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I. INTRODUCTION 

Part I of this paper [l] has generalized the concept of the pseudo-inverse 
to encompass linear bounded operators on Hilbert spaces, under the assump- 
tion that the operator’s range is closed. The function-analytic approach 
used there supersedes a predominantly algebraic viewpoint that interpreted 
the pseudo-inverse in the limited context of operations with (finite) matrices 

PI. 
It is the purpose of Part II to extend the pseudo-inverse to Hilbert space 

operators which need not be bounded, and which may not have a closed 
range. A principal tool is the representation obtained in Part I [l] only for 
bounded operators with closed range. For normal operators, the spectral 
representation enables us to present the pseudo-inverse in more explicit form. 

A restricted form of the representation theorem proved in [l] is the follow- 
ing: let A be a linear bounded operator from the Hilbert space H into itself, 
and let the range R of A be closed. Then A has a representation 

A = PR$ (1.1) 

where PR is the projection on R, and a is a bounded operator whose inverse 
(defined on all of H) is also bounded. 

The above construction leads directly to an expression for the pseudo- 
inverse, whose definition is 

DEFINITION la. A+ is the pseudo-inverse of A if, for every y  E H, 

inf jl Ax - y  I/ 
zei (14 

* This work was supported by the National Aeronautics and Space Administration 
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is attained by 
i = A+y; (1.3) 

if x’ # i also attains the infimum (1.2), 

II x’ II > II i Ii. (1.4) 

It is shown in [1] that a unique A+ as just defined exists for bounded A 

whenever R is closed. Moreover, A+ is given by 

A+ = P&-l. (1.5) 

Here a may be taken as any A satisfying (1 .l), and PM is the projection on M, 

the subspace which is the orthogonal complement of 

N = {x: Ax = O}. (1.6) 

I f  H is of finite dimension, A+ always exists, and may be represented by a 
matrix that can be constructed explicitly, either by algebraic methods [3], 
or by a scheme based on the representation (1.1). I f  A is Hermitian, A+ 
takes a particularly simple form. Suppose A is written in the canonical 
form 

A = C*DC (1.7) 

where C is unitary, and D is the diagonal matrix with elements dij = 6,$X,. 
Then 

A+ = C*D+C 7 (1.8) 

in which D+ is again diagonal, with dz = Sij&l whenever hi # 0, and dz = 0 
for i such that hi = 0. Further, 

A = c*ilc (1.9) 

with dij = Sijhi or dij = LSij according as hi # 0 or hi = 0. Finally, 

PR = PM = C*FC, (1.10) 

where fij = aij or fij = 0, according as Xi # 0 or hi = 0. 
The formulas associated with a Hermitian matrix A can easily be inter- 

preted in terms of its spectral representation. We then ask whether the 
resulting expressions may not hold more generally-as indeed they do. If  
for a Hermitian matrix A, 

A= 
s Ad& , (1.11) 

X 
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(1.8) becomes 

One also obtains 

A+ = 
I x-401 

FdE, . 

A’ = jx Ad4 + E,({O)). 
and 

PR = 4(X - VW 

In the above, E,(C) would denote the projection specified by 

E,(C) = jcW 7 

(1.12) 

(1.13) 

(1.14) 

(1.15) 

which is applicable to any set C (in the complex plane) measurable with 
respect to the measures (Enx, zc) for every x E H, and thus includes all Bore1 
measurable sets. 

It will be seen later that the formulas (1.12), (1.13), and (1.14) (which have 
been deduced for the finite-dimensional case only) remain correct for un- 
bounded normal operators; if the pseudo-inverse is suitably redefined, (1.12) 
holds even when R is not closed. 

Applications of the theory rest upon the “best approximate solution” 

property of the pseudo-inverse. When, for example, an integral equation is 
“solved” in this manner, the ordinary solution results whenever it exists; 
otherwise, the solution is the “best possible” in the sense of Definition la. 
In prediction theory (with quadratic error norm), exact solutions correspond 
to perfect prediction, and occur only in trivial problems. The pseudo-inverse 
is therefore a powerful tool, which may be applied in particular to prediction 
of widesense Markov processes [3] with an infinite number of components; 
consideration of these is reserved for a future paper. 

II. OPERATOR REPRESENTATIONS 

This section is devoted to an analysis of operator representations of the 
form A = Pa, where P is a projection, and A is a closed invertible operator. 
Any linear (not necessarily bounded) operator from a Hilbert space into 
itself has such a representation. Moreover, A-1 is bounded and defined on all 
of H r@ the range of A is closed; otherwise, A-1 is unbounded but its domain 
is dense in H. In this fashion, the representation in question may be completely 
characterized. 

Throughout, His a Hilbert space, and A is a closed linear operator defined 
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on the linear manifold ga C H, with range R = A(BJ again in H. Since R 
is a linear manifold in any case, its orthogonal complement S is a subspace, 
and we have H = 17 @ S, where R is the closure of R. The subspace N has 
already been defined by (1.6); ‘t 1 s orthogonal complement will be denoted 

by M. A projection operator is symbolized by P, where the subscript indicates 
(whenever necessary) the associated subspace. The notation of (1.15) is also 
occasionally used to indicate projection. 

