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Introduction: Gene amplification is an important genetic change in 
cancer cells. We investigated the prevalence, clinicopathological char-
acteristics, and prognostic value of NKX2-1 (also known as TTF-1),  
SETDB1, MET, HER2, SOX2, FGFR1, and PIK3CA amplification in 
Japanese patients with non–small-cell lung cancer (NSCLC).
Methods: The copy numbers of the seven above-mentioned genes 
were assessed using fluorescence in situ hybridization in a tissue 
microarray containing 282 surgically resected NSCLC specimens 
(164 adenocarcinoma [AC], 99 squamous cell carcinoma [SCC], and 
19 others). Clinicopathological information were obtained from the 
medical records.
Results: NKX2-1, SETDB1, MET, HER2, SOX2, FGFR1, and 
PIK3CA gene amplification were observed in 30 of 277 (10.8%), 
16 of 280 (5.7%), 38 of 278 (13.7%), 8 of 270 (3.0%), 34 of 278 
(12.2%), 18 of 282 (6.4%), and 53 of 278 (19.1%) cases, respec-
tively. Coamplification was detected in 16 of 156 (10.3%) AC 
patients and 35 of 93 (37.6%) SCC patients (p < 0.0001). NKX2-
1 amplification was significantly related to an AC histology 
(p  =  0.004), whereas SOX2, FGFR1, and PIK3CA amplifications 
were related to a SCC histology (p < 0.0001). Within the ACs, 
NKX2-1 and SETDB1 amplifications were markers of a shorter 

survival period. A multivariate Cox proportional hazards model 
revealed that NKX2-1 amplification was an independent predic-
tor of poor survival (hazard ratio, 2.938; 95% confidence interval, 
1.434–6.022; p  =  0.003). Coamplification had impact on patient 
outcome in AC but not in entire NSCLC and SCC.
Conclusions: The amplification status differed among the histologi-
cal types of NSCLC. NKX2-1 amplification was an independent and 
the most practically important predictor of a poor prognosis among 
Japanese patients with AC.

Key Words: Non–small-cell lung cancer, Gene amplification, 
Coamplification, NKX2-1, SETDB1.

(J Thorac Oncol. 2015;10: 1590–1600)

Lung cancer is the most frequent cause of cancer-
related deaths worldwide. Non–small-cell lung cancer 

(NSCLC) accounts for nearly 80% of all lung cancer cases. 
Adenocarcinoma (AC) and squamous cell carcinoma (SCC) 
are the two major subtypes of NSCLC. Until recently, thera-
peutic approaches for NSCLC have been largely guided by 
the tumor stage only, and treatment options have been limited, 
regardless of whether the patients had AC or SCC. During the 
past decade, however, chromosomal and genomic changes 
in NSCLC such as mutations, deletions, translocations, and 
amplifications have been vigorously explored.

Gene amplification is a copy number gain of a specific 
locus of a chromosome arm, and various loci of copy number 
gains, especially on chromosomes 1q, 3q, 5p, 8q, 11q, 16p, 
and 17q, have been reported for NSCLC.1 Recently, several 
groups have conducted fluorescence in situ hybridization 
(FISH)-based assays for the NKX2-1 (otherwise known as 
thyroid transcription factor 1 [TTF-1]),2–5 MET,6–8 HER2,9–11 
SOX2,12,13 FGFR1,13–15 and PIK3CA13,16,17 genes to assess their 
clinical significance. In addition, amplified SET domain, 
bifurcated 1 (SETDB1) has recently been characterized as 
a key player in human lung tumorigenesis.18 The profiles of 
copy number amplification, especially those of the above-
mentioned genes (with the exception of SETDB1) related to 
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biologically important signaling pathways in lung carcinogen-
esis, have been enthusiastically investigated. However, most 
of the previous studies only examined a limited number of 
genes, and the interpretations of the results were sometimes 
inconsistent and remain to be elucidated. From the standpoint 
of clinical feasibility, the types of probes used for specific 
purposes should be eventually prioritized in clinical settings, 
where testing resources are limited. Considering the different 
clinical profiles of lung cancer among populations, compre-
hensive studies in Asian populations are necessary.

In this study, we evaluated the copy numbers of the 
NKX2-1, SETDB1, MET, HER2, SOX2, FGFR1, and PIK3CA 
genes in resected NSCLCs and investigated their prognos-
tic relevance and their associations with clinicopathological 
characteristics.

