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Abstract

Geometric techniques have played an important role in the seventies, for the study of the spectrum of
many-body Schrödinger operators. In this paper we provide a formalism which also allows to study nonlin-
ear systems. We start by defining a weak topology on many-body states, which appropriately describes the
physical behavior of the system in the case of lack of compactness, that is when some particles are lost at
infinity. We provide several important properties of this topology and use them to write a simple proof of the
famous HVZ theorem in the repulsive case. In the second step we recall the method of geometric localization
in Fock space as proposed by Dereziński and Gérard, and we relate this tool to our weak topology. We then
provide several applications. We start by studying the so-called finite-rank approximation which consists in
imposing that the many-body wavefunction can be expanded using finitely many one-body functions. We
thereby emphasize geometric properties of Hartree–Fock states and prove nonlinear versions of the HVZ
theorem, in the spirit of works of Friesecke. In the last section we study translation-invariant many-body
systems comprising a nonlinear term, which effectively describes the interactions with a second system.
As an example, we prove the existence of the multi-polaron in the Pekar–Tomasevich approximation, for
certain values of the coupling constant.
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0. Introduction

A system of N (spinless) quantum particles is usually described by an energy functional
Ψ �→ E (Ψ ) ∈ R where Ψ is a normalized function of the N -body space

HN :=
N⊗

n=1

L2(
R

d
)� L2((

R
d
)N )

. (1)

Here d is the dimension of the space in which the N particles evolve, that is, d = 3 in the physical
case. If the particles are indistinguishable bosons (resp. fermions) it is additionally assumed
that Ψ is symmetric (resp. antisymmetric) with respect to exchanges of variables (x1, . . . , xN) ∈
(Rd)N .

In the simplest case the energy E is the quadratic form associated with a self-adjoint operator
on HN . For nonrelativistic particles interacting with a two-body potential W and submitted to an
external potential V , the corresponding N -body Hamiltonian reads
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HV (N) =
N∑

j=1

(
−�xj

2
+ V (xj )

)
+

∑
1�k<��N

W(xk − x�). (2)

The study of the properties of self-adjoint operators of this form has a long history [26] and it is
certainly one of the most significant successes of mathematical physics in the past decades. Of
particular interest is the spectrum of HV (N).

The advent of geometric methods in the late seventies has been particularly important. By
‘geometric’ it is usually meant the use of clever partitions of unity in configuration space in
order to relate local properties of HV (N) (seen as a partial differential operator) and spectral
properties. Initiated in the sixties by Zhislin [66] and Jörgens and Weidmann [27], the systematic
use of geometric ideas in Schrödinger operators theory really started in 1977 with the works of
Enss [16], Deift and Simon [11], and Simon [57]. It was then further developed by Morgan [45],
Morgan and Simon [46], and Sigal [54–56]. For a review of these techniques we refer for instance
to [52,9,26].

A famous example of the use of geometric methods is the so-called HVZ theorem of Zhis-
lin [66], Van Winter [62] and Hunziker [25]. Under suitable decay assumptions on V and W ,
it relates the bottom of the essential spectrum of HV (N) to the ground state energy of systems
with less particles:

infσess
(
HV (N)

)= inf
{
EV (N − k) + E0(k), k = 1, . . . ,N

}
, (3)

where EV (N) := infσ(HV (N)) is the ground state energy for N particles. Physically this result
says that in order to reach the bottom of the essential spectrum one has to remove k particles
from the system and place them at infinity. The total energy is then the sum of the ground state
energy EV (N − k) of the N − k remaining particles plus the energy E0(k) of the k particles
at infinity. The number k of particles to extract is chosen such as to minimize the total energy
obtained by this procedure. A consequence of (3) is that EV (N) is an isolated eigenvalue if and
only if

EV (N) < EV (N − k) + E0(k), ∀k = 1, . . . ,N. (4)

Although physically quite natural, the HVZ formula (3) is mathematically not obvious, in
particular because the three problems corresponding to having N , k and N − k particles are
posed on the different Hilbert spaces HN , Hk and HN−k . When proving (3), geometric methods
indeed make a crucial use of the fact that the many-body space has the structure of a tensor
product, that is HN � HN−k ⊗ Hk .

Linear problems are not the only possible ones occurring in the study of many-body quantum
systems. Indeed, most numerical methods used by physicists and chemists resort to nonlinear
models. Sometimes the energy is kept linear but the set of states is reduced by assuming that
the wavefunctions Ψ belong to a well-chosen manifold. In some other cases it is convenient to
modify the many-body energy E by adding nonlinear empirical terms in order to account for
involved physical effects which are too complicated to describe in a precise manner.

Nonlinear methods also have a long history, in particular within the field of partial differential
equations. Loosely speaking, a typical question is to understand the behavior of sequences of
functions {ϕn} (say in L2(Rd)), in particular in the case of lack of compactness, that is when
ϕn ⇀ ϕ weakly in L2 but ϕn � ϕ strongly. The sequence {ϕn} can be a minimizing sequence
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of some variational problem or a Palais–Smale sequence [61] (in these cases the goal is often
to prove by contradiction that it must converge strongly). Or it can be the solution of a time-
dependent equation, which experiments a dispersive or a blow-up behavior in finite or infinite
time (in this case lack of compactness has some physical reality).

The first to tackle such issues on a specific example were Sacks and Uhlenbeck [53] in 1981
who dealt with a concentration phenomenon for harmonic maps. Brezis and Nirenberg [8] then
faced similar difficulties for some elliptic partial differential equations with a critical Sobolev
exponent. In 1983, Lieb proved in [33] a useful lemma dealing with lack of compactness due
to translations in the locally compact case. A general method for dealing with locally compact
problems was published by Lions [38,39] in 1984 under the name “concentration-compactness”.
Later in 1984–85, Struwe [60] and, independently, Brezis and Coron [7] have provided the first
“bubble decompositions”, whereas Lions adapted his concentration-compactness method to the
nonlocal case [40,41]. For a review of all these techniques, we refer for instance to [61].

When studying the compactness of minimizing sequences for a variational problem of the
general form

I (N) = inf∫
Rd |ϕ|2=N

E (ϕ),

a useful argument is to rely on so-called binding inequalities

I (N) < I (N − λ) + I 0(λ), ∀0 < λ � N, (5)

where I 0(N) is the ground state energy when the system is sent to infinity (that is when all the
local terms have been dropped in the energy E ). Imagine that one can prove that a non-compact
minimizing sequence {ϕn} would necessarily split into pieces in such a way that the total energy
becomes the sum of the energies of these pieces. Then an energetic inequality like (5) yields
a contradiction and implies that all minimizing sequences must be compact. Arguments of this
type are ubiquitous in studies of nonlinear minimization problems.

The formal link between the HVZ formula (3) and binding inequalities of the form of (5) has
been known for a long time. There are important differences, however. In the HVZ case one has
a quantized inequality (4) in which only an integer number of particles can escape to infinity.
On the contrary the binding inequality (5) is not quantized since in L2(Rd) the sequence {ϕn}
can split in pieces having an arbitrary mass. Vaguely speaking, this comes from the fact that in
the case of lack of compactness, ϕn usually behaves as a sum of functions whereas an N -body
wavefunction is rather a tensor product.

The goal of this paper is to present a theory which combines nonlinear and geometric tech-
niques, with the purpose to study some many-body systems involving nonlinear effects. The first
attempt in this direction was already made by Friesecke in his paper [19] on multiconfiguration
methods, a work which partly inspired the present paper. However, instead of concentrating only
on some specific examples, a large part of this article (Sections 2 and 3) is devoted to the presen-
tation of a simple but general theory which, we hope, will be reusable in many other situations.
We apply it to some nonlinear models in Sections 4 and 5.

In this work, we are particularly interested in finding an appropriate description of the possible
lack of compactness of many-body wavefunctions. As we now explain, usual methods of nonlin-
ear analysis are rather inefficient in this respect. Consider for instance a sequence of two-body
wavefunctions of the form:
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Ψn = ϕ ⊗ ϕn, (6)

that is Ψn(x1, x2) = ϕ(x1)ϕn(x2), with ϕ,ϕn ∈ L2(Rd). We assume that ϕn ⇀ 0 weakly in
L2(Rd), hence we may think of Ψn as describing a system of two particles, one in the fixed
state ϕ and the other one ‘escaping to infinity’. It is then easily verified that

Ψn ⇀ 0 weakly in L2(
R

d
)⊗ L2(

R
d
)� L2((

R
d
)2)

,

which suggests that looking at weak limits of two-body wavefunctions does not say much on the
real behavior of the system. We would rather like to have, for obvious physical reasons, that

“Ψn ⇀ ϕ” (7)

since one particle is lost and the other one stays in the one-particle state ϕ. However this does not
make much sense as such, since Ψn ∈ L2(Rd)⊗L2(Rd) and ϕ ∈ L2(Rd) live in different Hilbert
spaces.

In Section 2 we introduce a very natural topology on many-body states, which we call geo-
metric topology, and for which (7) is actually correct. The geometric topology is very different
from the usual weak topology (as can already be seen from the fact that Ψn ⇀ 0 weakly). It is
however the one which is physically relevant for many-body systems.

Let us vaguely explain how the geometric topology is defined. As is suggested by (7), even
if we start with a sequence of states containing N particles (in the N -body space HN ), we have
to allow limits in spaces with less particles. All the particles could even be lost in the studied
process, in which case we would end up with the vacuum. For this reason, the behavior of N -
body states must be studied in the so-called truncated Fock space

F �N := C ⊕ H1 ⊕ · · · ⊕ HN (8)

which gathers all the spaces of k particles, with 0 � k � N . As we shall see on specific examples,
it is also natural to allow a geometric limit which is a mixed state, even when the sequence is
only made of pure states. Let us recall that a mixed state Γ on F �N is a trace-class self-adjoint
operator such that Γ � 0 and TrF �N (Γ ) = 1. A pure state is a rank-one projector, Γ = |Φ〉〈Φ|
with Φ ∈ F �N (for instance, Φ = 0 ⊕ · · · ⊕ 0 ⊕ Ψ in the case of a pure N -body state Ψ ∈ HN ).

The geometric topology on mixed states on F �N is defined by means of the weak topologies
of all the corresponding density matrices, which are specific marginals (partial traces) reflecting
the tensor product structure of the ambient Hilbert space (hence the name ‘geometric’). The def-
inition of the density matrices is recalled in Section 1 below. In particular we say that Γn ⇀g Γ

geometrically when all the density matrices of Γn converge to that of Γ , weakly–∗ in the trace-
class. Let us emphasize that the geometric limit Γ is always a state, that is, it satisfies Tr(Γ ) = 1.
There is never any loss in the trace-norm when passing to geometric limits.

For instance, the one-body density matrix of our two-body sequence {Ψn} in (6) is the operator
acting on L2(Rd)

Γ (1)
n = |ϕ〉〈ϕ| + |ϕn〉〈ϕn|
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(we assume for simplicity that ϕ ⊥ ϕn for all n). By the weak convergence of ϕn ⇀ 0, it holds

Γ (1)
n ⇀ |ϕ〉〈ϕ| weakly– ∗ .

The operator |ϕ〉〈ϕ| is precisely the one-body density matrix of the one-body state ϕ ∈ H1. We
indeed have that

0 ⊕ 0 ⊕ |ϕ ⊗ ϕn〉〈ϕ ⊗ ϕn|⇀
g

0 ⊕ |ϕ〉〈ϕ| ⊕ 0 geometrically in F �2,

which is the precise mathematical meaning that we can give to (7).
Our weak topology is the restriction to states on F �N of a well-known weak–∗ topology

associated with the CAR/CCR algebra (Remark 6). But, to our knowledge, the usefulness of this
notion of convergence for many-body problems has never been pointed out in the literature. As
will be seen on several examples in this work, it is however the most natural weak topology for
many-body states. It is a crucial notion when strong convergence does not hold a priori, that is
in the case of possible lack of compactness.

In Section 2.1.2 we proceed to give important properties of geometric convergence. We start
by showing that the set of states is compact for the geometric topology in Lemma 3. This means
that any sequence of states {Γn} on the truncated Fock space F �N has a subsequence such that
Γnk

⇀g Γ geometrically. This result is very important in applications. We then show in Lemma 4
that strong convergence is equivalent to the conservation of the total average particle number.

We illustrate the use of our theory in Section 2.2: We consider an N -body Hamiltonian of the
form of (2) with W � 0 and we show that, in contrast with the usual weak topology of HN , the
associated quantum energy is lower semi-continuous for the geometric topology. This enables us
to provide a very simple proof of the HVZ theorem, in this particular case.