The first theorem extends a result in [I] to unbounded operators. Although 
the theorem is stated only in the limited context of operators from a Hilbert 
space to itself, it is easily seen that it applies equally to linear mappings 
from one Banach space to another. 

THEOREM 1. Let A have the representation 

A = PA (2-l) 

where P is a projection, and A has a bounded inverse defined everywhere ot2 H. 
Then 

(i) R is closed. 
(ii) P = PR. 

(iii) The restriction of A to N is a bounded operator which provides a 1-l 
mapping from N onto S. 

PROOF. Evidently, ~8~ = 92 , and A-’ takes H onto .92 . Hence 

P = AA-1 (2.2) 
implies that 

P(H) = AA-l(H) = A(gA) = R. (2.3) 

Since the left side of (2.3) is closed, R must be closed also. Also, P(H) = R 
means that P = P,. Thus, (i) and (ii) have been proved. 

To prove that the restriction of A” to N is bounded, we first show A to be 
closed. Indeed, 2-l is bounded (and hence closed), so that 2 = (A-l)-1 is 

closed, as is its restriction to any (closed) subspace.l Now NC 9A , and N 
is a subspace because A is a closed operator. Then the restriction of A to 
N is a closed operator defined on all of this subspace. By the closed graph 
theorem, A is therefore bounded on N. 

It follows from (2.1) that 
A(N) C S. (2.4) 

To show that (2.4) is actually an equality, we first prove that A(N) is closed, 

IA subspace, as used herein, will always mean a closed linear manifold. 
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and then verify that S contains no nonnull vector orthogonal to A(N). The 
boundedness of A-1 yields the existence of an 01 > 0 such that 

~IIXII bilml, XE%. (2.5) 

Suppose that {m} E A(N) forms a Cauchy sequence. Then there exists 
{xn} E N such that Ax, = yn , and {xn} is also a Cauchy sequence by (2.5). 
Now x,-+x EN, and yn +y. Since A is closed, y  = AX, i.e., y  E a(N) as 
was to be shown. 

Let y  E 5’ be orthogonal to a(N), withy f  0. Because A(B~> = H, there 
is an x E H such that 

Ax =y; (24 

this x cannot belong to N since Ax $ x(N). I f  the projection PR is applied 
to both sides of (2.6), we obtain P,ax = 0 (sincey E S). From (2.1), Ax = 0, 

so that x E N. Hence the existence of the assumed y  leads to a contradiction, 
and the proof of the theorem is complete. 

The necessity conditions given in Theorem 1 are also sufficient. Thus, 
as we shall prove, if (i) is satisfied and there exists an operator as in (iii), we 
can find a representation (2.1). Of course, (iii) implies that S and N have the 
same dimension; it is this (weaker) statement that appears in the theorem. 

THEOREM 2. Let A have closed range R, and let N and S be of the same 
dimension. Then A possesses a representation 

A = P,A 

where B has a bounded inverse defined on all of H.2 

(2.7) 

PROOF. We call a the restriction of A to M. This restriction has an 
inverse A--l, which is defined on R, and bounded there. To see that A* has an 
inverse, take x E M n ga , and consider the possibility that ax = Ax = 0. 
But then x E N, so we have x = 0. Next, we observe that the range of A  ̂ is R. 
Lety E R, and denote a corresponding element of gA by x. Now 

x =x1 +x~,x~EM,x~EN. (28) 

Here XE~~, and x,ENC~,, so we must have X~E gA . Therefore, 
y  = Ax = Ax, = ax,, as was to be shown. Finally, a is closed because 
A is closed by hypothesis. Then &-r is also closed, and, being defined for 

*It actually suffices that R be of the second category. The proof also applies to 
operators from one Banach space to another, provided that there exists a linear closed 
operator yielding a l-l mapping from all of N onto S. 
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all of R (a Hilbert space), is bounded. The last statement is a direct conse- 
quence of the closed graph theorem. 

The construction of A is not unique; one which is convenient is 

A=dP,+UP,, (2.9) 

where U is a partial isometry, taking N onto S. Since P,UP, = 0 and 
P,/fP, = A, we see that (2.9) satisfies (2.1). The inverse of the specified 
A is 

A-1 = &‘PR + VP, . (2.10) 

This operator is bounded, for 11 A-l 11 < /I A-l jl + 1. Further, the A-l given 
by (2.10) satisfies the equations 

AA-1 =I and A-1Ax =x for XE~,, (2.11) 

as we can readily verify by direct calculation. The proof is then complete. 
That N and S have the same dimension is (according to Theorem 2 and 

(iii)) both necessary and sufficient. As we shall see, there is no loss of generality 
in assuming this equality of dimension. Suppose, for example, that A’ satisfies 
the hypotheses of Theorem 2 with the exception that the dimension of 
N’ = {x: A’x = 0} is less than that of S. Then there exists a partial isometry 
U’ from N’ onto a subspace S’ C S. Now let Hr = H @ (S 0 S’), and 

define A as an operator from H1 into H as follows: A(S 0 S’) = 0, and for 
x E HI such that PHI x E gas, Ax = A’PHlx. Thus A and A’ are essentially 
equivalent and A, a linear closed operator from HI to H, can be shown to 
possess the desired representation. Detailed verification of the above assertions 
is routine but tedious, and follows the proof given in [I]. An analogous 
procedure disposes of the case that the dimension of S is less than that of N. 