MATERIALS AND METHODS

Tumor Collection and Tissue 
Microarray Construction

A total of 282 patients with primary NSCLC (AC, 
n = 164; SCC, n = 99; others, n = 19) who underwent cura-
tive surgical resection in the First Department of Surgery at 
Hamamatsu University Hospital (Japan) between January 
1990 and July 2011 were recruited for the study. Clinical and 
pathological information including age, sex, tumor stage, 
surgical procedure, smoking history, and outcomes were ret-
rospectively obtained from a review of the patients’ medical 
records. All the subjects provided written informed consent 
for the use of resected tissues for medical research. The study 
design was approved by the Institutional Review Board of 
Hamamatsu University School of Medicine. FISH analyses 
were performed on tissue microarray (TMA) sections accord-
ing to a previously reported protocol.19,20 Briefly, we selected 
a representative portion of the lung cancer tissue after care-
ful screening for the presence of tumor cells by experienced 
pathologists. The pathologists marked the location, and we 
used a cylinder with a diameter of 3 mm to obtain a core from 
the donor blocks using a standard procedure and instrumenta-
tion (Azumaya, Tokyo, Japan). After the TMAs were made, all 
the TMA cores were again confirmed to contain a sufficient 
number of tumor cells by reviewing adjacent hematoxylin 
and eosin–stained sections before the FISH procedures were 
applied.

Clinical Profiles and Pathological Classification
The clinical profiles of the subjects are summarized in 

Tables  1 and 2. Two board-certified pathologists (K.S. and 
H.S.) histologically classified the lung cancers according to 
the World Health Organization classification (7th edition).

Fluorescence In Situ Hybridization Analysis
FISH analyses were performed using formalin-fixed 

and paraffin-embedded tumor samples according to the manu-
facturers’ instructions with minor modifications, as described 
previously.19,20 Spectrum Orange-labeled bacterial artificial 
chromosome (BAC) clones, RP11-1083E2 (14q13, NKX2-
1), RP11-316M1 (1q21, SETDB1), RP11-51M22 (7q31, 

MET), RP11-275H4 (3q26, SOX2), RP11-106B16 (8p12, 
FGFR1), and RP11-245C23+RP11-355N16 (3q26, PIK3CA) 
(Advanced GenoTechs Co., Tsukuba, Japan), were used as 
locus-specific FISH probes. Spectrum Green-labeled control 
probes for the near-centromere locus on chromosome 1 (RP5-
832K2), 3 (RP11-91A15), 7 (RP11-90C3), 8 (RP11-12L15), 
and 14 (RP11-14J7) (Advanced GenoTechs Co.) were also 
used to enumerate chromosomes 1, 3, 7, 8, and 14 in the 
FISH experiments. 4′,6-Diamidino-2-phenylindole (Vector 
Laboratories, Burlingame, CA) was used for nuclear staining. 
HER2 FISH was performed using Histra (Jokoh Co., Tokyo, 
Japan), which includes a HER2-specific (17q11.2-q12) probe 
and the chromosome 17 centromeric probe and is frequently 
used in clinical settings for other cancers. For further valida-
tion, we performed a FISH assay on the TMA sections next 
to the initial ones for each probe panel. This validation was 
especially useful for obtaining a more confident interpretation 
in several cases that had insufficiently clear signals during the 
first hybridization. The FISH slide was interpreted without 
reference to any information regarding the clinicopathological 
features and prognosis through the use of anonymously coded 
specimens. After screening all the sections, the probe signals 
for at least 50 tumor cell nuclei were randomly counted in 
at least five representative images per case. The overlapping 
nuclei were excluded from the analysis. Cores in which the 
tumor cell signals were too weak were excluded from the inter-
pretation. Copy number amplification was defined based on 
the criteria that the mean target BAC signal/centromere enu-
meration probe (CEP) signal ratio was greater than or equal to 
2.0. Among the target gene-amplified cases, the median value 
of the mean target BAC/CEP ratios was calculated for each 
gene set. Tumors with a mean target BAC/CEP ratio of the 
median value or higher were defined as “high amplification,” 
whereas tumors with a mean target BAC/CEP ratio greater 
than or equal to 2.0 and less than the median value were 
defined as “low amplification.” Polysomy or an average tar-
get gene copy number/CEP ratio of <2.0 was scored as nega-
tive for amplification. “Single amplification” was defined as 
any gene amplification alone at the seven loci tested, whereas 
“coamplification” was defined as the simultaneous amplifica-
tion of a combination of any two or more loci in the same 
tumor. The FISH slides were examined under a fluorescence 
microscope (BZ-9000; KEYENCE, Osaka, Japan). The image 
contrast was adjusted for the entire area. All the probes used 
in this study had been validated by hybridization to the chro-
mosomal metaphase spread of normal lymphocytes to verify 
the chromosomal numbers and loci.