Equipped with a new weak topology, we then need a second important notion: geometric
localization. As we have already mentioned, localization has always played an important role in
the study of Schrödinger operators. As we want to find out where are the particles which stay
and where do go those which escape to infinity, we need to be able to describe the state of our
system in a given domain D ⊂ R

d .
If we think of a one-body state ϕ ∈ L2(Rd), then the corresponding localized state in a domain

D should clearly be described by the function 1Dϕ. However, 1Dϕ is in general not a state since∫
D

|ϕ|2 < 1, except when ϕ has its support in D. Having removed what is outside D corresponds,
in our language, to the vacuum state. Thus the localized state should rather be(

1 −
∫
D

|ϕ|2
)

⊕ |1Dϕ〉〈1Dϕ| (9)

in the truncated Fock space F �1.
The correct notion of localization of any mixed state of F �N which generalizes (9) was

introduced by Dereziński and Gérard [13] in the context of Quantum Field Theory. It is even
possible to define a localization with respect to any operator B on L2(Rd) such that BB∗ � 1, not
only for B the multiplication operator by the characteristic function 1D (this is in particular useful
when dealing with smooth cut-off functions). In Section 3 we recall the definition of geometric
localization in our context and we provide several of its properties. Of particular interest is the
fact that if Γn ⇀g Γ geometrically and {Γn} has a bounded kinetic energy, then one gets a strong
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convergence of the localized states in any bounded domain D. This generalizes the well-known
Rellich compactness embedding theorem in Sobolev spaces, to the setting of many-body states
and geometric topology.

In Section 3.2, using both geometric convergence and localization we are able to provide a
simple proof of the HVZ theorem in the general setting (when W has no particular sign), which
particularly enlightens a crucial but simple geometric property of N -body functions, see Eq. (51)
below. It is not our intention to pretend that our proof of the HVZ theorem is better than any of the
other existing proofs. We rather aim at accustoming the reader to the techniques that we will use
for nonlinear models in Sections 4 and 5, and for which usual linear methods are inappropriate.

We turn to the study of nonlinear models in Sections 4 and 5.
In Section 4 we study the so-called finite-rank approximation in which one restricts to N -body

states which can be expanded using a finite number of (unknown) one-body orbitals ϕ1, . . . , ϕr .
In the bosonic case we obtain the Hartree model for r = 1. In the fermionic case the Hartree–
Fock theory [35] is obtained when r = N (the number of particles) whereas r > N leads to
multiconfiguration methods [19,30]. Despite the fact that these methods are essential tools of
quantum physics and chemistry, their geometric properties have deserved little interest in the
literature so far. In [19], Friesecke was, to our knowledge, the first to consider both the Hartree–
Fock and the multiconfiguration theories as real N -body models and to use geometric techniques
in order to derive nonlinear HVZ-type results.

Our goal is to emphasize geometric properties of finite-rank states, that is, to find what can be
said on geometric limit points of sequences or on geometric localization of such special states.
For instance, we show in Section 4.1.2 that the geometric limit of a sequence of pure Hartree–
Fock states is always a convex combination of pure Hartree–Fock states, see Example 16 below.
Using such properties, we are able to provide a simple proof of Friesecke’s results, as well as
to derive other theorems. For instance, in Theorem 22 below, we prove a nonlinear HVZ-type
result for a translation-invariant Hartree–Fock theory, combining ideas of Lions [38,39] and
geometric techniques. This result is in the same spirit as what was done for neutron stars in a
recent collaboration with Lenzmann [29].

In Section 5 we study another kind of nonlinear models where all possible many-body states
are considered but nonlinear effective terms are added to the quantum energy E in order to de-
scribe some specific physical effects. To be more precise we concentrate on translation-invariant
models of the form

E (Ψ ) = 〈Ψ,H 0(N)Ψ
〉+ F(ρΨ ) (10)

where F is a concave nonlinear function of the charge density ρΨ , and H 0(N) is the N -body
Hamiltonian (2) with V = 0. In practice the purpose of the nonlinear term F(ρΨ ) is to model
the interaction of the N particles with a second complicated system. For instance, we consider
in Section 5.2 the multi-polaron in the Pekar–Tomasevich approximation. This is a system of N

nonrelativistic electrons with an effective nonlinear term

F(ρΨ ) = −α

2

∫
R3

∫
R3

ρΨ (x)ρΨ (y)

|x − y| dx dy

modeling interactions with the phonons of a polar crystal in the regime of strong coupling. We
show the existence of bound states for all α > τc(N) where τc(N) < 1, which covers the physical
case. This complements recent results of [17,18].
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The paper is organized as follows. In Section 1 we provide necessary notations and some
preliminary results. The reader at ease with the concepts of Fock space, creation and annihilation
operators and density matrices may want to skip most of the material of Section 1. Of importance
is Lemma 1 which provides crucial properties of density matrices for states on a truncated Fock
space F �N . Section 2 is devoted to the definition and the derivation of important properties of
the geometric topology and convergence. This is followed by a proof of the HVZ theorem in the
repulsive case. In Section 3 geometric localization is defined and the general HVZ theorem is
proved. Sections 4 and 5 are respectively devoted to the study of the finite-rank approximation,
and of nonlinear systems of the form (10).

For the sake of clarity we usually do not state the most general results and rather favor some
chosen applications. Many of our theorems can be generalized in several directions.

1. Notation and preliminaries

We start by fixing some important notation and vocabulary, as well as by providing some
preliminary results that will be useful throughout the paper. The reader acquainted with Fock
spaces can jump to Section 1.4 where density matrices are defined and some of their important
properties are derived.

1.1. Spaces and algebras

For a (separable) Hilbert space H, we denote by B(H) and K(H) the algebras of, respectively,
bounded and compact operators on H. The Schatten space Sp(H) ⊂ K(H) is defined [58] by
requiring that

‖A‖Sp(H) := Tr
(|A|p)1/p

< ∞,

with |A| = √
A∗A. Operators in S1(H) have a well-defined trace Tr(A) =∑i〈fi,Afi〉 (for any

orthonormal basis {fi} of H). Operators in S2(H) are called Hilbert–Schmidt. We recall that [58]

(
K(H)

)′ = S1(H) and
(
S1(H)

)′ = B(H). (11)

Since K(H) is separable when H is separable, (11) means that any bounded sequence {Γn} in
S1(H) has a subsequence which converges weakly–∗ in the sense that limn→∞ TrH(ΓnK) =
TrH(Γ K) for all K ∈ K(H). The same holds for bounded sequences in B(H), with K(H) replaced
by S1(H).

In the whole paper we fix as space for one quantum particle H = L2(Rd). We could as well
work in a domain Ω with appropriate boundary conditions, use a discrete model, or even, for
most of our results, take an abstract Hilbert space. These obvious generalizations are left to the
reader for shortness.

Similarly, for simplicity we almost always restrict ourselves to the case of quantum systems
made of one kind of indistinguishable particles ( fermions or bosons) without spin. Most results
can be easily generalized to the case of several kinds of particles having internal degrees of
freedom. The space for N indistinguishable fermions is the antisymmetric tensor product

HN
a :=

N∧
H = L2

a

((
R

d
)N )
1
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consisting of wavefunctions Ψ which are antisymmetric with respect to exchanges of vari-
ables: Ψ (x1, . . . , xi, . . . , xj , . . . , xN) = −Ψ (x1, . . . , xj , . . . , xi, . . . , xN), with xk ∈ R

d for k =
1, . . . ,N . The space for N indistinguishable bosons is the symmetric tensor product

HN
s :=

N∨
1

H = L2
s

((
R

d
)N )

consisting of wavefunctions Ψ which are symmetric with respect to exchanges of variables:
Ψ (x1, . . . , xi, . . . , xj , . . . , xN) = Ψ (x1, . . . , xj , . . . , xi, . . . , xN), with xk ∈ R

d for k = 1, . . . ,N .
The corresponding fermionic or bosonic Fock space is denoted as

Fa/s = C ⊕
⊕
N�1

HN
a/s.

Saying differently, it is the space composed of sequences of the form Ψ = (ψ0,ψ1,ψ2, . . .) ∈
C × H × H2

a/s × · · · satisfying the constraint that

‖Ψ ‖2
Fa/s

:=
∑
n�0

∥∥ψn
∥∥2

Hn
a/s

< ∞.

It is a Hilbert space when endowed with the scalar product

〈Ψ1,Ψ2〉Fa/s
=
∑
n�0

〈
ψn

1 ,ψn
2

〉
Hn

a/s
.

The vacuum state is by convention defined as Ω := (1,0,0, . . .) ∈ Fa/s .
As we consider N -body systems, we must always work in the ‘truncated’ Fock space

F �N
a/s := C ⊕

N⊕
n=1

Hn
a/s (12)

which we identify to a closed subspace of Fa/s . Similarly, any N -body vector of HN
a/s can be

viewed as a vector of F �N
a/s or of Fa/s . As we explain later in Section 2, the ‘geometric’ limit of

a sequence (ψn) ⊂ HN
a/s will always live in the truncated Fock space F �N

a/s .

For ψ1 ∈ H
N1
a and ψ2 ∈ H

N2
a , we define the antisymmetric tensor product ψ1 ∧ ψ2 ∈ H

N1+N2
a

as follows:

ψ1 ∧ ψ2(x1, . . . , xN1+N2)

:= 1√
N1!N2!(N1 + N2)!

×
∑

σ∈S
sgn(σ )ψ1(xσ(1), . . . , xσ(N1))ψ2(xσ(N1+1), . . . , xσ(N1+N2)). (13)
N1+N2
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Here SN is the group of permutations of {1, . . . ,N}. When {fi} is an orthonormal basis of H,
then {fi1 ∧ · · · ∧ fiN }i1<···<iN forms an orthonormal basis of HN

a .
For bosons, we define similarly, for ψ1 ∈ H

N1
s and ψ2 ∈ H

N2
s ,

ψ1 ∨ ψ2(x1, . . . , xN1+N2)

:= 1√
N1!N2!(N1 + N2)!

×
∑

σ∈SN1+N2

ψ1(xσ(1), . . . , xσ(N1))ψ2(xσ(N1+1), . . . , xσ(N1+N2)). (14)

When {fi} is an orthonormal basis of H, then {fi1 ∨ · · · ∨ fiN }i1�···�iN is an orthogonal basis
of HN

s . Note that by definition

f ∨ · · · ∨ f︸ ︷︷ ︸
N times

= √
N !f ⊗ · · · ⊗ f.

1.2. Creation and annihilation operators

For every f ∈ H, we define the creation operator a†(f ) on F fin
a/s :=⋃N�1 F �N

a/s ⊂ Fa/s by

requiring a†(f )HN
a/s ⊂ H

N+1
a/s for all N � 0, with

∀ψ ∈ HN
a/s, a†(f )ψ :=

{
f ∧ ψ for fermions,
f ∨ ψ for bosons.

By linearity, a†(f ) can be defined as an operator on F fin
a/s . Note that if {fi}i�1 is an or-

thonormal basis of H, then {∏K
k=1 a†(fik )Ω}i1<···<iK,K�0 is an orthonormal basis of Fa and

{∏K
k=1 a†(fik )Ω}i1�···�iK ,K�0 is an orthogonal basis of Fs .
Similarly, we define the annihilation operator a(f ) by requiring a(f )HN

a/s ⊂ H
N−1
a/s for all

N � 1, a(f )Ω = 0 and

∀ψ ∈ HN
a/s,

(
a(f )ψ

)
(x1, . . . , xN−1) := √

N

∫
Rd

f (x)ψ(x, x1, . . . , xN−1) dx.

It can be verified that a(f ) is the adjoint of a†(f ) on F fin
a/s :

∀Ψ,Ψ ′ ∈ F fin
a/s,

〈
Ψ,a†(f )Ψ ′〉

Fa/s
= 〈a(f )Ψ,Ψ ′〉

Fa/s
.

In the fermionic case the creation and annihilation operators satisfy the so-called Canonical
Anticommutation Relations (CAR):

⎧⎨
⎩

a(g)a†(f ) + a†(f )a(g) = 〈g,f 〉1Fa
,

a†(f )a†(g) + a†(g)a†(f ) = 0, (15)
a(f )a(g) + a(g)a(f ) = 0.
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These relations are satisfied on F fin
a but it is deduced from the CAR that ‖a†(f )‖ = ‖a(f )‖ =

‖f ‖H, hence that a†(f ) and a(f ) can be extended to bounded operators on the whole fermionic
Fock space Fa . In the bosonic case, the creation and annihilation operators satisfy the so-called
Canonical Commutation Relations (CCR):⎧⎨

⎩
a(g)a†(f ) − a†(f )a(g) = 〈g,f 〉1Fs

,

a†(f )a†(g) − a†(g)a†(f ) = 0,

a(f )a(g) − a(g)a(f ) = 0.

(16)

These relations are satisfied on F fin
s . Now a(f ) and a†(f ) are unbounded operators. However,

they are bounded on F �N
s (with values in F N±1

s ) for every fixed N .

1.3. Observables

We now define operators and quadratic forms on Fa/s . The most important one is the so-called
number operator which equals N on any HN

a/s :

N :=
⊕
N�0

N.

This operator is unbounded on Fa/s and its maximal domain is

D(N ) :=
{
Ψ = (ψ0,ψ1, . . .

) ∈ F :
∑
N�0

N2
∥∥ψN

∥∥2
HN

a/s
< ∞

}
.

More generally, for every (densely defined) self-adjoint operator A on H, we may define by

A := 0 ⊕
⊕
N�1

(
N∑

i=1

Axi

)

the operator on Fa/s . When A is bounded from below, the domain of
∑N

i=1 Axi
is simply∧N

1 D(A) ⊂ HN
a/s ; in the general case,

∑N
i=1 Axi

is essentially self-adjoint on
∧N

1 D(A) ⊂ HN
a/s ,

see [50]. The operator A is self-adjoint on the domain

D(A) :=
{

Ψ = (ψ0,ψ1, . . .
) ∈⊕

N�0

D
(

N∑
j=1

Axj

)
:
∑
N�0

∥∥∥∥∥
(

N∑
j=1

Axj

)
ψN

∥∥∥∥∥
2

HN
a/s

< ∞
}

.