To complete this section, we consider operators whose range is not closed. 
For such operators the proof of Theorem 2 provides a construction (2.7) 
where d is once more given by (2.9). Tlu ‘s construction assures that A is 
closed and has an inverse (2.10). The range of A includes S and R; since the 
domain (and therefore the range) of A is a linear manifold, the range of A 
is dense in H. 

In the proof of Theorem 1, the closure property of R led to the boundedness 
of d-1. Thus the method of Theorem 1 cannot guarantee that d-1 is bounded. 
This is hardly surprising, for we shall prove later that A-1 must be unbounded. 
These results are summed up in 

THEOREM 3. Let A have a nonclosed range. Then A has a representation 
(2.7), in which A is a closed operator whose inverse is demely defined but un- 
bounded. 
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That A-l is indeed unbounded follows from 

THEOREM 4. Let A have a nonclosed range, and suppose that A has the 
representation 

A=PA (2.13) 

where P is a projection, and A is a closed operator whose inverse is densely 
dejbaed. Then P = PR , and A-1 is unbounded. 

PROOF. Since R is dense in R, (2.13) requires that P > PR. Using 

P,A = A and P,P = PR , we note that (2.13) implies 

A = P,A. (2.14) 

The combination of (2.13) and (2.14) yields 

(P-PJA=~ (2.15) 

on 92 . But A(~,J is dense in H, so P = PR . 
I f  A-1 were bounded, its domain would be all of H, for A-1 is densely 

defined and closed (since A is closed). Then, by Theorem 1, R is closed, 
thus contradicting the assumptions of the theorem. Hence A-1 must be 
unbounded, and the proof is complete. 

Many plausible conjectures on further properties of the representation 

(2.13) or (2.14) are unfortunately false. The difficulties are partly due to the 
arbitrary manner in which A maps vectors into S (for x E N), and partly 
a result of the unspecified nature of the component in S for mappings of 
vectors in Mr\ gA. It is possible, for example to construct an A whose 
inverse is bounded but not densely defined, or to exhibit-for closed A-a 
representation whose A has no closed extension. Or (2.13) may hold for 
closed A, while A does not admit of a closed extension. These and possibly 
other combinations of properties for A and A render the construction of a 
more comprehensive theory difficult. 

Because the necessity conditions of Theorems 1 and 4 pertain only to 
closed A, there is particular interest in its closure properties. Some of these 

are revealed by the following two theorems. 

THEOREM 5. Let the closed operator A have the representation 

A=PA. (2.16) 

Then 

A = pRA, (2.17) 
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and either 

(a) a is closed, 

or 

(b) a possesses no closed extension. 

Remark. Neither this nor the succeeding theorem requires a to be 

invertible. 

PROOF. The first assertion merely reemphasizes part of the statement of 
Theorem 4, and uses the part of the proof which does not depend on a-l. 
For the second claim, we make use of the fact that the equality sign in (2.16) 
implies that gA = 92. Let us assume that A is not closed. Then there 
exists (x,J E 92 such that x, - x and ax, --f w, but either x $9~ or Ax # w. 

But in fact, x E 92, so 2x # w; this means that A has no closed linear 

extensions. 
ToshowxEgi, we note that (2.17) requires that 

Ax, = Ax, + x,, , x,, E S. (2.18) 

A fortiori, {Ax,) converges because of the convergence of {a;~,>. Since A 
is closed, x E G3* , so x E g; , as was to be proved. 

THEOREM 6.3 Let A and /i’ both have closed linear extensions, and assume 
that A has a representation 

A 2 P,a. (2.19) 

Then 

A 2 PJ. (2.20) 

PROOF: Consider any x E 9; . Either x E 92 C g* , or there exists a 

sequence {xn> E g; with x, + x and AXE -+ w; then Ax = w. 
We show that this x E gJ, and that Ax = P,Jx. In order that (2.19) 

be satisfied, (2.18) must hold. Again, the convergence of (AXJ entails that 
of {Axn}, so xEsJ and Ax =y (= 1 im Ax,). One also obtains a, + z E S 
from the convergence of {A,,>. Therefore, 

A-x = Ax + z, z E s. (2.21) 

An application of PR to both sides of (2.21) then shows that (2.20) is an 
equality when restricted to x E gz . 

3 An alternative proof: Since PR is bounded, A* = (P&)* = A*PR . We again 
take the adjoint of both sides to obtain (A*)* = (a*P,)* 1 P&*)*, which is 
equivalent to (2.20). 
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COROLLARY. If A = P,d, then A s P,j s A. 

Remarks. (a) Invertibility of A does not ensure that of 2. (b) The asser- 

tion (which strengthens the corollary) that A = PRA implies A = P,x 
is false. 