Statistical Analysis
Demographic information and associations with clini-

cal characteristics were evaluated using the Fisher exact test 
(categorical variables) or the Mann–Whitney U test (for con-
tinuous variables). Overall survival (OS) was calculated as the 
time from operation to death or last contact. Standard methods 
for time-to-event data, such as the Kaplan–Meier method and 
the log-rank test, were used to analyze differences in survival 
time based on the gene amplification. The method of Holm 
was used to adjust the p values in multiple comparisons. 
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Univariate and multivariate Cox proportional hazards models 
were fitted to calculate the hazard ratios (HRs) of death with 
adjustments for other potential confounding factors. The p 
values less than 0.05 were considered to be statistically signif-
icant. The statistical analyses were performed using the soft-
ware EZR (Saitama Medical Center, Jichi Medical University, 
Saitama, Japan),21 which is a graphical user interface for R 
(The R Foundation for Statistical Computing, Vienna, Austria, 
version 3.0.2).

RESULTS

Correlations of NKX2-1, SETDB1, MET, HER2, 
SOX2, FGFR1, and PIK3CA Amplification 
Statuses with Clinicopathological Data

Out of 282 NSCLC specimens that were examined, 
FISH was successful using the NKX2-1, SETDB1, MET, 
HER2, SOX2, FGFR1, and PIK3CA probe sets in 277, 280, 
278, 270, 278, 282, and 278 cases, respectively (the rea-
sons for failure are noted at the bottoms of Tables 1 and 2). 
Figure 1 shows representative images of tumor cells with gene 

amplification. The prevalences of the individual amplification 
of the NKX2-1, SETDB1, MET, HER2, SOX2, FGFR1, and 
PIK3CA genes were 10.8% (n = 30), 5.7% (n = 16), 13.7% 
(n = 38), 3.0% (n = 8), 12.2% (n = 34), 6.4% (n = 18), and 
19.1% (n  =  53) among the patients with NSCLC, respec-
tively (Tables  1 and  2). The median values for the average 
ratio gene/CEP signals among the amplified tumors were 3.3 
(range, 2.1–21.3), 2.5 (range, 2.0–6.3), 2.5 (range, 2.1–11.2), 
2.2 (range, 2.1–16.3), 3.4 (range, 2.0–16.7), 3.3 (range, 2.0–
5.6), and 2.9 (range, 2.0–10.5), for NKX2-1, SETDB1, MET, 
HER2, SOX2, FGFR1, and PIK3CA, respectively. Tumors 
from 266 of the patients were evaluable using FISH analyses 
for all seven gene sets. Of these patients, a total of 126 patients 
(47.4%) had tumors harboring at least one gene amplifica-
tion among the seven genes (54 of the 156 patients [34.6%] 
with AC versus 64 of the 93 patients [68.8%] with SCC; p < 
0.0001). Coamplification was found in 54 (20.3%) NSCLC 
patients (Supplementary Table 1, Supplementary Digital 
Content 1, http://links.lww.com/JTO/A896), among whom 
nine had tumors harboring the coamplification of greater than 
or equal to three gene loci. Coamplification was detected in 

TABLE 2.  Association of Clinicopathological Features and Focal Gene Amplification of SOX2, FGFR1, and PIK3CA

Characteristic

Total  
(N = 282), 

 N (%)

SOX2 Amplification Status FGFR1 Amplification Status PIK3CA Amplification Status

Amp  
(N = 34),  

N (%)

No-amp  
(N = 244),  

N (%) P Value

Amp  
(N = 18),  

N (%)

No-amp  
(N = 264),  

N (%) P Value

Amp  
(N = 53),  

N (%)

No-amp.  
(N = 225),  

N (%) P Value

Age, yr

 � Median (range) 67 (33–86) 67.5 (39–84) 67 (33–86) 0.111 65 (43–84) 67 (33–86) 0.695 67 (39–84) 67 (33–86) 0.582

Sex

 � Male 202 (71.6) 32 (94.1) 166 (68.0) 0.001 16 (88.9) 186 (70.5) 0.110 49 (92.5) 149 (66.2) <0.001

 � Female 80 (28.4) 2 (5.9) 78 (32.0) 2 (11.1) 78 (29.5) 4 (7.5) 76 (33.8)

Smoking status

 � Never 79 (28.0) 1 (2.9) 77 (31.6) <0.001 1 (5.6) 78 (29.5) 0.028 2 (3.8) 77 (34.2) <0.001

 � Ever 190 (67.4) 32 (94.1) 155 (63.5) 15 (83.3) 175 (66.3) 50 (94.3) 136 (60.5)