In the literature, the second quantization A of A is often denoted by
∑

i Ai or by dΓ (A). Note
that N is the second quantization of the identity on H.

The operator A can be expressed in terms of creation and annihilation operators. Let {fi}i�1
be an orthonormal basis of A, with fi ∈ D(A) for every i � 1. Then we have (both in the
fermionic and bosonic cases)

A =
∑

a†(Afj )a(fj ) =
∑

Aija
†(fi)a(fj ), with Aij = 〈fi,Afj 〉H. (17)
j�1 i,j�1
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The above series are well defined when restricted to any
∧N

1 D(A) ⊂ HN
a/s ⊂ Fa/s and they co-

incide with
∑N

i=1 Axi
, which is the correct interpretation of the (formal) equality (17). Applying

this to the number operator, we obtain:

N =
∑
i�1

a†(fi)a(fi). (18)

Similarly, we can associate to any two-body operator W : H2
a/s → H2

a/s an operator W on
Fock space, defined by

W := 0 ⊕ 0
⊕
N�2

( ∑
1�i<j�N

Wij

)

where Wij denotes the operator W acting on the variables xi and xj but not on the other variables.
We do not discuss problems of domains for shortness. As for one-body operators, the second
quantization W in Fock space of a two-body operator W can be expressed in terms of creation
and annihilation operators as follows:

W =
∑

1�k��
1�i�j

Wij,k�a
†(fi)a

†(fj )a(f�)a(fk), (19)

with

Wij,k� :=
{ 〈fi ∧ fj ,Wfk ∧ f�〉H2

a
(fermions),

〈fi∨fj ,Wfk∨f�〉H2
s

(1+δij )(1+δk�)
(bosons).

(20)

Note the normalization factor (1 + δij )(1 + δk�) = ‖fi ∨ fj‖2‖fk ∨ f�‖2 for bosons.
In particular, for an N -body Hamiltonian of the form

HV (N) :=
N∑

j=1

(−�xj

2
+ V (xj )

)
+

∑
1�k<��N

W(xk − x�), (21)

with the convention that HV (1) = −�/2 + V and HV (0) = 0, the corresponding Hamiltonian
in Fock space defined by H

V :=⊕N�0 HV (N) can be expressed as

H
V =

∑
i,j�1

hij a
†(fi)a(fj ) +

∑
1�k��
1�i�j

Wij,k� a†(fi)a
†(fj )a(f�)a(fk) (22)

with Wij,k� as in (20) and

hij =
∫
Rd

(∇fi(x) · ∇fj (x)

2
+ V (x)fi(x)fj (x)

)
dx.



M. Lewin / Journal of Functional Analysis 260 (2011) 3535–3595 3547
Remark 1. Physicists rather prefer to use the creation operator ϕ†(x) of a particle at x ∈ R
d ,

formally related to the ‘smeared’ operator a†(f ) by

a†(f ) =
∫
Rd

f (x)ϕ†(x) dx, ϕ†(x) =
∑
i�1

fi(x)a†(fi)

where {fi} is any orthonormal basis of L2(Rd). The formula (22) can then be rewritten as fol-
lows:

H =
∫
Rd

(
1

2
∇ϕ†(x) · ∇ϕ(x) + V (x)ϕ†(x)ϕ(x)

)
dx

+ 1

2

∫
Rd

∫
Rd

W(x − y)ϕ†(x)ϕ†(y)ϕ(y)ϕ(x) dx dy. (23)

1.4. States, density matrices

A (mixed or normal) state on a (separable) Hilbert space X is a non-negative trace-class
self-adjoint operator Γ ∈ S1(X) such that Tr(Γ ) = 1. A pure state is an orthogonal projector:
Γ = |Ψ 〉〈Ψ |. By the spectral theorem, any state is a convex combination of pure states:

Γ =
∑
i�1

ni |Ψi〉〈Ψi |, where ni � 0 and
∑
i�1

ni = 1.

Even when the system is expected to be in a pure state, mixed states are very important tools that
we use all the time.

We always use the word ‘state’ for mixed state and only make comments related to a more
general notion of states (a positive and normalized linear form on a C∗-algebra [5,6]). We denote
by

S(X) := {Γ = Γ ∗ � 0: TrX(Γ ) = 1
}

the convex set of all states on the Hilbert space X. The natural topology on S(X) is that induced
by the strong topology of S1(X). The set S(X) is convex but it is not closed for the weak–∗
topology of S1(X). Indeed we have in general that if Γn ⇀ Γ weakly–∗ with {Γn} ⊂ S(X), then
Γ = Γ ∗ � 0 but

TrX(Γ ) � lim inf
n→∞ TrX(Γn) = 1

which is the operator version of Fatou’s Lemma [58]. However it is known [12,58] that if
TrX(Γ ) = 1 then the convergence is strong: ‖Γn − Γ ‖S1(X) → 0. The fact that a weak–∗ limit
of a sequence of states is not always a state is a disease that will be repaired in Section 2, when
we introduce the geometric topology.
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For a state Γ on the fermionic or bosonic Fock space Fa/s , we define the density matrix
[Γ ](p,q) : Hq

a/s → H
p
a/s by the relation

〈
g1 ◦ · · · ◦ gp, [Γ ](p,q)f1 ◦ · · · ◦ fq

〉
H

p
a/s

= TrFa/s

(
Γ a†(f1) · · ·a†(fq)a(gp) · · ·a(g1)

)
(24)

where ◦ = ∧ for fermions and ◦ = ∨ for bosons. When p = q we use the notation [Γ ](p) for the
usual p-body density matrix of Γ . Note that [Γ ](0) = TrFa/s

(Γ ) = 1 by definition.

Remark 2. If Γ commutes with the number operator N , that is Γ =⊕n�0 Gn with Gn : Hn
a/s →

Hn
a/s , then it holds [Γ ](p,q) ≡ 0 for p �= q .

Remark 3. We may define by the same formula the density matrices [Γ ](p,q) of any trace-class
operator Γ (not necessarily self-adjoint and non-negative).

For fermions the creation and annihilation operators are bounded and (24) always properly
define the operators [Γ ](p,q). For bosons, however, assumptions on Γ are needed to make (24)
meaningful. In the following we almost always consider states on the truncated Fock space F �N

a/s

for which (24) makes sense, as we explain below.
Any state G on the N -body space HN

a/s can also be seen as a state on the Fock spaces F �N
a/s

and Fa/s , by extending it to zero on sectors of k particles with k �= N . A calculation shows that
the kernel of [G](p) is given for p = 0, . . . ,N by the well-known formula:

[G](p)
(
x1, . . . , xp;x′

1, . . . , x
′
p

)
=
(

N

p

)∫
Rd

dyp+1 · · ·
∫
Rd

dyN G
(
x1, . . . , xp, yp+1, . . . , yN ;x′

1, . . . , x
′
p, yp+1, . . . , yN

)
. (25)

Saying differently, it is obtained (up to a constant) by taking a partial trace of G with respect to
N − p variables. In particular it holds TrHp [G](p) = (N

p

)
. If p � N + 1, then [G](p) ≡ 0.

If Γ is any state on the truncated Fock space F �N
a/s , then [Γ ](p,q) ≡ 0 if p � N + 1 or

q � N + 1. Furthermore, all the [Γ ](p,q) are trace-class operators, as stated in the following
fundamental result.

Lemma 1 (Density matrices of states on F �N
a/s ). (i) For all 0 � p,q � N and all state Γ ∈

S(F �N
a/s ), the density matrix [Γ ](p,q) is trace-class:

∥∥[Γ ](p,q)
∥∥

S1(H
p
a/s ,H

q
a/s )

�
min(N−p,N−q)∑

j=0

√(
p + j

p

)(
q + j

q

)
. (26)

Furthermore, the map

Γ ∈ S
(

F �N
a/s

) �→ [Γ ](p,q) ∈ S1
(
H

q
a/s,H

p
a/s

)
(27)

is continuous.



M. Lewin / Journal of Functional Analysis 260 (2011) 3535–3595 3549
(ii) States on F �N
a/s are fully determined by their density matrices: if Γ1,Γ2 ∈ S(F �N

a/s ) are

such that [Γ1](p,q) = [Γ2](p,q) for all 0 � p,q � N , then Γ1 = Γ2.

The bound (26) is certainly not optimal and it is only provided as an illustration. It is a well-
known general fact that (regular) states are fully determined by their density matrices [6]. Our
proof below is based on the explicit relation (30) between the density matrices [Γ ](p,q) and the
state Γ , when the latter is in S(F �N

a/s ). These relations are useful in practice.
Note that the linear map in (27) is not weakly–∗ continuous. If for instance {ϕn} is an or-

thonormal system of H and Γn = |Ψn〉〈Ψn| with Ψn = ϕ1 ∧ ϕn ∈ H2
a , then Γn ⇀ 0 weakly–∗ in

S1(F �N
a/s ) but [Γn](1) ⇀ |ϕ1〉〈ϕ1| weakly–∗ in S1(H). Indeed, the purpose of the next section

is precisely to introduce and study a weak topology that renders all the maps in (27) weakly
continuous.

We now provide the proof of Lemma 1.

Proof of Lemma 1. We start by proving that for any state Γ , it holds [Γ ](p,q) ∈ S1(H
q
a/s,H

p
a/s)

for all 0 � p,q � N . We introduce the matrix elements Gmn = ΠmΓ Πn : Hn
a/s → Hm

a/s where

Πn := 1{n}(N ) is the orthogonal projector onto Hn
a/s . Since Γ ∈ S1(F �N

a/s ), we have Gmn ∈
S1(H

n
a/s,H

m
a/s) for all 0 � m,n � N .

It is easy to see from the definition of the density matrices that [Gmn](p,q) = 0 except when
m − p = n − q � 0. A calculation shows that, in terms of kernels,

[Gmn](p,q)
(
x1, . . . , xp;x′

1, . . . , x
′
q

)
=
√(

m

p

)(
n

q

)∫
Rd

dyq+1 · · ·
∫
Rd

dyn Gmn

(
x1, . . . , xp, yq+1, . . . , yn;x′

1, . . . , x
′
q, yq+1, . . . , yn

)
.

(28)

Since the partial trace of a trace-class operator is itself trace-class, we conclude that [Gmn](p,q)

is trace-class for all 0 � p,q � N , and that

∥∥[Gmn](p,q)
∥∥

S1(H
p
a/s ,H

q
a/s )

�
√(

m

p

)(
n

q

)
‖Gmn‖S1(H

m
a/s ,H

n
a/s )

�
√(

m

p

)(
n

q

)

where we have used that ‖ΠmΓ Πn‖S1 � ‖Γ ‖S1 = 1. The continuity in the trace-norm is an
obvious consequence of the continuity of partial traces.

Let 0 � p,q � N and recall that only the matrix elements Gmn such that m − p = n − q � 0
contribute to [Γ ](p,q). For instance, [Γ ](N,k) = [GNk](N,k) = GNk and [Γ ](k,N) = [GkN ](k,N) =
GkN for all 0 � k � N . Indeed the following holds for all 0 � p,q � N :

[Γ ](p,q) =
min(N−p,N−q)∑

j=0

[Gp+j q+j ](p,q) (29)

which implies (26). If we think of the density matrices [Γ ](p,q) as being given, the previous
Eq. (29) is a triangular system which allows to find all the Gmn by induction. Inverting this
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system leads to the following formula:

Gmn = [Γ ](m,n) +
min(N−m,N−n)∑

j=1

(−1)j
[[Γ ](m+j,n+j)

](m,n)
. (30)

This shows that states on F �N
a/s are uniquely determined by their density matrices. �

For m = n, (30) may be written as

Gmm = [Γ ](m,m) +
N−m∑
j=1

(−1)j
(

m + j

m

)
Trm+1→m+j [Γ ](m+j,m+j) (31)

where Trm+1→m+j denotes the partial trace with respect to the j last variables. For instance, we
have [Γ ](N) = GNN , and

GN−1N−1 = [Γ ](N−1) − N TrN [Γ ](N)

which follows from the fact that

[Γ ](N−1) = [GN−1N−1](N−1) + [GN N ](N−1).

Remark 4. Lemma 1 is not true as such on the set S(Fa/s) of states on the whole Fock space. In
general, we have Γ (p) � 0 and

TrHp
a/s

Γ (p) = TrFa/s

((N
p

)
Γ

)

which is finite only under appropriate assumptions on Γ . The off-diagonal density matrices
[Γ ](p,q) are in general only Hilbert–Schmidt when all the [Γ ](p) are trace-class.

Remark 5. We say that a family of operators {Υ m}Nm=0 with Υ m ∈ S1(H
m) is F �N

a/s -

representable when there exists Γ ∈ S(F �N
a/s ) with [Γ, N ] = 0 such that Γ (m,m) = Υ m for

all m = 0, . . . ,N . Using formula (31), we see that F �N
a/s -representability is equivalent to having

Υ 0 = 1 and

∀m = 0, . . . ,N, Υ m +
N∑

j=m+1

(−1)j+m

(
j

m

)
Trm+1→j Υ j � 0.

The case of states which do not commute with N is more involved.