We conclude this section with a routine comment. I f  A has a closed :xX- 
tension, the construction (2.9) yields 

A G P,A; (2.22) 

this L?’ has a closed extension such that 

A=P,~: (2.23) 

III. THE GENERALIZED PSEUDO-INVERSE 

The principal result of this section is that every linear closed operator 

A defined on a linear manifold possesses a pseudo-inverse A+ given by 

A+ = P&l, (3.1) 

assuming only that iV and S are of the same dimension. As before, it is con- 
venient to distinguish the two cases (1) R is closed and (2) R is not closed; 

in the former, somewhat stronger results are obtained. 
For our purposes, Definition la (see Section I) presents a restrictive concept 

of the pseudo-inverse applicable to neither unbounded operators, nor to 
those whose range is not closed. Clearly, the infimum indicated by (1.2) 
can be taken only over 3A . Moreover, it cannot be expected that the infimum 
is attained for every y  E H when the range of A is not closed. Thus we are 
led to define a generalized pseudo-inverse which reduces to that of Definition 
la when A is bounded and R is closed. 

DEFINITION lb. A+ is a generalized pseudo-inverse of A if 

(4 gA+ is dense in H. 

(b) For every y  E gA+ , 
inf 11 Ax - y 11 
XESa (3.2) 

is attained by 
i = A+y; (3.3) 

(c) whenever x’ E gA also attains the infimum (for given y  E BA+), 

II i II -=c II x’ II (3.4) 

unless 2 = x’. 
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It is known [I] that the pseudo-inverse of a bounded operator with closed 
range (see Definition la) is unique. The same cannot be said for the generalized 
pseudo-inverse of Definition lb, which we hereafter abbreviate GPI. Indeed, 
Definition lb does not preclude various GPIs, defined on different dense 
sets in H. There is, however, a uniqueness theorem for GPIs, one of whose 
corollaries is again the uniqueness of the operator described by Definition la. 

THEOREM 7. Let A have GPIs A’ and A”, and let 9 = BA, n 9,,,. Then 

A’y = A’y for y E 9. (3.5) 

In particular, if a GPI A+ is defined on all of H, any other GPI must be a 
restriction of A+. 

PROOF. For y E 9, both x’ = A’y and x” = A’y attain the infimum 
(3.2). If (3.5) is false, there is some y E 9 for which x’ # x”. But since both 
A’ and A” are GPIs, I/ x’ // < I] x” ]I and ]I x” ]j < I] x’ //, which is clearly 
impossible. This proves the first statement of the theorem; the second asser- 
tion is a direct consequence of the first. 

For operators whose range is closed, questions of the existence and nature 
of a GPI are completely settled by 

THEOREM 8. Let A be a linear closed operator whose domain 9A is a linear 
manifold, and whose range R is closed. Let N and S be of the same dimension. 
Then there exists a GPI 

A+ = PMA-l, (3.6) 

in which A’ may be taken as any operator having a bounded everywhere defined 
inverse and satisfying 

A = PA. (3.7) 

If 4 is de&ted by (3.3) for every y  E H, the infimum (3.2) is attained also by 
x’ iff x’ satisfies the equation 

Ak = Ax’. (3.8) 

Furthermore, A+ is bounded, everywhere defined, and satisfies the equations 

AA+ = PR for all y E H, (3.9) 

and 
A+A = PM for all x E gA. (3.10) 

PROOF. By Theorem 2, there is an A with the specified properties, so 
there exists at least one A+ of the form (3.6). We shall show that for any 
operator A satisfying (3.7) and the stated invertibility conditions, the corre- 
sponding A+ is a GPI defined on all of H. Then A+ is actually unique, and 
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does not depend on the particular A employed; this follows from Theorem 7. 
For any A with everywhere defined and bounded inverse, A+ is likewise 

everywhere defined and bounded. Moreover, (3.7) implies that 

A = pRA (3.11) 

which yields AA-1 = PR for any x E H. We have shown earlier that if 

XEBA, so is PMx, and in fact, AP,x = Ax. Since the range of A-1 is 
precisely gA , we have for any x E H 

AA+ = AP,kl = AA-1 = PE , (3.12) 

and thus (3.9) is proved. 
To verify (3.10) we note that, for any x E gA 

AX=AX+Z ZES (3.13) 

in order that A satisfy (3.11). S ince A-1 is defined on all of H, we have from 

(3.13) 
x = A-~AX + y. (3.14) 

Here y  = A-12, and y  E N because of (iii) in Theorem 1. If  PM is now 
applied to both sides of (3.14), the desired result is obtained by substituting 
from (3.6). 

It remains to show that A+ is a GPI, and that (3.8) is valid. For this purpose, 
define 2 as in (3.3), and let x’ be an arbitrary vector in g* . Then consider 

11 Ax’ - y iI2 = 11 (Ai - y) + (Ax’ - A4) 112. (3.15) 

From (3.9) (which we just proved) we obtain Ai - y = (AA+ - I)y = -Psy. 
But Ax’ - AT = A(x’ - a) E R, which simplifies (3.15) to 

(I Ax’ - y II2 = 11 Af - y iI2 + Ij Ax’ - A4 j12. (3.16) 

This means that jl A4 -y I( < (/ Ax’ - y  Ij with equality ; f f  Ax’ = AR. 
Thus A+ possesses property (b) of a GPI, and (3.8) is proved. 

We call 

x ={x:x~9~,Ax = AS>. (3.17) 

Clearly, x is precisely the set of elements for which the infimum (3.2) is 
attained. x is also one of the elements of the quotient space H/N, for x1 , 
xs E x implies A(x, - x2) = 0, i.e., x1 = x2 mod N. Hence any x’ E x can 
be expressed in the form 

x’=i+z ZEN, (3.18) 

where i is taken as the representant of X. Now 2 = A+y = PJA-‘y), so 
that4EM. 