 � Unknown 13 (4.6) 1 (2.9) 12 (4.9) 2 (11.1) 11 (4.2) 1 (1.9) 12 (5.3)

Histology

 � Adenocarcinoma 164 (58.2) 1 (2.9) 161 (66.0) <0.001 1 (5.6) 163 (61.7) <0.001 4 (7.5) 158 (70.2) <0.001

 � Squamous cell 
carcinoma

99 (35.1) 31 (91.2) 67 (27.5) 17 (94.4) 82 (31.1) 46 (86.8) 52 (23.1)

 � Others 19 (6.7) 2 (5.9) 16 (6.5) 0 (0) 19 (7.2) 3 (5.7) 15 (6.7)

p-T

 � 1/2/3/4 126/103/30/23 13/14/5/2 112/86/25/21 0.662 4/8/4/2 122/95/26/21 0.096 12/25/10/6 114/74/20/17 0.001

 � p-N

 � 0/1/2/3 203/27/47/5 25/4/5/0 174/23/42/5 0.953 12/3/3/0 191/24/44/5 0.709 31/11/11/0 168/16/36/5 0.015

Pathological stage

 � I 179 (63.5) 21 (61.8) 154 (63.1) 0.927 9 (50.6) 170 (64.4) 0.414 26 (49.1) 149 (66.2) 0.057

 � II 35 (12.4) 5 (14.7) 30 (12.3) 3 (16.7) 32 (12.1) 10 (18.9) 25 (11.1)

 � III 68 (24.1) 8 (23.5) 60 (24.6) 6 (33.3) 62 (23.5) 17 (32.1) 51 (22.7)

Adjuvant chemotherapy

 � Yes 72 (25.5) 5 (14.7) 66 (27.0) 0.145 5 (27.8) 67 (25.4) 0.785 8 (15.1) 63 (28.0) 0.056

 � No 210 (74.5) 29 (85.3) 178 (73.0) 13 (72.2) 197 (74.6) 45 (84.9) 162 (72.0)

P values were obtained using the Mann–Whitney U test and the Fisher exact test.
Four patients were excluded from the analyses because of weak probe signals during FISH using both the SOX2 and PIK3CA probe sets.
Amp, amplification; FISH, fluorescence in situ hybridization.

http://links.lww.com/JTO/A896
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35 (37.6%) patients with SCC, but only 16 (10.3%) patients 
with AC exhibited coamplification (p < 0.0001). Among the 
patients with amplified NKX2-1, SETDB1, MET, HER2, SOX2, 
FGFR1, or PIK3CA genes, coamplification with another gene 
locus was detected in 41.4% (12 of 29), 71.4% (10 of 14), 
39.5% (15 of 38), 62.5% (5 of 8), 90.9% (30 of 33), 55.6% 
(10 of 18), and 72.5% (37 of 51), respectively (Supplementary 
Fig. 1, Supplementary Digital Content 2, http://links.lww.
com/JTO/A897). The most frequent coamplification combina-
tions were NKX2-1 and MET in AC, and SOX2 and PIK3CA in 
SCC (Supplementary Table 1, Supplementary Digital Content 
1, http://links.lww.com/JTO/A896).

The MET, SOX2, and PIK3CA amplification statuses in 
NSCLC were significantly associated with sex, as shown in 
Tables 1 and 2. NKX2-1 amplification was negatively corre-
lated with the smoking history (Table 1). In contrast, SOX2, 
FGFR1, and PIK3CA amplification were positively correlated 
with the smoking history (Table 2). No correlation was found 
between SETDB1 gene amplification and patient sex or smok-
ing history (Table 1). NKX2-1 gene amplification was more 
frequent in AC than in SCC (Table  2). SOX2, FGFR1, and 
PIK3CA gene amplification were more frequent in SCC than 
in AC (Table 2). SETDB1 amplification was associated with an 
advanced pathological stage (Table 1). Intriguingly, the propor-
tion of patients who received adjuvant chemotherapy was sig-
nificantly higher for the SETDB1-amplified patients (Table 1), 
compared with the other patients. HER2 amplification was not 
significantly associated with any clinicopathological charac-
teristics (Table  1). We assessed the differences in the clini-
copathological features between the high amplification cases 
and the low amplification cases for each gene (Supplementary 
Tables 2 and 3, Supplementary Digital Content 3, http://links.
lww.com/JTO/A898 and Supplementary Digital Content 4, 
http://links.lww.com/JTO/A899). High-level amplification 

of the SETDB1 gene was observed almost exclusively in 
AC. In contrast, low-level SETDB1 amplification was more 
commonly observed in SCC. No significant differences were 
observed in the other six gene profiles.