In this section we have introduced Fock spaces and creation/annihilation operators for indis-
tinguishable fermions or bosons. When working in the truncated space F �N

a/s defined in (12), the
statistics of the particles does not make a big difference. To simplify notation, we now write Hp ,
F , F �N , etc., without specifying the considered statistics, except for results which are specific
to bosons or fermions.
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2. Geometric convergence

2.1. Definition and properties

2.1.1. Definition
We define a weak topology on states in S(F �N), induced by the weak–∗ topologies of all the

density matrices [Γ ](p,q):

Definition 1 (Geometric topology & convergence). We define the geometric topology T on
S(F �N) as the coarsest topology such that the maps

Γ ∈ S
(

F �N
) �→ 〈

ψ, [Γ ](p,q)ψ ′〉
Hp (32)

remain continuous for all (ψ,ψ ′) ∈ Hp × Hq and all 0 � p,q � N .
Let {Γn} be a sequence of states on F �N , and Γ be a state on F �N . The sequence {Γn} is

said to converge geometrically to Γ if

lim
n→∞

〈
ψ, [Γn](p,q)ψ ′〉

Hp = 〈ψ, [Γ ](p,q)ψ ′〉
Hp (33)

for all (ψ,ψ ′) ∈ Hp × Hq and all 0 � p,q � N . We use the notation Γn ⇀
g

Γ .

Note that, when it exists, the geometric limit Γ is uniquely defined since Γ ∈ S(F �N) is
characterized by its density matrices [Γ ](p,q), by Lemma 1.

We give several examples right after the following result which is an immediate consequence
of Lemma 1.

Lemma 2 (Elementary properties of geometric convergence).

1. The geometric topology T is coarser than the usual norm topology. If Γn → Γ strongly in
S1(F �N), then Γn ⇀g Γ geometrically.

2. We have Γn ⇀g Γ in F �N , if and only if [Γn](p,q) ⇀ [Γ ](p,q) weakly–∗ in S1, for all
0 � p,q � N .

Proof. The first assertion follows from the (strong) continuity of the maps Γ �→ [Γ ](p,q) for
all 0 � p,q � N , as stated in Lemma 1. The second assertion is a consequence of the uni-
form trace-class bound (26) on all the density matrices and of the Banach–Alaoglu Theorem in
S1(H

q,Hp). �
Let us emphasize that the geometric limit Γ of a sequence of states is, by definition, always

a state, that is, it must satisfy TrF (Γ ) = 1. Contrarily to the usual weak–∗ convergence on
S1(F �N), there is never any loss in the trace-norm when Γn ⇀g Γ . If in the geometric limit
some particles are lost, then Γ lives on spaces with less particles in F �N . If all the particles are
lost, then we have Γ = |Ω〉〈Ω|, the vacuum state in F �N .

We now provide examples of sequences {Γn} which geometrically converge but do not
strongly converge to a limit Γ . Our claims can be verified by computing the density matrices
[Γn](p,q) and checking their weak–∗ convergence towards [Γ ](p,q).
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Example 1. Let {ϕn} be an orthonormal basis of H. Define a sequence of two-body fermionic
wavefunctions by Ψn := ϕ1 ∧ϕn, with associated state in F �2

a denoted by Γn = 0⊕0⊕|Ψn〉〈Ψn|.
It holds Γn ⇀∗ 0 weakly–∗ and Γn ⇀g 0 ⊕ |ϕ1〉〈ϕ1| ⊕ 0 geometrically in F �2

a . The geometric
limit Γ describes a system composed of only one particle, in the state ϕ1. The other particle in
the state ϕn has vanished in the limit.

Example 2. Even when Γn is a pure state for all n, the geometric limit Γ is not always a pure
state. For instance, if Ψn := ϕ1

n ∧ϕ2
n with ϕ1

n = cosαϕ1 + sinαϕn and ϕ2
n = cosβϕ2 + sinβϕn+1,

then the corresponding state Γn = 0 ⊕ 0 ⊕ |Ψn〉〈Ψn| on F �2
a converges geometrically to

Γn ⇀
g

Γ = (sin2 α sin2 β
)⊕ (cos2 α sin2 β|ϕ1〉〈ϕ1| + cos2 β sin2 α|ϕ2〉〈ϕ2|

)
⊕ (cos2 α cos2 β|ϕ1 ∧ ϕ2〉〈ϕ1 ∧ ϕ2|

)
.

On the other hand, we have

Γn ⇀∗ 0 ⊕ 0 ⊕ cos2 α cos2 β|ϕ1 ∧ ϕ2〉〈ϕ1 ∧ ϕ2|

weakly–∗ in S1(F �2
a ).

Example 3 (Hartree states). For bosons, a Hartree state takes the form Ψ = ϕ ⊗ · · · ⊗ ϕ ∈ HN
s

where ‖ϕ‖H = 1. Assume that {ϕn} is a sequence of normalized functions in H, with ϕn ⇀ ϕ

weakly. Let Γn = 0 ⊕ · · · ⊕ 0 ⊕ |(ϕn)
⊗N 〉〈(ϕn)

⊗N | be the associated N -body state in S(F �N
s ).

Then it holds

Γn ⇀
g

N⊕
k=0

(
N

k

)(
1 − ‖ϕ‖2

H

)N−k∣∣ϕ⊗k
〉 〈
ϕ⊗k
∣∣.

It is clear that the convergence is strong if and only if ‖ϕ‖H = 1.

Example 4 (Coherent states). For bosons, coherent states are defined by the formula Γf :=
W(f )|Ω〉 ∈ Fs where W(f ) = exp(a†(f ) − a(f )) is the Weyl unitary operator (f is any vector
of the one-body space H1). The latter satisfies the following interwinning relations

W(f )∗
(
a(g) − 〈g,f 〉)W(f ) = a(g), W(f )∗

(
a†(g) − 〈f,g〉)W(f ) = a†(g). (34)

The density matrix [Γf ](p,q) of a coherent state Γf = W(f ) |Ω〉〈Ω|W(f )∗ is [Γf ](p,q) =
|f ⊗p〉〈f ⊗q |. Consider a sequence {Γfn} of coherent states with {fn} bounded in H1, such that
fn ⇀ f weakly in H1. Then Γfn ⇀g Γf geometrically in the sense that [Γfn ](p,q) ⇀∗ [Γf ](p,q)

weakly–∗, for all p,q � 0. Note that coherent states do not live on any truncated Fock space
F �N , hence Definition 1 has to be generalized in an obvious fashion on the whole Fock space F .

Example 5 (Hartree–Fock(–Bogoliubov) states). For fermions, there is a subclass of states which
are fully characterized by their one-body density matrix [Γ ](1) and their pairing density matrix
[Γ ](2,0) (if they commute with N , they are only characterized by [Γ ](1)). These states are called
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generalized Hartree–Fock states [4] or Hartree–Fock–Bogoliubov states (when [Γ ](2,0) �= 0).
Here ‘fully characterized’ means that any density matrix [Γ ](p,q) is an explicit function of
[Γ ](1,1) and Γ (2,0), given by Wick’s formula, see Eq. (2a.11) in [4]. When TrH([Γn](1)) is uni-
formly bounded, it is easily seen that geometric convergence of generalized Hartree–Fock states
is equivalent to the weak–∗ convergence of [Γn](1) and of [Γn](2,0). The geometric limit is always
a generalized Hartree–Fock state.

Note that if [Γ ](1) has an infinite rank (but a finite trace), then the corresponding Hartree–
Fock state Γ does not live on any truncated Fock space F �k . However, geometric convergence
can be understood in the same fashion as in the previous example.

Example 6. Let Γ0 be any state on F �N and let U(t) = e−itT (with T = −�/2) be the unitary
free evolution on the one-body space H1, of a nonrelativistic particle. Let

U(t) = 1 ⊕ U(t) ⊕ (U(t) ⊗ U(t)
)⊕ · · · ⊕ (U(t)⊗N

)= eitT

be the unitary evolution of the second quantization of T on the truncated Fock space F �N :

T = 0 ⊕
N⊕

n=1

(
n∑

j=1

(−�)j

2

)
.

The state Γ (t) := U(t)Γ0U(t)∗ is the unique weak solution to the Schrödinger–von Neumann
equation

{
i

d

dt
Γ (t) = [T,Γ (t)

]
,

Γ (t = 0) = Γ0.

Then

Γ (t)⇀
g

|Ω〉〈Ω| as t → ±∞.

Indeed, we have

∀0 � p,q � N,
[
Γ (t)

](p,q) = U(t) ⊗ · · · ⊗ U(t)︸ ︷︷ ︸
p

[Γ0](p,q) U(t)∗ ⊗ · · · ⊗ U(t)∗︸ ︷︷ ︸
q

which tends to 0 weakly–∗ in S1, when (p, q) �= (0,0). The same holds if U(t) is any unitary
family satisfying U(t) ⇀ 0 weakly as t → ±∞.

After these examples, we now make some fundamental remarks about the notion of geometric
convergence.

Remark 6 (Geometric convergence is a C∗-algebra concept). The geometric topology is the
restriction to F �N of a well-known weak topology arising in C∗-algebra theory, a fact that we
will need in the proof of Lemma 3 below.
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For fermions, an equivalent way of formulating (33) is, by the definition (24) of density ma-
trices,

∀A ∈ A, lim
n→∞ TrF (ΓnA) = TrF (Γ A) (35)

where A is the C∗-algebra [5,6] generated by all the a†(f ) with f any vector in H. Therefore
for fermions the topology T is nothing but the usual weak–∗ topology of states on the CAR
algebra A, restricted to states of the truncated Fock space F �N

a/s . For bosons, the same holds true
with A being the CCR algebra, generated by the Weyl operators of Example 4.

Note that we have Γn ⇀ Γ for the weak–∗ topology of S1(F ) if and only if

∀K ∈ K(F ), lim
n→∞ TrF (ΓnK) = TrF (Γ K)

where we recall that K(F ) is the algebra of compact operators. In both the fermionic and
bosonic cases, the CAR/CCR algebra A does not contain any nontrivial compact operator:
A ∩ K(F ) = {0}. Geometric convergence is thus a priori not related to the usual weak–∗ con-
vergence and it is possible to have Γn ⇀g Γ with TrF (Γ ) = 1 whereas Γn ⇀ 0 weakly–∗ in
S1(F ), like in the previous examples.

Remark 7. If Γn commutes with the number operator N for all n, [Γn, N ] = 0, then
[Γn](p,q) ≡ 0 for all p �= q and it is easy to verify that the geometric limit Γ of {Γn} must
also commute with N .

Remark 8. A similar definition of the geometric topology and convergence can be pro-
vided if the system contains several species of particles. One introduces the density matrices
[Γ ](p1,...,pk,q1,...,q�) where pi and qi respectively count the number of annihilation and cre-
ation operators of the species i (bosons or fermions). One works in the truncated Fock space
F �N1,...,Nk corresponding to having at most Ni particles of species i.

2.1.2. Compactness results
The following result is very useful in practice. It allows us to work with weak limits of density

matrices while being sure, at the same time, that the limits arise from a state Γ .

Lemma 3 (Geometric compactness of S(F �N)). The set of states S(F �N) on F �N is (sequen-
tially) compact for the geometric topology T : every sequence of states {Γn} ⊂ S(F �N) has a
subsequence which converges geometrically, Γnk

⇀
g

Γ .

Proof. This result immediately follows from the well-known facts in the theory of C∗-algebras
(recall Remark 6). By the Banach–Alaoglu Theorem, any sequence of states {Γn} ⊂ S(F �N) on
the CAR (resp. CCR) algebra A generated by the creation operators (resp. Weyl operators), has
a weakly-convergent subsequence in the sense that for every A ∈ A, one has Tr(Γnk

A) → ω(A)

where ω is a positive normalized linear form on A, [5]. Since Γn lives on the truncated Fock space
F �N for every n, it has a uniformly bounded average particle number, hence its weak limit ω

must be a normal state [6]: there is a Γ ∈ S(F ) such that ω(A) = TrF (Γ A) for all A. Since
[Γ ](N+1,N+1) = 0, it is easy to verify that Γ must also live on F �N and the result follows. �
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Remark 9. Up to extraction of subsequences, one can always assume that [Γn](p,q) ⇀∗ Υ (p,q)

weakly–∗ in S1(H
q,Hp). The matrix elements Gm,n of the limit state Γ are then uniquely

determined from the operators Υ (p,q) by formula (30). What is more subtle is the fact that the
so-obtained Γ is really a state, that is Γ = Γ ∗ � 0.

Remark 10. Lemma 3 can obviously be extended to sequences of states {Γn} on the whole Fock
space F which satisfy a uniform bound of the form TrF (N Γn) � C.

The following result says that the total number of particles in the system cannot increase under
geometric convergence, and that there is strong convergence if and only if no particle has been
lost.

Lemma 4 (Average particle number and strong convergence). Let {Γn} be a sequence of states
in S(F �N) and Γ ∈ S(F �N) be a state such that Γn ⇀g Γ . The average particle number is
lower semi-continuous:

TrF (N Γ ) � lim inf
n→∞ TrF (N Γn). (36)

Furthermore, if limn→∞ TrF (N Γn) = TrF (N Γ ), then Γn → Γ strongly in S1(F �N).

Proof. Let us recall that TrF (N Γ ) = TrH[Γ ](1), hence, since [Γn](1) ⇀ [Γ ](1) weakly–∗ in
S1(H) by Lemma 2, we have

TrF (N Γ ) = TrH[Γ ](1) � lim inf
n→∞ TrH[Γn](1) = lim inf

n→∞ TrF (N Γn).