482 BEUTLER 

Therefore 

/I x’ II’1 --=: j/ 2 11% + // z 112, (3.19) 

and consequently (3.4) holds unless x’ = 2. In other words, 4 satisfies con- 
dition (c) of Definition lb, and the proof is complete. 

When A has a nonclosed range, weaker results should be expected. The 
GPI exists, but cannot satisfy (3.9), for that would require that R be closed. 
(3.10) is lacking entirely, since there is no guarantee that R c gA+. Further, 

.9 A+ is only dense in H, so that A+ may not be unique. Finally, A+ must be 

an unbounded operator when R is not closed. 

THEOREM 9. Let A be a linear closed operator whose domain QA is a linear 
manifold, and whose range R is not closed. Let N and S be of the same dimension. 
Then there exists a GPI for A, and an operator 

A+ = p&l (3.6’) 

is a GPI whenever A is an invertible closed operator with dense range satisfying 

A = PA. (3.7’) 

If 2 is defined by (3.3) for every y  E BAf, the infimum (3.2) is attained also by 
x’ i f f  x’ satisfies the relation 

A2 = Ax’. (3.8’) 

Furthermore, A+ is unbounded and satisjiies 

AA+ = PR for all y  E LBA+. (3.9’) 

PROOF. Theorem 3 states that A possesses at least one representation 
(3.7’) in which A has the properties indicated. We show that any such A 
leads to an A+ (given by (3.6’)) that is a GPI. Since the domain of A-1 is 
dense and coincides with gA+, gA+ is dense as required by (a) of Definition 
lb. For future reference, we also note that any A satisfying (3.7’) and the 
associated invertibility conditions will have its inverse unbounded, and will 
yield the more convenient representation 

as shown in Theorem 4. 

A = PEA, (3.20) 

A rephrasing of the proof in Theorem 8 shows that A+ is a GPI. As in 
that proof, we first demonstrate that AA-‘y = Pey for y  E Sa+(= 92-r), 
thus verifying (3.9’). For y  E gA+, we then find that we can proceed as 
before, obtaining (3.6) which leads to condition (b) of Definition lb, and 
(3.19), from which we derive (c) of the definition. Thus, A+ is shown to be 
a GPI. 
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Although A-l is known to be unbounded (see Theorem 4), we have yet to 
prove the same for A+ = PMkl. Assume the contrary, i.e., that A+ is 
bounded; we show that this assumption contradicts Theorem I. To this 
end, define 

A,, = A + UP, (3.21) 

Where U is a partial isometry, taking N onto S. Evidently, 

A = PRAo . (3.22) 

We assert that 

B = A+ + VP, (3.23) 

is the inverse of A,. Before proving this claim, we observe that 9s = gA+ 
(which is dense), and that B is (by our assumption on A+) a bounded operator. 

Since AU-lPs = 0, UP,A+ = 0, and UPNIIklPs = Ps , we obtain 
from (3.21) and (3.23) 

A,B = AA+ + P, for ~~9s. (3.24) 

By (3.9’) AA+ = PR on &8s(= gA+), so that from (3.24) 

AoBy = y for ~~2s; (3.25) 

hence B is a right inverse. Then one has from (3.25) 

BA,(By) = By. (3.26) 

Now the range of B is the linear manifold generated by IM n gA (the range 
of A+) and S; this manifold is precisely g* = gA, . Thus, for each x E gA, , 
there is a y  E g= such that x = By. In other words, 

BA,x = x for x E gA, (3.27) 

is implied by (3.26) and the discussion following. Because B is a left as well 
as right inverse, B is an inverse in the usual sense, and we may write B = A;l. 

It is clear from the original assumption on A that A,, is closed. Then 

Arl = B is likewise closed and, being bounded and densely defined, is 
defined on all of H. We sum up: A has a representation (3.22), where A,, 
has a bounded inverse B with 9s = H. By Theorem 1, the range of A must 
then be closed, which contradicts our original hypothesis. Therefore, A+ 
cannot be bounded. The theorem is proved. 

In what follows, we consider “best approximate solutions” of the functional 
equation Ax = y  in the sense of Definition lb. When y  E R, solutions 
x E gA exist, but are not unique unless N = (0). I f  x0 is any vector such that 
Ax,, = y, the “best approximate solution” CC [satisfying A4 = y  and (3.4)] 
is uniquely specified by i = PM%,, . This fact is not apparent from Theorem 

3 
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9; if R$9’,+ for some GPI A-+, there are y  E R for which this A ‘~ cannot 
furnish a “best approximate solution”. In order that the “best approximate 
solution” exist for each y  E R, we must then have R C u sa+ taken over all 
GPIs. However, there is a GPI for which R C 5Za+, so that this GPI is adequate 
to obtain the “best approximate solution” for ally E R. 

COROLLARY. There exists a GPI A+ for which 62’a.k 3 R and 

A+A = P,W for all s E gA . (3.10’) 

PROOF. Let Ai- be specified by (3.6’), where A is constructed as in the 
proof of Theorem 3. The construction (2.9) for 2 indicates that the range 

of A (domain of A+) is the linear manifold generated by S and R. Therefore, 
the application of x-l to (3.13) yields (3.14), withy = &?z in N by (2.10). 
I f  PM is applied (as before) to (3.14), (3.10’) follows. 