Survival Analysis of Gene 
Amplification in NSCLC

We evaluated the prognostic roles of NKX2-1, SETDB1, 
MET, HER2, SOX2, FGFR1, and PIK3CA gene amplification. 
With a median follow-up of 3.5 years, the median survival 
time (MST) in the whole population was 11.5 years (95% con-
fidence interval [CI], 9.1 to not reached [NR]). Concerning 
OS, a significantly poor prognosis was observed for NSCLC 
patients with NKX2-1 amplification, compared with those 
lacking a NKX2-1 copy number gain (log-rank, p  =  0.045, 
Fig. 2A). No significant differences were observed when com-
paring patients with and those without a copy number gain 
for the SETDB1, MET, HER2, SOX2, FGFR1, or PIK3CA 
gene (log-rank, p  =  0.12, 0.32, 0.74, 0.63, 0.23, and 0.14, 
respectively), Figure 2B–G. Coamplification also did not 
influence the OS when compared with patients harboring no-
amplification and single amplification (log-rank, p  =  0.078, 
Supplementary Fig. 2A, Supplementary Digital Content 5, 
http://links.lww.com/JTO/A900).

Survival Analysis of NKX2-1, SETDB1, MET, 
and HER2 Amplification in Adenocarcinoma

We performed subset survival analyses for gene amplifi-
cation according to the different subtypes of NSCLC.

In AC, statistically significant differences in OS were 
observed between patients with or without NKX2-1 amplifica-
tion and those with or without SETDB1 amplification (log-
rank, p = 0.0003 and 0.011, respectively, Fig. 3A and B). The 

FIGURE 1.  Representative fluorescence in situ hybridization (FISH) images showing the amplifications of the NKX2-1 (A), 
SETDB1 (B), MET (C), HER2 (D), SOX2 (E), FGFR1 (F), and PIK3CA (G) genes (in orange). The corresponding centromere enumera-
tion probes (CEP) are shown in green.
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MST was 5.3 years (95% CI, 3.5 to NR) for the patients with 
NKX2-1-amplified AC and was NR for those with NXK2-1 
normal copy number AC. Multivariate Cox regression analysis 
revealed that NKX2-1 gene amplification was an independent 
prognostic factor (HR, 2.938; 95% CI, 1.434–6.022), with 
smoking status (HR, 2.020; 95% CI, 1.024–3.987) and patho-
logical disease stage (HR, 2.156; 95% CI, 1.478–3.145), in 
AC (Table 3). SETDB1 amplification was not an independent 
predictor of poor survival (HR, 1.037; 95% CI, 0.372–2.892, 

Table  3). MET amplification had neither prognostic impact 
(p log-rank  =  0.53, univariate analysis HR, 1.320; 95% CI, 
0.550–3.171) in AC (Fig. 3C; Table 3), nor HER2 amplifica-
tion (p log-rank = 0.67, univariate analysis HR, 1.369; 95% 
CI, 0.327–5.740) (Fig. 3D; Table 3). A Kaplan–Meier curve 
showed a significant difference in OS between patients with 
coamplification and those with no amplification (p = 0.040, 
Supplementary Fig. 2B, Supplementary Digital Content 5, 
http://links.lww.com/JTO/A900). We next evaluated whether 

FIGURE 2.  Kaplan–Meier curves for overall survival (years) stratified according to the gene amplification status of NKX2-1, 
SETDB1, MET, HER2, SOX2, FGFR1, and PIK3CA in non–small-cell lung cancer (NSCLC) patients. A, A significantly poorer out-
come was observed for patients with NKX2-1 amplification, compared with those without amplification (log-rank, p = 0.045). 
B–G, No significant differences in overall survival were observed between patients with and those without SETDB1, MET, HER2, 
SOX2, FGFR1, and PIK3CA gene amplifications, respectively.

http://links.lww.com/JTO/A900
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the magnitude of gene amplification had an impact on the 
postoperative survival outcomes. Patients with AC exhibit-
ing a relatively high amplification of the NKX2-1 gene tended 
to have a poorer prognosis than those who had tumors with 
a low amplification of the NKX2-1 gene (MST, 7.4 versus 
3.7 years), but the difference was not significant (p  =  0.26, 

Supplementary Fig. 3A, Supplementary Digital Content 
6, http://links.lww.com/JTO/A901). No survival differ-
ence according to the magnitude of MET amplification was 
observed (Supplementary Fig. 3B, Supplementary Digital 
Content 6, http://links.lww.com/JTO/A901). Because most 
cases with SETDB1-amplified AC had a high amplification 