Another proof consists in writing that TrF (Γn

∑K
i=1 a†(fi)a(fi)) � TrF (ΓnN ) by (18). It then

suffices to pass to the limit first as n → ∞ and then as K → ∞.
The proof that conservation of the average particle number implies strong convergence re-

quires a bit more work. We start with a sequence of N -body states, that is Γn = 0 ⊕ · · · ⊕ Gn

where Gn ∈ S(HN). We assume that Γn ⇀g Γ in F �N . From Remark 7, we know that Γ com-
mutes with N :

Γ =
⎛
⎝G00 0

. . .

0 GNN

⎞
⎠ .

The assumption that

N = lim
n→∞ TrF (Γn) = TrF (N Γ ) =

N∑
k=0

k TrHk (Gkk)

together with the fact that
∑N

k=0 TrHk (Gkk) = 1 since G is a state, imply that Gkk = 0 for all
k = 0, . . . ,N − 1 and TrHN (GNN) = 1. However, we know that GNN is the weak–∗ limit of
Gn in S1(H

N). Therefore TrHN (GNN) = 1 implies that Gn → GNN strongly in S1, by the
reciprocal of Fatou’s Lemma for trace-class operators (see [12,58]), and the result follows.



3556 M. Lewin / Journal of Functional Analysis 260 (2011) 3535–3595
We now come back to the general case. Let Γn ⇀g Γ be an arbitrary sequence which con-
verges geometrically in F �N , such that TrF (N Γ ) = limn→∞ TrF (N Γ ). We denote by Gn

k� the
matrix elements of Γn and introduce the auxiliary state

Γ̃n =
⎛
⎜⎝

Gn
00 0

. . .

0 Gn
NN

⎞
⎟⎠

obtained by retaining only the diagonal of Γn. It is easy to check that Γ̃n ⇀g Γ̃ , the diagonal
of Γ . We first prove that Γ̃n → Γ̃ strongly. Indeed we may write

Γ̃n =
N∑

k=0

tnk G̃n
kk

where tnk = TrHk (Gn
kk) and G̃n

kk = Gn
kk/tnk is a state on Hk (with an obvious convention when

tnk = 0). We have G̃n
kk ⇀g G̃kk for all k = 0, . . . ,N and Γ̃ =∑N

k=0 tkG̃kk with tk = limn→∞ tnk
(up to subsequences). Our assumption means that

N∑
k=0

tk TrF (N G̃kk) =
N∑

k=0

k tk.

However by (36), it holds TrF (N G̃kk) � k for all k, hence the previous equation means that
TrF (N G̃kk) = k for all k = 0, . . . ,N such that tk �= 0. As we have shown in the previous para-
graph, this implies that G̃n

kk → G̃kk strongly in S1(H
k). When tk = 0, we have simply Gn

kk → 0
strongly. This eventually shows that Γ̃n → Γ̃ strongly.

We now conclude that Γn → Γ strongly. Indeed, we have Γn ⇀ Γ ′ weakly–∗ in S1(F �N)

and we know that the diagonal of Γn converges strongly, hence in particular Tr(Γ ′) = 1. By the
reciprocal of Fatou’s Lemma [12,58], this implies that Γn → Γ strongly, which ends the proof
of Lemma 4. �
2.2. Application: HVZ theorem in the lower semi-continuous case

In this section, we illustrate the use of geometric convergence on the very simple example of a
many-body system with a non-negative two-body interaction. Our example covers the celebrated
case of atoms and molecules.

We consider the following many-body Hamiltonian

HV (N) :=
N∑

j=1

(
−�xj

2
+ V (xj )

)
+

∑
1�k���N

W(xk − x�) (37)

on L2
a/s((R

d)N). Since in practice W is fixed (it is a characteristics of the studied particles)

whereas V is an external field that can be varied, we only emphasize V in the notation of HV (N).
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We choose any statistics (bosons or fermions) for our particles. The spectrum of HV (N) depends
on this statistics but our results are stated the same in both cases.

We assume that W is even and that the two real functions V and W can both be written in
the form

∑K
i=1 fi with fi ∈ Lpi (Rd) where max(1, d/2) < pi < ∞ or pi = ∞ but fi → 0 at

infinity. These conditions ensure that (1 − �)−1/2V (1 − �)−1/2 and (1 − �)−1/2W(1 − �)−1/2

are compact operators. Then, by the KLMN Theorem [51], HV (N) has a unique self-adjoint
realization in the N -body space L2

a/s((R
d)N) with quadratic form domain H 1

a/s((R
d)N). More

precisely, for every 0 < ε < 1, there exists a constant C = C(N, ε) � 0 such that

(1 − ε)

(
N∑

j=1

−�xj

)
− C � HV (N) � (1 + ε)

(
N∑

j=1

−�xj

)
+ C (38)

in the sense of quadratic forms on L2
a/s((R

d)N). In this section we will make the assumption that
the interaction is repulsive, that is

W � 0.

The general case is treated later in Section 3.2.

Example 7 (Atoms and molecules). For atoms and molecules in which the electrons are treated
as quantum particles whereas the nuclei are considered as fixed pointwise classical particles
(Born–Oppenheimer approximation), we have in atomic units, on L2

a((R
3)N),

V (x) = −
M∑

m=1

zm

|x − Rm| and W(x − y) = 1

|x − y| ,

where Rm and zm are the positions and charges of the nuclei. The functions V and W are re-
spectively the Coulomb attraction potential induced by the nuclei, and the Coulomb repulsion
between the electrons.

The second-quantization of HV (N) is the Fock Hamiltonian

H
V := 0 ⊕

⊕
k�1

HV (k)

which we restrict to the truncated Fock space F �N . The energy of the system in the state Γ ∈
S(F �N) reads, using (22) and the definition (24) of the one- and two-body density matrices
[Γ ](1) and [Γ ](2):

E V (Γ ) := TrF
(
H

V Γ
)

= TrL2(Rd )

((
−1

� + V

)
[Γ ](1)

)
+ TrL2

a/s (R
d×Rd )

(
W [Γ ](2)

)
. (39)
2
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By (38), the energy is well defined for states Γ ∈ S(F �N) such that

TrF
(
T

1/2Γ T
1/2)= TrH

(
(−�)1/2Γ (1)(−�)1/2)

= 1

N − 1
Tr

H2
a/s

(
(−�x + −�y)

1/2Γ (2)(−�x − �y)
1/2)< ∞.

When the previous kinetic energy term is infinite, we can let E V (Γ ) := +∞.
One difficulty of many-body systems is the lack of weak lower semi-continuity (wlsc) of the

quantum energy Ψ ∈ HN �→ 〈Ψ,HV (N)Ψ 〉. This was for instance pointed out by Friesecke, see
Lemma 1.2(iii) in [19]. Indeed if we denote by

EV (N) := infσ
(
HV (N)

)
, ΣV (N) := infσess

(
HV (N)

)
, (40)

respectively the ground state energy and the bottom of the essential spectrum, we usually
have that ΣV (N) < 0. This implies that for a singular Weyl sequence Ψn ⇀ 0 it holds
〈Ψn,H

V (N)Ψn〉 → ΣV (N) < 0, showing that the energy is not wlsc.
We now prove that, on the contrary, when W � 0 the energy is lower semi-continuous for the

geometric convergence which we have introduced in the previous section.

Lemma 5 (Lower semi-continuity of the energy under geometric convergence). Assume that
W � 0 and let {Γn} be a sequence of states in F �N which converges geometrically to Γ . Then

E V (Γ ) � lim inf
n→∞ E V (Γn).

Proof. Under our assumptions on V and W , it is easily verified that E V is lower semi-continuous
for the strong topology of S1(F �N). We have to prove that the same holds for the geometric
topology.

When the kinetic energy of {Γn} is not bounded, there is nothing to show by (38), hence we
may as well assume that

TrF
(
T

1/2 Γn T
1/2)� C

for a constant C independent of n (this is actually equivalent to assuming that each p-body
density matrix has a bounded kinetic energy). Since we have by assumption [Γn](p) ⇀ [Γ ](p)

weakly–∗ in S1, we deduce that the geometric limit Γ has a finite kinetic energy, hence a finite
total energy. We now remark that

E V (Γn) = 1

2
TrL2(Rd )

(
(−�)[Γn](1)

)+ ∫
Rd

VρΓn + TrL2
a/s (R

d×Rd )

(
W [Γn](2)

)
,

where ρΓn(x) = [Γn](1)(x, x) is the density of the system. It is then a classical fact that
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TrL2(Rd )

(
(−�)[Γ ](1)

)
� lim inf

n→∞ TrL2(Rd )

(
(−�)[Γn](1)

)
,

TrL2
a/s (R

d×Rd )

(
W [Γ ](2)

)
� lim inf

n→∞ TrL2
a/s (R

d×Rd )

(
W [Γn](2)

)
,∫

Rd

Vρ[Γ ](1) = lim
n→∞

∫
Rd

Vρ[Γn](1) . (41)

The first two claims follow from Fatou’s Lemma for trace-class operators [57] (using W � 0).
The last claim (41) is shown as follows. First, the Hoffmann-Ostenhof inequality [24]

∫
Rd

|∇√
ρΓ |2 � TrL2(Rd )

(
(−�)[Γ ](1)

)
, (42)

implies that
√

ρΓn is bounded in H 1(Rd), hence we may as well assume that
√

ρΓn → √
ρΓ

weakly in H 1(Rd) and strongly in L2
loc(R

d). Recall that V =∑K
j=1 Vj with Vj ∈ Lpj (Rd) where

max(d/2,1) < pj < ∞ or Vj ∈ L∞(Rd) and Vj → 0 at infinity. For d � 3, we write

∣∣∣∣
∫

|x|�R

Vj (x)ρΓn(x) dx

∣∣∣∣� ‖Vj‖L
pj (Rd\B(0,R))‖ρΓn‖L

qj (Rd ) � C‖Vj‖L
pj (Rd\B(0,R)) (43)

where 1/pj + 1/qj = 1, hence 1 � qj < d/(d − 2). In the last inequality we have used the
Sobolev injection theorem as well as the fact that

√
ρΓn is bounded in H 1(Rd). On the other

hand, by Rellich’s theorem, we have a compact injection H 1(B(0,R)) ↪→ Lq(B(0,R)) for all
2 � q < 2d/(d − 2) which implies that

lim
n→∞

∫
|x|�R

Vj (x)ρΓn(x) dx =
∫

|x|�R

Vj (x)ρΓ (x) dx.

Together with (43), this proves (41). The proof is the same in dimensions 1 and 2. �
The following is a famous result for many-body systems:

Theorem 6 (HVZ in the lower semi-continuous case). Assume W � 0. Then it holds E0(N) = 0
for all N � 0 and

ΣV (N) = EV (N − 1). (44)

In particular, EV (N) is an isolated eigenvalue if and only if

EV (N) < EV (N − 1) = min
{
EV (N − k) + E0(k), k = 1, . . . ,N

}
.

Remark 11. A similar result holds true if the system contains several kinds of particles (with
possibly different interaction potentials), with or without internal degrees of freedom.
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Theorem 6 is due to Zhislin [66], Van Winter [62] and Hunziker [25]. Simpler proofs were
provided later when the so-called geometric methods were developed [16,57,54,9]. The interpre-
tation of (44) is that in order to reach the bottom of the essential spectrum, we have to provide
a sufficiently large amount of energy to the system in order to extract at least one particle. The
case of a general interaction W is treated later in Section 3.2.

Theorem 6 is essential when proving existence of ground and excited states. The bottom
of the spectrum EV (N) is an isolated eigenvalue if and only if the HVZ inequality EV (N) <

EV (N − 1) holds. Such an inequality can be proved by induction on N : admitting that EV (N −
1) < EV (N − 2), there is a ground state for EV (N − 1) and one can use this state to construct
an N -body test state to prove that EV (N) < EV (N − 1).

For atoms and molecules (Example 7), Zhislin and Sigalov [66,67] have shown that there is a
ground state as well as infinitely many excited states as soon as N < Z + 1 where Z =∑M

m=1 zm

is the total nuclear charge. The idea is that, with N − 1 electrons bound to the nuclei, any
additional electron escaping to infinity sees a Coulomb interaction induced by a total charge
Z − (N − 1) > 0. This potential is attractive at large distances and the desired inequality
EV (N) < EV (N − 1) follows.

We now turn to the proof of Theorem 6.

Proof of Theorem 6. The bound ΣV (N) � EV (N − 1) is shown by building a convenient
singular Weyl sequence, using a Weyl sequence for EV (N − 1). We do not elaborate more on
this classical fact and we only explain the proof of the more complicated inequality ΣV (N) �
EV (N − 1).

First we note that since EV (N) � ΣV (N) � EV (N − 1), the map N �→ EV (N) is non-
increasing. When V = 0, E0(N) � 0 since W � 0, hence E0(N) = 0 for all N .

Let now {Ψn} ⊂ HN be a singular Weyl sequence for ΣV (N), that is such that (HV (N) −
ΣV (N))Ψn → 0, ‖Ψn‖ = 1 and Ψn ⇀ 0 weakly in L2((Rd)N). The corresponding pure state on
F �N is Γn := 0 ⊕ · · · ⊕ 0 ⊕ |Ψn〉〈Ψn| and it has a bounded energy, limn→∞ E V (Γn) = ΣV (N),
hence a bounded kinetic energy by (38). Extracting a subsequence if necessary, we may assume
by Lemma 3 that Γn ⇀

g
Γ geometrically. We write as usual

Γ =
⎛
⎝G00 0

. . .