The reader may verify that whenever A-l is defined on all H, the representa- 
tion (2.7) is unique, with PR = I, and a = A, and A+ = A-l. I f  R = H, 
but N contains nonnull vectors, the desired representation can be achieved 
only through the embedding process already described, the range space 

being appropriately enlarged. The embedding process is merely a device 
of convenience, for the GPI is uniquely given by 

Ai- = A-1 

where A  ̂ is the restriction of A to M. 

(3.28) 

The entire material of this section holds without change when A has 
Hilbert spaces Hl and H, as domain and range spaces. Indeed, A+ can even 
be defined by (3.6) for Banach spaces, provided there exists a linear l-l 

bicontinuous operator from N onto 5’. The infimum (3.2) is attained by 
4 = A+y if the range space is a Hilbert space, but 2 need no longer satisfy 

(3.4). When neither domain nor range spaces are Hilbert spaces, A+ loses 
property (b) of Definition lb. Easily constructed examples verify the above 
facts on Banach spaces; one may use the fact that, in Banach spaces, the norm 
of a projection may be greater than (and is never less than) unity. 

IV. NORMAL OPERATORS 

In Section I, we presented the representation and pseudo-inverse formulas 
for a Hermitian matrix. These expressions, when written in terms of the 
spectral representation, suggest generalizations to normal operators. These 
generalizations are indeed valid, and provide explicit formulations for the 
pseudo-inverse. Most of the results of Sections II and III could also be 
proved succinctly for normal operators (only), using the spectral representa- 
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tion; in the interest of brevity, we leave this as an exercise for the reader. 
To furnish a proper setting for the remainder of this section, we shall 

state (without proof) a number of properties of the normal operator.4 An 
operator B is normal if it is linear, closed, densely defined on a linear manifold, 
and satisfies 

BB* = B*B. (4.1) 

In this detinition, (4.1) may be replaced by the requirement that B and B* 

have a common domain, with 

II Bx II = II B*x II (4.2) 

for all x E 9s( = 9n,). It is customary to analyze the (also normal) operator 

B-XI for all complex h; instead, we shall consider A = B - ;\I for fixed 
but arbitrary h. The change from B to A is effected by a mere translation 
of the spectrum, and involves no loss in generality. Consider now the origin 
with respect to the spectrum of A. -I# (0) belongs to the resolvent set, A 
possesses a bounded inverse defined on all H. 1sf (0) is in the continuous 

but not the point spectrum, R is dense, and A has an unbounded inverse. 
Under either of these conditions, the representation of Section II can hold 
only with PR = I and k = A. One also obtains A+ = A-l. 

In the more interesting case, {0} is in the point spectrum. The eigenmanifold 
corresponding to (01 is precisely N; hence N contains nonnull vectors i f f  
the origin belongs to the point spectrum. Since (for normal operators) the 
eigenmanifold is also the subspace orthogonal to R, we obtain 

N = S and M = i? 

From (4.3) and P,A = AP, follows 

(4.3) 

P,A = AP, , (4.4) 

where the equality sign indicates that x E 9* $7 PIMx E B* , that is, P,A 
and AP, have the same domain. That M is reduced by A is a consequence 
of (4.4). Finally, (4.2) implies that A and A* both have the same null space, 
so that i? must also be the same for both. 

Whether R is closed depends entirely on the continuous spectrum: R is 
closed isf (0) does not belong to the continuous spectrum [4, p. 541. This 
fact could be deduced (if desired) from the representation for normal opera- 
tors to be derived presently, in combination with Theorems 1 and 4; however, 
it is too well known to merit one more derivation. 

The representation 
A = P,d (4.5) 

4 For these and other results summarized here, see [4]. 
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raises questions of independent interest when A and/or il arc normal opera- 
tors. I f  A [,&!I is normal, must A[[A] b e normal ? Under what conditions of 
normality does PR commute with A [does R reduce A] ? The first query is 
easily answered: the restriction of A from N to S need only be invertible, so 

that A may be non-normal while A is normal. The remaining problems are 
of greater difficulty, and will be answered in a series of theorems. It will be 
seen that the commutativity of P, and A? plays a crucial role. 

THEOREM 10. Let A have a representation (4.5), where 2 is an invertible 
normal operator and PR commutes with A”. Then A is normal and 

Aa = AA. (4.6) 

PROOF. Let A have the spectral representation 

A= 
.r 

AdF, . (4.7) 
x 

Then for any x E ga , 

Ax = P,Jx = ;3iPRx) = J’ hd(F,P,x). 
x 

(4.8) 

By virtue of our hypothesis, {F>,} and PR commute, so that {FAPE} is a family 
of projections-in fact, a spectral family on R. Thus the restriction of A to 
R is normal. Since A = PEA” = AP, and A* = A*PR , Ax = A*x = 0 
for XE S. Therefore j] Ax I/ = I] A*x 11 for all x E gA( = gA*). 

Let x be such that 

s I~/4dllFnP~xl12 < co, 
x 

which assures that x E gA( = 92). For arbitrary y  E H 

(Ah, y) = j, M(F&, y) = j, W&P&, Y). 