FIGURE 3.  Kaplan–Meier estimates for overall survival (years) stratified according to NKX2-1, SETDB1, MET, and HER2 gene 
amplification among patients with adenocarcinoma (AC) (A–D) and stratified according to SOX2, FGFR1, and PIK3CA gene ampli-
fication among patients with squamous cell carcinoma (SCC) (E–G). A and B, Significant survival differences were observed for 
patients with NKX2-1 and SETDB1 amplification, compared with those without each of the gene amplifications (log-rank,  
p = 0.0003 and 0.011, respectively). C and D, MET amplification and HER2 amplification had no survival impact on patients with 
adenocarcinoma (log-rank, p = 0.53 and 0.67, respectively). E, Patients with SOX2 amplification tended to have a better survival 
outcome than the patients without a SOX2 copy number gain (log-rank, p = 0.13). F and G, No differences in survival were 
observed between SCC patients with or without FGFR1 or PIK3CA gene amplification (log-rank, p = 0.46 and 0.86, respectively).

http://links.lww.com/JTO/A901
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status (7 of 9, Supplementary Table 2, Supplementary Digital 
Content 3, http://links.lww.com/JTO/A898), we could not 
assess the influence of the dosage level of SETDB1 amplifica-
tion. We also could not determine the prognostic role of the 
magnitude of HER2 amplification because of the very small 
number of patients with HER2-amplified tumors.

Survival Analysis of SOX2, FGFR1, and PIK3CA 
Amplification in Squamous Cell Lung Cancer

In SCC, we evaluated the prognostic impact of the amplifi-
cation of three genes (SOX2, FGFR1, and PIK3CA) because the 
amplification of these genes was observed in SCC almost exclu-
sively (Table 2). Patients with SOX2-amplified tumors showed a 
trend toward better survival than the negative group (log-rank, 
p = 0.13, Fig. 3E). The MST was 9.5 years (95% CI, 4.7 to NR) 
for the patients with SOX2-amplified SCC and 7.4 years (95% 
CI, 2.4–14.0) for the SCC patients without SOX2 amplification. 
Neither the FGFR1 nor the PIK3CA gene amplification status 
affected OS among the SCC cases (log-rank, p = 0.46 and 0.86, 
respectively), Figure 3F and G. Apart from AC, coamplification 
had no prognostic impact among the patients with SCC (log-
rank, p = 0.82, Supplementary Fig. 2C, Supplementary Digital 
Content 5, http://links.lww.com/JTO/A900). The degrees of 
gene amplification of the SOX2, FGFR1, and PIK3CA genes 
did not affect the survival outcomes of patients with SCC 
(Supplementary Fig. 3C–E, respectively; Supplementary Digital 
Content 6, http://links.lww.com/JTO/A901).

DISCUSSION
In this study, we comprehensively explored whether the 

amplification of seven genes, NKX2-1, SETDB1, MET, HER2, 
SOX2, FGFR1, and PIK3CA, was related to the clinical fac-
tors and outcomes of Japanese patients with resected NSCLC. 
This study is noteworthy in that it evaluated the amplification 
of multiple genes within the same cohort; furthermore, to the 
best of our knowledge, this is the first report to investigate 
the prognostic significance of SETDB1 amplification in lung 
cancer. We showed that AC was more common among patients 
with NKX2-1 amplification than among those without. SOX2, 
FGFR1, and PIK3CA gene amplification were significantly 
associated with a squamous histology, consistent with the 

findings of previous studies.1,13,15–17,22–24 Our study showed that 
NKX2-1 amplification in AC was an independent predictor 
of a poor prognosis. Furthermore, a correlation between the 
postoperative survival period of AC patients and the magni-
tude of NKX2-1 amplification was suggested. Our data also 
indicated that postoperative OS was shorter among cases with 
AC harboring SETDB1 amplification. In contrast, patients 
with SOX2-amplified tumors in SCC tended to have a better 
survival outcome than those without, as described in previous 
reports.12,13 Survival analyses performed according to copy 
number variations in the MET, HER2, FGFR1, and PIK3CA 
genes showed no significant differences in our cohort. We also 
demonstrated that coamplification was more frequent in SCC 
(37.6%) than in AC (10.3%), and the combination of SOX2 
and PIK3CA was the most prevalent among the seven genes 
that were examined; this result is not unexpected, based on 
their positional proximity at chromosome 3q26. Unlike the 
mutual exclusive status among gene alterations such as epi-
dermal growth factor receptor (EGFR) mutations, v-Ki-ras2 
Kirsten rat sarcoma viral oncogene homolog (KRAS) muta-
tions, and anaplastic lymphoma kinase (ALK) rearrangements 
in NSCLC,25 the phenomena of gene amplification were less 
mutually exclusive, although a part of them were also rec-
ognized as a cause of oncogenic addiction. In AC, we also 
showed that coamplification might be a stronger prognostic 
indicator than single gene amplification.