0 GNN

⎞
⎠ .

Recall that GNN = [GNN ](N) is the weak–∗ limit of |Ψn〉〈Ψn|, hence GNN = 0 since Ψn ⇀ 0.
By Lemma 5 we have

ΣV (N) = lim
n→∞ E V (Γn) � E V (Γ ) =

N−1∑
j=0

TrHj

(
HV (j)Gjj

)

�
N−1∑
j=0

EV (j)TrHj (Gjj ) � EV (N − 1). (45)

In the second line we have used that Gjj � 0 and that
∑N−1

j=0 TrHj (Gjj ) = 1 since Γ is a
state. �
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Remark 12. Let {Ψn} be a singular Weyl sequence for the bottom ΣV (N) of the essential spec-
trum of HV (N), like in the proof of Theorem 6. Then, if EV (N −1) < ΣV (N −1) = EV (N −2),
it can be seen from (45) that its geometric limit Γ is a ground state of HV (N − 1) in
L2

a/s((R
d)N−1).

3. Geometric localization

Localization is a fundamental concept of many-body quantum mechanics. In the seminal
works of the end of the seventies [16,11,57,46,54,26], the expression ‘geometric methods’ was
used to denote the use of appropriate partitions of unity in configuration space. In this section
we explain how one can lift a localization in the one-body space H1 to the truncated Fock space
F �N , following Dereziński and Gérard [13], and we relate this tool to the geometric topology
defined in the previous section.

3.1. Definition and properties

3.1.1. Definition
Here we explain how to localize a state Γ ∈ S(F �N). As already suggested in the intro-

duction, the localization of a pure one-body state ϕ ∈ L2(Rd) in a domain D ⊂ Rd should be
described by the state

Γχ =
(

1 −
∫
Rd

|χϕ|2
)

⊕ |χϕ〉〈χϕ| (46)

where χ = 1D . Note that the previous formula actually defines a state for every normalized
ϕ ∈ L2(Rd) and every function χ such that 0 � |χ |2 � 1. This discussion suggests the following
definition of localized states.

Proposition 7 (Definition of localized states). Let B ∈ B(H) be a bounded operator on H, such
that 0 � BB∗ � 1, and Γ ∈ S(F �N) be any state on F �N . Then there exists a unique state
ΓB ∈ S(F �N) such that

[ΓB ](p,q) = B ⊗ · · · ⊗ B︸ ︷︷ ︸
p

[Γ ](p,q) B∗ ⊗ · · · ⊗ B∗︸ ︷︷ ︸
q

(47)

for all 0 � p,q � N . The state ΓB is called the B-localization of Γ .

Note that in general the localized state ΓB is not a pure state, even when Γ is itself a pure state.
The concept of localization of states in Fock space was first introduced for bosons by Dereziński
and Gérard in [13] and generalized to fermions by Ammari in [1]. It is now a classical tool in
Quantum Field Theory. It was recently used by Hainzl, Solovej and the author of the present
paper, to prove the existence of the thermodynamic limit for quantum Coulomb systems in the
grand canonical picture, see Appendix A.1 in [23]. In this latter work, the strong subadditivity
of the quantum entropy was also formulated using geometric localization. Although expressed
in different terms, the definition of ΓB in Proposition 7 coincides with that of all these previous
works.

We now turn to the proof of Proposition 7.
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Proof of Proposition 7. A state satisfying (47) was constructed in [13,1,23], using the partial
isometry f ∈ H �→ Bf ⊕√

1 − BB∗f ∈ H⊕H and the fact that F (H1 ⊕H2) � F (H1)⊗ F (H2).
The state ΓB is obtained by means of a partial trace with respect to the second Hilbert space.
Uniqueness then follows from Lemma 1. �
Remark 13. The matrix components {GB

mn}Nm,n=0 of the operator ΓB can be expressed using
Eq. (30) as follows

GB
mn = B⊗m[Γ ](m,n)

(
B∗)⊗n

+
min(N−m,N−n)∑

j=1

(−1)j
[
B⊗(m+j)[Γ ](m+j,n+j)

(
B∗)⊗(n+j)](m,n)

. (48)

The verification that the so-obtained operator is a state (ΓB = (ΓB)∗ � 0) uses the CCR/CAR
algebra A in a similar way as in the proof of Lemma 3.

Remark 14. If B1 and B2 are such that 0 � BkB
∗
k � 1, then (B2B1)(B2B1)

∗ = B2B1B
∗
1 B∗

2 �
B2B

∗
2 � 1. It is then clear from the definition that (ΓB1)B2 = ΓB2B1 .

We now illustrate Proposition 7 by several examples of localized states.

Example 8. We have for all state Γ1 = Γ and Γ0 = |Ω〉〈Ω| (the vacuum state), corresponding to
having, respectively, B = 1 and B = 0. If ϕ ∈ H1 and Γ = 0 ⊕|ϕ〉〈ϕ|, then ΓB = (1 −‖Bϕ‖2)⊕
|Bϕ〉〈Bϕ|, as in (46).

Example 9. If U is a unitary operator on H1, then (Γ )U = (1 ⊕ U ⊕ · · · ⊕ U⊗N)Γ (1 ⊕ U∗ ⊕
· · · ⊕ (U∗)⊗N).

Example 10 (Localization of N -body states). Let G ∈ S(HN) be an N -body state and Γ =
0 ⊕ · · · ⊕ G ∈ S(F �N). A simple calculation based on (48) shows that

ΓB = GB
0 ⊕ · · · ⊕ GB

N

where

GB
k =
(

N

k

)
Trk+1→N

(
B⊗k ⊗ √

1 − BB∗⊗(N−k)
G
(
B∗)⊗k ⊗ √

1 − BB∗⊗(N−k))
(49)

with Trk+1→N denoting the partial trace with respect to the N − k + 1 last variables. More
explicitly, if G = |Ψ 〉〈Ψ | and 0 � χ(x) � 1, then

G
χ
k

(
x1, . . . , xk;x′

1, . . . , x
′
k

)
=
(

N

k

) k∏
j=1

χ(xj )χ
(
x′
j

)∫ · · ·
∫ N∏

j=k+1

(
1 − χ2(zj )

)
× Ψ (x1, . . . , xk, zk+1, . . . , zN)Ψ

(
x′ , . . . , x′ , zk+1, . . . , zN

)
dzk+1 · · ·dzN . (50)
1 k
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We see from (49) that it holds

TrHk

(
GB

k

)= TrHN−k

(
G

√
1−BB∗

N−k

)
. (51)

The relation (51) will play a very important role later and it may be considered as one of the basic
tools of the geometric methods for many-body systems. For B = 1D(x), it essentially means that
the ‘weight’ in the k-particle sector of the localized state in a domain D is equal to that in the
(N − k)-particle sector outside D.

Example 11 (Hartree states). Let Γ = 0 ⊕ · · · ⊕ |ϕ⊗N 〉〈ϕ⊗N | ∈ F �N
s be a Hartree state as in

Example 3. Then

ΓB =
N⊕

k=0

(
N

k

)(
1 − ‖Bϕ‖2

H

)N−k∣∣(Bϕ)⊗k
〉 〈
(Bϕ)⊗k

∣∣.
Example 12 (Coherent and Hartree–Fock–Bogoliubov states). If Γf is a coherent state like in
Example 4, then (Γf )B = ΓBf . If Γ is a Hartree–Fock–Bogoliubov state like in Example 5,
with one-body density matrix [Γ ](1) and pairing density matrix [Γ ](2,0), then ΓB is the unique
Hartree–Fock–Bogoliubov state having B[Γ ](1)B∗ and (B ⊗B)[Γ ](2,0) as one-body and pairing
density matrices. In Example 15 below we detail the case of pure Hartree–Fock states.

3.1.2. Convergence results
Let us now turn to some useful applications of geometric localization. We start by showing

that the localization map Γ �→ ΓB is continuous with respect to the geometric topology.

Lemma 8 (Continuity of geometric localization). Let {Γn} be a sequence of states in S(F �N)

which converges geometrically to a state Γ ∈ S(F �N), Γn ⇀g Γ . Let B ∈ B(H1) be such
that 0 � BB∗ � 1. Then the associated sequence of localized states converges geometrically:
(Γn)B ⇀g ΓB .

Similarly, if Bn is a sequence satisfying 0 � Bn(Bn)
∗ � 1, Bn → B and (Bn)

∗ → B∗ strongly
(that is, Bnx → Bx and B∗

nx → B∗x strongly in H1 for any fixed x ∈ H1), then it holds
(Γn)Bn ⇀g ΓB .

Proof. When Γn ⇀g Γ , that is [Γn](p,q) ⇀∗ [Γ ](p,q) for all 0 � p,q � N , we have that
[(Γn)B ](p,q) = B⊗p[Γn](p,q)(B∗)⊗q converges weakly–∗ to B⊗p[Γ ](p,q)(B∗)⊗q . This is by def-
inition [ΓB ](p,q), hence it holds (Γn)B ⇀g ΓB . The argument is the same when Bn → B and
(Bn)

∗ → B∗ strongly. �
The next lemma explains how localization can be used to convert geometric convergence into

strong convergence.

Lemma 9 (Local compactness). Let T � 0 be a non-negative self-adjoint operator on H1, and B

be a bounded operator such that 0 � BB∗ � 1. We assume that B is T 1/2-compact, that is B(1+
T 1/2)−1 ∈ K(H1). Let {Γn} be a sequence of states in S(F �N) which converges geometrically
to a state Γ ∈ S(F �N), Γn ⇀Γ . If
g
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TrH
(
T 1/2[Γn](1)T 1/2)� C

for a constant independent of n, then (Γn)B → ΓB strongly in S1(F �N).

Proof. We have (Γn)B ⇀g ΓB geometrically by Lemma 8 and it remains to prove that the con-
vergence is strong. It holds

[
(Γn)B

](1) = B[Γn](1)B∗ = K
(
1 + T 1/2)[Γn](1)

(
1 + T 1/2)K∗

where K = B(1+T 1/2)−1 is compact by assumption. The sequence (1+T 1/2)[Γn](1)(1+T 1/2)

is bounded in S1(H), hence we have that (1 + T 1/2)[Γ ](1)(1 + T 1/2) ∈ S1(H
1) and

(
1 + T 1/2)[Γn](1)

(
1 + T 1/2)⇀∗

(
1 + T 1/2)[Γ ](1)

(
1 + T 1/2)

weakly–∗ in S1. It is well known that if An ⇀ A weakly–∗ in S1(H
1) and K is compact, then

KAnK
∗ → KAK∗ strongly in S1(H). We deduce from the above calculation that [(Γn)B ](1) →

[ΓB ](1) strongly in S1(H). By Lemma 4, this shows that (Γn)B → ΓB strongly. �
Example 13. If Γn ⇀g Γ geometrically in F �N and the kinetic energy Tr((−�)[Γn](1)) is
uniformly bounded, then (Γn)χ → Γχ strongly in S1, for every localization function χ(x) of
compact support (even tending to zero at infinity), since χ(x)(1+|− i∇|)−1 is always a compact
operator. This can be viewed as a generalization to states in F �N of Rellich’s local compactness
in Sobolev spaces [34].

The following is simple consequence of the previous result with T = 1.

Corollary 10 (Compact localization). Let {Γn} be a sequence of states in S(F �N) which con-
verges geometrically to a state Γ ∈ S(F �N), Γn ⇀g Γ . Then (Γn)K → (Γ )K strongly in
S1(F �N) for every fixed compact operator K such that 0 � KK∗ � 1.

Localization may also be used to approximate a given state by simpler states (for instance
finite-rank states, see Section 4).

Lemma 11 (Approximation by localized states). Let {Bn} be a sequence of bounded operators
in H, such that 0 � BnB

∗
n � 1, Bn → B and B∗

n → B∗ strongly as n → ∞. Then for any state
Γ ∈ S(F �N), ΓBn → ΓB strongly in S1(H) as n → ∞.

Proof. By Lemma 8, we have at least ΓBn ⇀g ΓB geometrically. However, since [ΓBn ](1) =
(Bn)[Γ ](1)(Bn)

∗ → B[Γ ](1)B∗ = [ΓB ](1) strongly in S1(H
1), the convergence of Γn must be

strong by Lemma 4. �
3.2. Application: HVZ theorem in the general case

In Section 2.2 we have proved the celebrated HVZ theorem for systems with a repulsive
interaction, W � 0, using the lower semi-continuity of the energy with respect to geometric
convergence. In particular it was essential that in the absence of external field, V = 0, the ground
state energy of the system vanishes: E0(N) = 0.
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When W has no sign a priori, the energy Γ �→ E V (Γ ) is not necessarily lower semi-
continuous, which can be seen by the fact that it may hold E0(N) < 0. Particles running off
to infinity can carry a negative energy and in the HVZ theorem it is then necessary to take into
account the energy of these particles. Separating the particles escaping to infinity from those
which are bound by the external potential V is then done via localization.

