with 5%CO2/air at 37
�C (Tokai Hit Company).

ECFP was excited using a 442 nm diode laser (10%–25% power), and the

emissions of ECFP and Venus (FRET) were detected simultaneously using

two detectors (Leica HyD) and a resonant scanner (8,000 Hz; Leica). Propidium

iodide and TO-PRO-3 were excited using 561 and 633 nm diode lasers (15%

power), respectively. Images (512 3 512 pixels) were acquired at intervals of

1–2 min, and the z slices obtained were 4 mm thick (total of 9–12 slices/time

point), depending on the experiment. To inhibit caspase-1 pharmacologically,

we used z-YVAD-fmk (50 mM final concentration; 1/1,000 dilution of a 50 mM

stock prepared in dimethylsulfoxide).

PMFs were plated on four-well glass-bottom dishes (Greiner Bio-One) and

primed using LPS (1 mg/ml) or PBS for 4–12 hr before stimulation. All live-im-

aging analyses were initiated after stimulating inflammasomes by using this

procedure, and live images were acquired for 3–4 hr under all conditions

tested.
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