Genomic amplification is a hallmark of carcinogenesis 
and progression.26 Some amplified genes have been considered 
to be targets for molecular specific therapies,18,24,27 such as the 
use of trastuzumab against HER2 amplification in breast28 and 
gastric29 cancer. The exact mechanistic explanation of gene 
amplification remains debatable, although some researchers30 
have claimed that amplicons are generated by replication timing 
switch. Amplification is more prominent in cases with greater 
environmental burdens (smoking, male sex, and others).31 The 
disruption of the mitosis maintenance system also seems to be 
related to gene amplification in human lung cancer.32

NKX2-1 (TTF-1) is a homeodomain-containing tran-
scription factor located at chromosome 14q13.3. This gene is 
known to be amplified specifically in a considerable propor-
tion of lung tumors33,34 and has been shown to be a lineage-
specific oncogene in lung cancer.34,35 NKX2-1 is also known 

TABLE 3.  Results of Univariate and Multivariate Cox Proportional Hazards Model Analyses of Overall Survival in Patients with 
Adenocarcinoma

Characteristic Per Unit for HR Univariate HR 95% CI P Value Multivariate HR 95% CI P value

Age 1 year 1.020 0.989–1.051 0.205

Sex Male/female 1.749 0.885–3.457 0.108

Smoking status Ever/never or unknown 2.149 1.100–4.198 0.025 2.020 1.024–3.987 0.043

Pathological stage 1-stage 2.228 1.584–3.134 <0.0001 2.156 1.478–3.145 <0.0001

Adjuvant chemotherapy Yes/no 2.095 1.113–3.944 0.022

NKX2-1 amplification Yes/no 3.388 1.667–6.884 <0.001 2.938 1.434–6.022 0.003

SETDB1 amplification Yes/no 3.198 1.238–8.263 0.016 1.037 0.372–2.892 0.944

MET amplification Yes/no 1.320 0.550–3.171 0.534

HER2 amplification Yes/no 1.369 0.327–5.740 0.667

HR, hazard ratio; CI, confidence interval.
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to have a tumor suppressive function.36,37 The depletion of 
NKX2-1 in lung AC enhanced the transforming growth fac-
tor- β–mediated epithelial-to-mesenchymal transition,36 the 
tumor seeding ability, and the metastatic proclivity.37 NKX2-1 
gene amplification is related to NKX2-1 protein expression,2,4 
which is an indicator of a favorable prognosis in lung AC.2–

4,38 The prognostic impact of NKX2-1 gene amplification, 
however, remains controversial. Interestingly, Tang et al.2 
reported that NKX2-1 amplification displayed a significant 
positive correlation with the presence of KRAS mutations, 
and NSCLC patients with NKX2-1 amplification tended to 
have a poorer survival outcome than those lacking amplifica-
tion. Barletta et al.3 reported that there was no difference in 
survival between NKX2-1-amplified ACs and not-amplified 
ACs, and they also showed that patients with no NKX2-1 
expression or NKX2-1 expression and NKX2-1 amplifica-
tion had a significantly higher risk of death than patients with 
ACs with NKX2-1 expression and without NKX2-1 ampli-
fication. Lee et al.5 reported that NKX2-1 amplification was 
a poor prognostic factor for OS in patients with resected 
ACs with NKX2-1 protein expression and EGFR mutations. 
Conversely, Perner et al.4 demonstrated that ACs with a high 
level of NKX2-1 amplification tended to have an increased 
OS, compared with other AC patients. In our study, NKX2-
1 amplification was associated with a significantly increased 
risk of death among patients with AC, regardless of the 
NKX2-1 expression status or the EGFR mutation status. The 
reason for this discrepancy is unknown, and the double-edged 
characteristics of NKX2-1 as both an oncogene and a tumor 
suppressor gene should be noted.

This study demonstrated, for the first time, that SETDB1 
amplification was a marker of poor survival outcome, although 
we failed to identify SETDB1 amplification as an independent 
prognostic factor in multivariate analysis. The amplification of 
SETDB1 at 1q21.339 has been detected in various cancers includ-
ing lung cancer,18,40 and SETDB1 has been recognized as an 
oncogene. Reports on the prevalence of SETDB1 amplification 
in NSCLC are few, and the total number of known cases of ampli-
fication is only 24 (8 out of 40 reported by Rodriguez-Paredes 
et al.18 and 16 in the present cohort). Further confirmation in a 
larger patient sample is warranted to determine the clinical sig-
nificance of SETDB1 amplification on patient outcome.