Let us recall the N -body Hamiltonian HV (N) defined in (37). The bottom of its spectrum
and the bottom of its essential spectrum are respectively denoted by EV (N) and ΣV (N). As
usual we make the assumption that W is even, and that V and W can both be written in the form∑K

i=1 fi with fi ∈ Lpi (Rd) where max(1, d/2) < pi < ∞ or pi = ∞ but fi → 0 at infinity.
The result in the general case is the following.

Theorem 12 (HVZ in the general case). Under the previous assumptions on V and W , we have

ΣV (N) = inf
{
EV (N − k) + E0(k), k = 1, . . . ,N

}
. (52)

We now provide the proof of Theorem 12. This serves as an illustration of the concepts of
geometric convergence and localization that we have introduced, but also introduces the reader
to the techniques that we use later for nonlinear systems.

Proof of Theorem 12. As in the proof of Theorem 6, we only explain the lower bound �.
We take the same singular Weyl sequence {Ψn} such that (HV (N) − ΣV (N))Ψn → 0 and let
Γn = 0⊕· · ·⊕|Ψn〉〈Ψn| ∈ F �N . We assume (up to extraction of a subsequence and by Lemma 3)
that Γn ⇀g Γ = G00 ⊕· · ·⊕GNN geometrically. Recall that GNN is the weak limit of |Ψn〉〈Ψn|,
hence GNN = 0 since Ψn ⇀ 0 by assumption.

Our goal is to prove the following fundamental estimate

ΣV (N) = lim
n→∞ E V (Γn) �

N∑
k=1

(
EV (N − k) + E0(k)

)
TrHN−k (GN−k N−k). (53)

Compared to (45), the bound now includes the energy E0(k) of particles running off to infinity,
which can be nonzero. Recall that Γ is a state, that is Gkk � 0 and

∑N
k=1 TrHN−k (GN−k N−k) = 1

since GNN = 0. Therefore the right-hand side of (53) is a convex combination and we have

N∑
k=1

(
EV (N − k) + E0(k)

)
TrHN−k (GN−k N−k) � inf

{
EV (N − k) + E0(k), k = 1, . . . ,N

}
,

which proves the lower bound in (52).
In order to show the inequality (53), we pick a smooth cut-off function 0 � χ � 1 which

equals 1 on the ball B(0,1) and 0 outside the ball B(0,2), and let χR(x) = χ(x/R) as well as

ηR =
√

1 − χ2
R . The rest of the proof goes as follows:

(i) We geometrically localize in and outside the ball of radius R by means of the smooth parti-
tion of unity χ2

R + η2
R = 1.

(ii) We use the fundamental equality (51).
(iii) We pass to the limit as n → ∞.
(iv) We take the limit R → ∞.
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As we will explain later in the proof of Theorem 25, it is possible to use an n-dependent radius of
localization Rn → ∞, and to perform the steps (iii) and (iv) simultaneously. As we do not need
this technique here, we defer its use to Section 5, for pedagogical purposes.

The so-called IMS formula reads:

−� = χR(−�)χR + ηR(−�)ηR − |∇χR|2 − |∇ηR|2. (54)

Hence −� � χR(−�)χR + ηR(−�)ηR − C/R2. Using this for the kinetic energy as well as the
partition of unity 1 = χ2

R + η2
R in the interaction energy, we deduce that

E V (Γn) � E V
(
(Γn)χR

)+ E 0((Γn)ηR

)+ ∫
Rd

ηR(x)2V (x)ρΓn(x) dx

+ 2
∫
Rd

∫
Rd

W(x − y)χR(x)2ηR(y)2[Γn](2)(x, y;x, y) dx dy − CN/R2.

Let us start by estimating the error terms. Since {Ψn} is a Weyl sequence it is bounded in
H 1((Rd)N), thus

√
ρΓn is bounded in H 1(Rd), by (42). Since V =∑K

j=1 Vj with Vj ∈ Lpj (Rd)

where max(1, d/2) < pj < ∞ or pj = ∞ but Vj → 0 at infinity, we have by Hölder’s and
Sobolev’s inequalities

∣∣∣∣
∫
Rd

ηR(x)2V (x)ρΓn(x) dx

∣∣∣∣� C

k∑
j=1

∥∥Vjη
2
R

∥∥
L

pj (Rd )

which tends to zero as R → ∞. For the interaction term, we may write for instance

∫
Rd

∫
Rd

W(x − y)χR(x)2ηR(y)2[Γn](2)(x, y;x, y) dx dy

=
∫
Rd

∫
Rd

W(x − y)χR(x)2η3R(y)2[Γn](2)(x, y;x, y) dx dy (55)

+
∫
Rd

∫
Rd

W(x − y)χR(x)2ηR(y)2χ3R(y)2[Γn](2)(x, y;x, y) dx dy. (56)

In the first term of the right-hand side, the integrand is zero except when |x − y| � R, hence it
may be estimated similarly as before by

∣∣(55)
∣∣� C

K∑
j=1

‖Wj1|x|�R‖L
pj (Rd )

which also tends to zero when R → ∞. Summarizing we have shown that
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E V (Γn) � E V
(
(Γn)χR

)+ E 0((Γn)ηR

)
+ 2
∫
Rd

∫
Rd

W(x − y)χR(x)2ηR(y)2χ3R(y)2[Γn](2)(x, y;x, y) dx dy + εR (57)

where εR is independent of n and tends to zero as R → ∞. The total energy of the system can
be estimated from below by the sum of the energies of the localized states in and outside the ball
of radius R, plus error terms.

We now deal with the main two terms and write that

E V
(
(Γn)χR

)+ E 0((Γn)ηR

)= N∑
k=0

TrHk

(
HV (k)Gn

χR,k

)+ N∑
k=0

TrHk

(
H 0(k)Gn

ηR,k

)

�
N∑

k=0

EV (k)TrHk

(
Gn

χR,k

)+ N∑
k=0

E0(k)TrHk

(
Gn

ηR,k

)
, (58)

where (Γn)χR
= Gn

χR,0 ⊕ · · · ⊕ Gn
χR,N and with a similar definition for Gn

ηR,k . At this point we
use the fundamental relation (51) (valid since Γn is an N -body state for all n), which tells us that

TrHk

(
Gn

χR,k

)= TrHN−k

(
Gn

ηR,N−k

)
for all k = 0, . . . ,N . Inserting in (58) and changing k into N − k in the first sum we get

E V
(
(Γn)χR

)+ E 0((Γn)ηR

)
�

N∑
k=0

(
EV (N − k) + E0(k)

)
TrHN−k

(
Gn

χR,N−k

)
.

By Lemma 9 (or more precisely Example 13), we have (Γn)χR
→ ΓχR

strongly, therefore

lim
n→∞ TrHN−k

(
Gn

χR,N−k

)= TrHN−k (GχR,N−k)

where ΓχR
= GχR,0 ⊕ · · · ⊕ GχR,N . Recall GNN = 0 hence GχR,N = (χR)⊗NGNN(χR)⊗N = 0

also. As a consequence,

lim
n→∞

N∑
k=0

(
EV (N − k) + E0(k)

)
TrHN−k

(
Gn

χR,N−k

)

=
N∑

k=1

(
EV (N − k) + E0(k)

)
TrHN−k (GχR,N−k).

Using that the term in (56) converges as n → ∞ since χR(x)2ηR(y)2χ3R(y)2 has a compact
support, we arrive at the estimate
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ΣV (N) = lim
n→∞ E V (Γn) �

N∑
k=1

(
EV (N − k) + E0(k)

)
TrHN−k (GχR,N−k)

+ 2
∫
Rd

∫
Rd

W(x − y)χR(x)2ηR(y)2χ3R(y)2[Γ ](2)(x, y;x, y) dx dy + εR. (59)

Passing finally to the limit R → ∞ (using that ΓχR
→ Γ strongly by Lemma 11, hence GχR,k →

Gkk as R → ∞) gives the desired estimate (53) and ends the proof. �
4. Finite-rank approximation of many-body systems

In the previous two sections we have introduced geometric tools for many-body systems and
we have illustrated their use on linear systems (the HVZ theorem). In practice, physicists and
chemists resort to approximate models which are simpler to handle and to simulate numerically.
These approximations are usually classified in two different categories:

• those in which the set of states is reduced,
• those in which the energy is modified by adding nonlinear empirical terms.

These two methods can of course be combined: in the so-called Kohn–Sham method of atoms
and molecules [28], all states are assumed to be of Hartree–Fock type but the energy is further
modified to take into account exchange-correlation effects. Both techniques usually lead to non-
linear models, either because the class of states is replaced by a manifold or because the energy
is itself nonlinear.

The purpose of this section is to study methods of the first kind in which the many-body
energy is kept linear, but the set of states is reduced. Methods from the second category will be
considered in Section 5. We study here the so-called finite-rank approximation which consists
in assuming that the N -body wavefunction can be expanded as tensor products of finitely many
unknown one-body functions {ϕ1, . . . , ϕr}. For fermions, this leads to the celebrated Hartree–
Fock method [35] when r = N , and to the widely used multiconfiguration methods [19,30] when
r > N . For bosons, the Hartree method is obtained when r = 1.

We investigate properties of geometric limits of finite-rank states, and deduce nonlinear ver-
sions of the HVZ theorem. As we will see, the situation is however still rather unclear for bosons
and our results are only satisfactory for fermions in the Hartree–Fock approximation or for multi-
configuration methods with repulsive interactions. We hope to come back to the other interesting
cases in the future.

4.1. States living on a subspace of H, finite-rank states

4.1.1. Definitions

Definition 2 (States living on a subspace). Let H′ ⊂ H be a closed subspace of the one-body
space H1 and P be the orthogonal projection onto H′. A state Γ ∈ S(F �N) is said to live on H′
when ΓP = Γ .

The smallest subspace H′ such that Γ lives on H′ can be called the support of Γ . The following
is a reformulation of a result of Löwdin [43] stating that the support can be found by means of
the one-body density matrix [Γ ](1) only.
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Lemma 13 (Löwdin’s criterion). Let Γ be a state on F �N and P : H1 → H1 be an orthogonal
projector. The following assertions are equivalent:

1. Γ lives on PH1, that is ΓP = Γ ;
2. P [Γ ](1)P = [Γ ](1);
3. PΓ P = Γ where P = 1 ⊕ P ⊕ (P ⊗ P) ⊕ · · · ⊕ P ⊗N .

Proof. It is clear from the definition of geometric localization that (1.) implies (2.). If we denote
by Gk� the matrix elements of Γ , (3.) means that P ⊗kGk�P

⊗� = Gk� for every 0 � k, � � N .
Using (29), this is easily seen to imply that P ⊗p[Γ ](p,q)P ⊗q = [Γ ](p,q) for all 0 � p,q � N ,
hence ΓP = Γ and (1.) holds true.

It therefore only remains to show that (2.) implies (3.). We denote as usual by Gk� the matrix
elements of Γ and note that, by (29),

[Γ ](1) =
N∑

k=1

[Gkk](1).

Our assumption that P [Γ ](1)P = [Γ ](1) implies that

P [Gkk](1)P = [Gkk](1) for all k = 1, . . . ,N. (60)

Indeed, we have P ⊥[Γ ](1)P ⊥ = 0 = ∑N
k=1 P ⊥[Gkk](1)P ⊥ where P ⊥ = 1 − P . Since

[Gkk](1) � 0 for all k = 1, . . . ,N , this implies that P ⊥[Gkk](1)P ⊥ = 0. Now (60) follows for
instance from the fact that

(
P ⊥[Gkk](1)

)(
P ⊥[Gkk](1)

)∗ �
∥∥[Gkk](1)

∥∥P ⊥[Gkk](1)P ⊥ = 0 (61)

which shows that P ⊥[Gkk](1) = [Gkk](1)P ⊥ = 0.
We now prove that (60) implies that P ⊗kGkkP

⊗k = Gkk . We have for any P2, . . . ,Pk ∈
{P,P ⊥},

TrHk

(
P ⊥ ⊗ P2 ⊗ · · · ⊗ Pk Gkk P ⊥ ⊗ P2 ⊗ · · · ⊗ Pk

)
� TrHk

(
P ⊥ ⊗ 1 ⊗ · · · ⊗ 1Gkk P ⊥ ⊗ 1 ⊗ · · · ⊗ 1

)= 1

k
TrH1

(
P ⊥[Gkk](1)

)= 0,

by (25). The argument is the same if P ⊥ is not in the first place of the tensor product but appears
at another position. Arguing as before, this implies P ⊗kGkkP

⊗k = Gkk . For the off-diagonal
terms, we have Gk�G�k � Gkk since 0 � Γ � 1. This can be used to show that P ⊥ ⊗ P2 ⊗ · · · ⊗
PkGk� = 0, hence P ⊗kGk�P

⊗� = Gk�. �
We now use the previous concept to define finite-rank states.

Definition 3 (Finite-rank states). A state Γ ∈ S(F �N) is said to have a finite rank when it lives
on a subspace of finite dimension, that is, when there exists a projector P of finite rank such that
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ΓP = Γ . The rank of Γ is then defined as

rank(Γ ) = min
{
rank(P ): ΓP = Γ, P 2 = P = P ∗}= rank

([Γ ](1)
)
.

The last equality follows from Lemma 13.

Example 14 (Coherent, Hartree and Hartree–Fock states). For bosons, both the Hartree state
|ϕ⊗N 〉 and the coherent state W(f )|Ω〉 have rank r = 1. For fermions, a pure Hartree–Fock state
ϕ1 ∧ · · · ∧ ϕN has rank r = N .