On the other hand, 

so that (AAx, y) = (AAx, y). Although the proof is finished, we may wish 
to complete the computation of AA. Using 

(FP,& y) = (Ax, E’AY) = j, 4FaPst Y), (4.12) 
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where C is the Bore1 set (in the plane) associated with FA , we obtain from 
the Radon-Nikodym theorem 

@‘Ax, Y> = /xh”d(ll,p,x, Y). (4.13) 

It is incorrect to conclude from the foregoing proof-even when H is 
finite dimensional-that PR has a representation in terms of {F,}, i.e., 

PR = 
s 

r(X) dF, . 
X 

(4.14) 

If, however, (4.14) is valid, r(.) must be an indicator function, so that 
PB = F,(C) for some Bore1 set C of the plane. From this argument and 
(4.8) follows 

A= 
.r 

XdF* . (4.15) 
C 

I f  A has a simple spectrum, it is known [5, Section 751 that (4.14) is true. 
On the other hand, suppose that X, is an eigenvalue associated with a multi- 
dimensional eigenmanifold, of which f7 is a proper subspace. Then PR 
commutes with Fn((h,}), hence with (F,}, and therefore with A. If  now 
PR = Fn(C), we must have A,, E C [since F,(X - {A,,}) is orthogonal to PR], 
which is impossible. In other words, (4.14) need not hold if the spectral 
multiplicity of A is greater than unity. 

Whenever A has the representation (4.15), C is defined only up to an 
equivalence with respect to the spectral family {F,}, while its definition on 
the complement of the spectrum of A is a matter of indifference. It is easy 
to see that A is bounded zr a compact representative of C exists. In any 
case, {F2> may be arbitrarily modified outside the intersection of any C with 
the spectrum A; therefore, a given noninvertible A has a multiplicity of 
representations (4.5) in which A may be bounded or unbounded if A is 
bounded, and must be unbounded if A is not bounded. 

Theorem 10 leads one to conjecture that for an A represented by (4.5) 
with A normal, A is also normal 22 PR commutes with A. The truth of this 
statement is the result of 

THEOREM 11. Let A have a representation (4.5) in which both A and A 
are normal. Then PR commutes with A-, and in fact, 

pRA = APT x E 9*. (4.16) 

PROOF. In order that A satisfy (4.5) 

AX=AX+Z ZES. (4.17) 
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It is clear that z is linearly related to x and exists for every x E gA; this 
defines a linear operator B-with 9s 3 gA such that 

.z = Bx. (4.18) 

It is then possible to write 

Ax = Ax+Bx XE?~~, 

and we may observe that 

II Ax II2 = II Ax /I2 + II 13% 112- 

The representation (4.5) leads to the alternative form 

A*=x*P, for XEG~*, 

in which equality holds because Px is bounded. Consequently, 

11 A*x\\ = \\A*xj\ for XE~*A M. 

Suppose now that BPR # 19 on gA . Then for some x E gA A M. 

II A”% II > II Ax II 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

from (4.20). Since A and k are both normal, (4.22) and (4.23) contradict 

(4.2). Therefore 

BP,=0 for xEgA. (4.24) 

However, it is also true from (4.18) and the fact that z E S that P,B = 0. 
Likewise, P,A = A = AP, = AP, (recall M = a). Thus A and B both 
commute with PR for all XE gA. Reference to (4.19) then completes the 
proof. 

Of somewhat different character is the next theorem, which relates the 
normality of A to its commutativity with A. 

THEOREM 12. Let A have a representation (4.5), where A is closed and 
densely defined, and Ais an invertible normal operator. Assume H to be separable, 
and suppose that A commutes with every bounded operator that commutes with 
A. Then A is normal, and 

pRA = JP~. (4.25) 

In terms of the spectral representation (4.7) for A, PR = EI(C) for some Bore1 
set C, and A has a spectral representation (4.15). 
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PROOF. Let (4.7) be the spectral representation for A. Then [4, p. 641 

A = 1 j(h) dF, 
X 

(4.26) 

wheref(-) satisfies for each x E gA 

s x I f(4 I2 d II FAX II2 < ~0. (4.27) 

This already proves that A is normal. We have proved earlier that AA-l G PR, 
the domain on the left hand side being that of A-1, which is densely defined. 
Indeed, 

A-l = 1 kldFh , (4.28) 

so that 
X 

AA-1 = j- X-y(h) dF, = PR for x E 9;-r (4.29) 
X 

i.e., on a dense set. Thus the projection PR has a representation in terms 
of the spectral family {FA}, which means that A-if(h) is an indicator function 
with respect to a Bore1 set in the plane. We therefore have PR = F,(C), 
andf(A) = h or 0 according as X E C or h $ C, and so (4.26) takes on the form 
(4.15). Moreover, PB is a member of the spectral family for A, and hence 
P,As APR. We show that PRA and AP, have the same domainIn fact, 
M = R because A is normal, and x ~23’ is a statement equivalent to 
PMx E 9.2 . This completes the proof. 