MET amplification is known to be one of the mecha-
nisms by which EGFR mutated lung tumors become resistant 
to EGFR tyrosine kinase inhibitors (TKIs).41 Previous stud-
ies have shown that MET gene amplification was observed 
in 2.1% to 21% of NSCLC patients.6–8,42 The variability of 
these studies may depend on differences in the criteria used to 
define amplification, the methods used to determine amplifi-
cation, disease stage, or race. MET amplification was reported 
as being an independent negative prognostic factor among 
patients with resected NSCLC in a study from Italy,6 but the 
OS was not affected in the present study, in agreement with 
the findings of another previous study.42

In addition to MET amplification, HER2 amplifica-
tion is also known to be involved in acquired resistance to 
EGFR TKI therapy.41 In this study, HER2 amplification was 
seen in only 3% of NSCLCs, and no correlation was observed 

between the HER2 amplification status and the survival out-
come. In NSCLC, the prevalence of HER2 amplification has 
been reported to range from 2% to 9.9%9,10,43 by FISH and 
19% by chromogenic in situ hybridization,44 using almost 
the same definition of gene amplification as that used in this 
study. The prognostic significance of HER2 amplification in 
NSCLC remains uncertain. A recent study showed that HER2 
amplification was associated with a poor postoperative OS 
outcome when analyzed only among patients with HER2-
mutated NSCLC.44 Because the efficacy of HER2-targeted 
therapy, such as trastuzumab and irreversible TKIs targeting 
HER2 and EGFR, in patients with HER2-amplified or HER2-
mutated NSCLC has not been elucidated, more comprehensive 
studies evaluating the HER2-targeted therapeutic implications 
tailored to the HER2 status are necessary.

The amplification of FGFR1 at the chromosome 8p11.23 
locus has drawn the attention of many lung cancer investiga-
tors because FGFR1 amplification appeared to be a promising 
target for anti-FGFR treatment,24,27 although conflicting data 
have been reported in terms of the prognostic impact.14,15,45,46 
In our study, the relatively small number of FGFR1 amplified 
cases (n = 18) make it difficult to conclude that an association 
between FGFR1 amplification and patient survival exists.

The 3q26 locus contains the SOX2 and PIK3CA 
genes, which have been functionally validated as prognosis 
modifiers for cancer cells.22,47,48 In addition, SOX2 overex-
pression is likely to be a triggering event in the lung SCC 
carcinogenesis sequence.49,50 Against expectations of an 
oncogenic effect, the amplification of SOX2 has been shown 
to be associated with a better survival outcome in SCC12 
and NSCLC.13 Similar to these studies, SOX2 amplification 
tended to be associated with a better survival outcome in 
our cohort, although the observation did not reach statistical 
significance. The reason why SOX2 amplification can act as 
a favorable survival indicator remains unclear, but it may be 
related to the fact that SOX2 is a differentiation marker.22,49 
PIK3CA amplification has been suggested to be a major 
cause of the overactivation of the PI3K/Akt pathway that 
promotes lung squamous cell carcinogenesis,23 but PIK3CA 
amplification was not associated with clinical outcome in 
patients with either NSCLC or SCC in our cohort. One pre-
vious study of Japanese patients with lung cancer showed a 
shorter OS in PIK3CA-amplified cases,17 whereas another 
showed no difference in prognosis.13 One of the reasons 
confounding the effect of PIK3CA amplification might be 
the high frequency of coamplification with the SOX2 gene 
in PIK3CA-amplified cases (28 of 53 [52.8%] in NSCLC 
and 26 of 46 [56.5%] in SCC).

In conclusion, the copy number amplification of seven 
loci (NKX2-1, SETDB1, MET, HER2, SOX2, FGFR1, and 
PIK3CA), previously reported for a few of these genes in lung 
cancer, was comprehensively investigated in Japanese sub-
jects. The amplification of these genes was not significantly 
related to the overall outcomes of the NSCLC patients, with 
the exception of NKX2-1 amplification, providing a rationale 
for prioritizing this test for clinical predictability. The amplifi-
cation profiles, however, differed according to the histological 
types. Actually, the correlation between NKX2-1 amplification 
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and a poor outcome was prominent among patients with AC. 
Further replication of these studies may lead to the practical 
use of these markers in specific settings as outcome predictors 
in patients with lung cancer.
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