We observe again that, in general, A cannot be expressed in terms of the 
spectral family for A, even when A and A are both normal. Nevertheless, 
for any normal A the representation (4.5) can be written so that the Aappear- 
ing therein is a function of A, and can be expressed in terms of the spectral 
family of the latter. There results a convenient and explicit expression for 
A, and likewise a direct formula for the GPI (for A) defined on R. 

THEOREM 13. Let A be normal, with spectral representation 

Then 

A= 
s 

hdE,. 
X 

PR = &(X - (0)) 

and we may write the representation (4.5) with Agiven by 

(4.30) 

(4.31) 

A = I, Ad& + EAW. (4.32) 
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One version of the GPI is 

A+ zzz 

I x-40) 
hFdE, , (4.33) 

and this A+ has the property SI,, 3 R. Denote the spectrum of A by A. IfI R is 

closed 

d = zj$<o) I x I (4.34) 

is greater than zero, and then 

I/ A+ // = d-l. (4.35) 

PROOF. From (4.30), Ax = 0 z# x belongs to the subspace associated 
with the projection E,({O)). This projection must then be PN, and so the 
complementary projection PR = I - PN is given by (4.31). When PR is 
applied to (4.32), it is seen that A = P&f because P,A = A and 

The inverse of a is given by 

(4.36) 

which is easily checked because the two terms in (4.32) and (4.36) represent 

the reduction of the operators in question by subspaces M( = R) and fV( =S). 
It was shown in Section III that A+ = PMk1 is a GPI for A, with 

.QA+ = a(9J. The A-i used here is that given by (4.36). Since the restric- 
tio;ns of A and A to M are the same, &gA) 3 R; this proves the assertion 
following (4.33). The actual computation of A+, based on the spectral re- 
presentations for A-l and Px , yields 

A+ E /x-(0j h-‘d& (4.37) 

but as the domain of the right hand side is identical with the domain of x-l, 
(4.37) assumes an equality sign, and becomes (4.33). 

When R is closed, (0) is an isolated point of the spectrum, and the d defined 
by (4.34) is nonzero. A+ is then bounded as indicated by (4.35) because the 
essential supremum of 1 X-l I2 with respect to the spectral measures II Elx II2 
taken, for all x E H, over X-(O), is p recisely d-2. For non-closed R, {O] is a 
point of the continuous spectrum, and d = 0. 
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V. COMPACT NORMAL OPERATORS 

For compact (completely continuous) normal operators, the results of the 
previous sections can be further specialized. There is no need to provide 
proofs, since the expressions to appear are merely applications of Theorem 
13, using the spectral characteristics peculiar to compact operators. 

Let A be a compact normal operator in the functional equation 

Ax--x=y ~EH. (5.1) 

If y (a complex number) is in the resolvent set of A, the solution of (5.1) is 
of no interest and will not be discussed explicitly. Similarly, we pay no 
particular attention to spectra consisting only of a finite number of points; 
in that case, M is of finite dimension, or equivalently, the range of A is 
closed. 

The spectral representation for A will be written 

(5.2) 

and we shall adopt the following auxiliary notation: 3/r , y2 , . . . are the points 
of the spectrum for A, arranged in order of decreasing modulus. With each 
yj is associated a finite number Gj of eigenvectors en , ej, , . . . . ejG,. Finally, 
Mj , Nj , & , and Sj are the subspaces for 

Bj = A - yjl (5.3) 

which correspond to M, N, l?, and S for A. 
In terms of these conventions, consider now (5.1) with y = 3/j . Since yj 

is an isolated point of the spectrum of A, Rj is closed, and a GPI (called 
BT) is defined on all H. We may write 

4 = 2 (rk - ~$Ubd - Y+W-W (5.4) 
k 

and 

PRj = &(X - h>)* (5.5) 

As we know, Bj has a representation Bj = PRjBj , in which f3, may be taken as 

A direct calculation verifies 

&’ = 2 (Yk - %)-lEA({yk)) + Eh(h)) - d%(~o)) 
k#j 

(5.7) 
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where By1 is bounded, having norm 

II &‘ll = max(l, i yj l-l, y$ yJi - yj I-“]) < 03. (5.8) 

The norm is actually attained by every x E H lying in the proper subspace 
(depending on which of the three terms in (5.8) yields the maximum). 

The (unique) GPI is specified by BT = PRjfi-l, and may be obtained 
from (5.5) and (5.7), yielding 

(5.9) 

The norm of Bf is then 

II Bj’ II = max(l rj I-l, ;$I Y, - yj I-% (5.10) 

To compute x = BTy, it is convenient to write y in the form 

Whence 

x = 2 h - n)” 2 (Y, em&h - y3WWy. 
rnfj lZ=l 

(5.12) 

The case y = 0 in (5.1) leads to a GPI which is unbounded. We shall 
construct a GPI A+ so chosen that BA+ 3 R. This time 

PR = -4(X - (0)) (5.13) 

and the A leading to the desired A+ is 

A = 2 YJA(bi)) + EA({“)); (5.14) 

then 

A+ = 2 I?% (5.15) 

and, for y specified as in (5.1 I), 

(5.16) 
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whenever y E LB”+. We show that gA+ r) R. In fact, 

(5.17) 

so that the proof (showing R C &gA)) is identical with that of Theorem 13. 
The range of A( =BA+) ’ g’ 1s lven more explicitly as the set of y E H for which 

(5.18) 
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