The following says that finite-rank states are dense in S(F �N).

Lemma 14 (Approximation by finite-rank states). Any state Γ ∈ S(F �N) is a strong limit of
finite-rank states.

Proof. Let {ϕj } be an orthonormal basis of H and Pn :=∑n
j=1 |ϕj 〉〈ϕj |. Then Pn → 1 strongly

in H. Therefore by Lemma 11, it holds ΓPn → Γ strongly. But ΓPn has finite rank since
(ΓPn)Pn = Γ(Pn)2 = ΓPn by Remark 14. �

We now show that any state of finite rank is a finite linear combination of monomials in the
creation and annihilation operators.

Lemma 15 (Expansion of finite-rank states). Assume that ΓP = Γ for some orthogonal projector
P =∑r

j=1 |ϕj 〉〈ϕj | of finite rank r , and let (Gk�)1�k,��N be the matrix elements of Γ . Then
each Gk� can be expanded as follows:

Gk� =
∑

I={i1�···�ik}⊂{1,...,r}
J={j1�···�j�}⊂{1,...,r}

cIJ a†(ϕi1) · · ·a†(ϕik )|Ω〉〈Ω|a(ϕj�
) · · ·a(ϕj1) (62)

for some cIJ ∈ C.

Proof. This follows from the fact that P ⊗kGk�P
⊗� = Gk�, see (3.) in Lemma 13. �

Consider a finite-rank state, that is such that [Γ ](1) has finite rank r (Lemma 13). Then we can
write [Γ ](1) =∑r

j=1 nj |ϕj 〉〈ϕj | for an orthonormal system {ϕj }rj=1 of eigenvectors of [Γ ](1).
The nj are usually called the occupation numbers and the ϕj the natural orbitals of Γ . Lemma 15
then shows that any finite-rank state can be expanded by means of its natural orbitals. This is
the original version of Löwdin’s Expansion Theorem [43] (see also Lemma 1.1(ii) in [19] and
Lemma 1 in [30]).

The simplest example is that of a state of the form Γ = 0 ⊕ · · · ⊕ |Ψ 〉〈Ψ |, that is a pure
N -body state. Then if rank([Γ ](1)) � r and {ϕ1, . . . , ϕr} is an associated orthonormal system of
natural orbitals, it holds

Ψ =
∑

1�i1�···�iN�r

ci1,...,iN ϕi1 ◦ · · · ◦ ϕiN

where ◦ = ∧ (fermions) or ∨ (bosons).
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4.1.2. Geometric properties of finite-rank states
We now turn to the properties of finite-rank states with regard to geometric localization and

convergence. The following is a simple consequence of the characterization of the rank in terms
of the one-body density matrix (Lemma 13).

Lemma 16 (Localization and geometric limit of finite-rank states). (1) If a state Γ ∈ S(F �N)

has rank � r , then for every localization operator B , 0 � BB∗ � 1, the corresponding localized
state ΓB has rank � r .

(2) If {Γn} is a sequence of states on F �N of rank � r and Γn ⇀g Γ geometrically, then Γ

has rank � r .

Proof. The result follows from the fact that when rank([Γ ](1)) � r , then rank(B[Γ ](1)B∗) � r

for every localization operator B . Similarly, when [Γn](1) ⇀∗ [Γ ](1) weakly–∗ in H, then
rank([Γ ](1)) � lim infn→∞ rank([Γn](1)). �

For N -body systems we often have to study sequences of states of the form Γn = 0 ⊕ · · · ⊕
|Ψn〉〈Ψn|. When Γn ⇀g Γ geometrically and when each Γn has rank � r , then we have by
Lemma 16, Γ = G00 ⊕ · · · ⊕ GNN where each Gkk has rank � r . A similar property holds
for a localized state ΓB . This information is unfortunately not enough to be really useful in
applications. It is fortunate that this can be precised in the fermionic case, as expressed in the
following important result.

Lemma 17 (Localization of a fermionic N -body finite-rank state). Let G ∈ S(HN
a ) be a fermionic

state of the N -body space HN
a , of rank � r , and Γ = 0 ⊕ · · · ⊕ 0 ⊕ G be the corresponding state

in F �N
a . Let B be a localization operator, 0 � BB∗ � 1, and denote by ΓB = GB

00 ⊕ · · · ⊕ GB
NN

the corresponding localized state in F �N
a . Then each GB

kk belongs to the convex hull of k-body
states of rank at most r − N + k: we have

GB
kk =

∑
j

αk
j S

k
j

with Sk
j ∈ S(Hk

a), αk
j � 0 and

rank
(
Sk

j

)
� r − N + k.

This result does not hold in general for bosons. In Example 11 we have seen that the local-
ization Γ = GB

00 ⊕ · · · ⊕ GB
NN of a Hartree state Γ = 0 ⊕ · · · ⊕ |ϕ⊗N 〉〈ϕ⊗N | with rank r = 1

satisfies rank(GB
kk) = 1 for all k = 1, . . . ,N . We now provide the proof of Lemma 17.

Proof of Lemma 17. Since G has rank at most r , there exists a projector P =∑r
j=1 |ϕj 〉〈ϕj | of

rank r such that ΓP = Γ . By linearity we can assume that G is a pure state, that is G = |Ψ 〉〈Ψ |
where

Ψ =
∑

ci1···iN ϕi1 ⊗ · · · ⊗ ϕiN . (63)

1�i1,...,iN�r
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We follow here the notation of [30]: ci1···iN reflects the symmetry of the wavefunction, that is
ciσ(1)···iσ (N)

= ε(σ )ci1···iN and ci1,...,iN = 0 as soon as two indices are equal.
We have the freedom to choose any orthonormal basis of the finite-dimensional space

V = span(ϕj ) = Range(P ). Indeed, if we replace the functions ϕj by ϕ′
j =∑r

i=1 Uijϕj for
an r × r unitary matrix U = (Uij ), then (63) is still valid, with adequately modified configura-
tion coefficients c′

i1,...,iN
(see formula (12) in [30]). Taking advantage of this gauge freedom, we

can diagonalize any matrix of the form 〈ϕi,Mϕj 〉 for a well-chosen one-body self-adjoint oper-
ator M . Here we choose M = B∗B , that is, we work with an orthonormal system for which the
r × r hermitian matrix (〈Bϕi,Bϕj 〉)1�i,j�r is diagonal. In particular we have 〈Bϕj ,Bϕj 〉 = 0
if i �= j , which dramatically simplifies the expression of ΓB . Using formula (49), we find that

GB
kk =

(
N

k

) ∑
1��k+1,...,�N�r

(
1 − ‖Bϕ�k+1‖2) · · · (1 − ‖Bϕ�N

‖2)|Ψ�k+1···�N
〉〈Ψ�r+1···�N

| (64)

where

Ψ�k+1···�N
=

∑
i1,...,ik∈{1,...,r}

ci1···ik�k+1···�N
Bϕi1 ⊗ · · · ⊗ Bϕik

=
∑

i1,...,ik∈{1,...,r}\{�k+1,...,�N }
ci1···ik�k+1···�N

Bϕi1 ⊗ · · · ⊗ Bϕik . (65)

In (65), we have used that, for fermions, ci1,...,iN = 0 when two indices coincide. Clearly,
Ψ�k+1···�N

has rank � r − N + k and the result follows. �
Example 15 (Localization of pure Hartree–Fock states). Let Ψ := ϕ1 ∧ · · · ∧ ϕN be a pure
Hartree–Fock state and Γ := 0 ⊕ · · · ⊕ |Ψ 〉〈Ψ | be the corresponding state in F �N

a . The lo-
calization of Γ is ΓB = GB

00 ⊕ · · · ⊕ GB
NN , with

GB
kk =

∑
I={i1<···<ik}⊂{1,...,N}

( ∏
α∈{1,...,N}\I

(
1 − ‖Bϕα‖2))|Bϕi1 ∧ · · · ∧ Bϕik 〉〈Bϕi1 ∧ · · · ∧ Bϕik |,

(66)

assuming that the orbitals have been chosen such as to ensure 〈Bϕi,Bϕj 〉 = 0 when i �= j .

From Lemma 17 we can deduce the general form of the geometric limit of fermionic N -body
finite-rank states.

Lemma 18 (Geometric limit of fermionic N -body finite-rank states). Let Γn = 0 ⊕ · · · ⊕ Gn ∈
F �N be a sequence of fermionic N -body states, with rank(Γn) � r for all n. If Γn ⇀g Γ =
G00 ⊕ · · · ⊕ GNN geometrically, then each Gkk belongs to the convex hull of k-body states of
rank at most r − N + k.

Proof. Let {ϕi} be any fixed orthonormal basis of H and PJ :=∑J
j=1 |ϕj 〉〈ϕj | be the projector

onto the space spanned by the first J elements of this basis. Since PJ is compact for every
fixed J , we have by Corollary 10, (Γn)PJ

→ (Γ )PJ
strongly. By Lemma 17, we know that each

(Γn)P can be written in the form (Γn)P =⊕N
G

J,n, each G
J,n being a convex combinations
J J k=0 kk kk
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of states of rank at most r − N + k. By strong convergence, we infer that (Γ )PJ
has the same

property. Now since (Γ )PJ
→ Γ strongly as J → ∞ by Lemma 11, we conclude that Γ also

satisfies the same property. �
Example 16 (Geometric limit of pure Hartree–Fock states). Let Ψn := ϕn

1 ∧ · · · ∧ ϕn
N be a pure

Hartree–Fock state and Γn := 0⊕· · ·⊕ |Ψn〉〈Ψn| be the corresponding state in F �N
a . We assume

that ϕn
j ⇀ ϕj weakly in H, for j = 1, . . . ,N . Up to applying an n-independent unitary transform

U to the ϕn
j ’s we may also suppose that 〈ϕi,ϕj 〉 = 0 when i �= j . We then have that Γn ⇀g

G00 ⊕ · · · ⊕ GNN geometrically, with

Gkk =
∑

I={i1<···<ik}⊂{1,...,N}

( ∏
α∈{1,...,N}\I

(
1 − ‖ϕα‖2))|ϕi1 ∧ · · · ∧ ϕik 〉〈ϕi1 ∧ · · · ∧ ϕik |. (67)

We see that

either there is strong convergence, ϕn
j → ϕj for all j = 1, . . . ,N , hence Gkk = 0 for all k =

0, . . . ,N − 1;
or all the particle are lost, ϕj = 0 for all j = 1, . . . ,N , thus Gkk = 0 for all k = 1, . . . ,N ,

that is Γ = |Ω〉〈Ω|;
or not all the particle are lost, that is 0 < ‖ϕj‖ < 1 for at least one ϕj , and there exists

1 � k � N − 1 such that Gkk �= 0.

Indeed if we assume (up to reordering) that ϕ1, . . . , ϕN1 �= 0 but ϕN1+1 = · · · = ϕN = 0,
we see that Tr(GN1 N1) �

∏N1
j=1 ‖ϕj‖2 > 0. The fact that we cannot have Gkk = 0 for all

k = 1, . . . ,N − 1 while both G00 and GNN are �= 0 will be very useful later in the proof of
Theorem 22.

4.2. HVZ-type results for finite-rank many-body systems

4.2.1. A general result
Let us come back to the N -body Hamiltonian

HV (N) =
N∑

j=1

(
−�xj

2
+ V (xj )

)
+

∑
1�k���N

W(xk − x�)

which we have already introduced in (37). As usual we make the assumption that W is even, and
that V and W can both be written in the form

∑K
i=1 fi with fi ∈ Lpi (Rd) where max(1, d/2) <

pi < ∞ or pi = ∞ but fi → 0 at infinity.
For bosons or fermions we may introduce the approximated ground state energy obtained by

restricting to finite-rank states:

EV
r (N) := inf

Ψ ∈H 1
a/s ((R

d )N )

rank(Ψ )�r

‖Ψ ‖=1

〈
Ψ, HV (N)Ψ

〉
. (68)

We clearly have EV (N) � EV (N) for all r , and limr→∞ EV (N) = EV (N).
r r
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Let us emphasize that, although the energy functional is the same as for the full linear model,
we now have the additional constraint that rank(Ψ ) � r which is itself highly nonlinear. Thus the
so-obtained Euler–Lagrange equations are themselves nonlinear. If r = 1, one gets for bosons
the Hartree nonlinear equation. For fermions, one obtains the Hartree–Fock equations [35,42]
for r = N and the multiconfiguration equations [19,30] for r > N .

We are interested here in existence results for ground states by means of geometric methods.
The following theorem is a generalization to the nonlinear case of the HVZ Theorem 12.

Theorem 19 (Finite-rank HVZ-type result, general case). If the following inequalities hold true

EV
r (N) < EV

r (N − k) + E0
r (k), ∀k = 1, . . . ,N, (69)

then all the minimizing sequences {Ψn} for the variational problem EV
r (N) are precompact,

hence converge, up to a subsequence, to a ground state of rank � r .
If all the particles are fermions, (69) can be replaced by

EV
r (N) < EV

r−k(N − k) + E0
r−N+k(k), ∀k = 1, . . . ,N. (70)

Proof. Up to a subsequence we may assume that Ψn ⇀ Ψ weakly in H 1
a/s((R

d)N), and that the

corresponding state Γn := 0 ⊕· · ·⊕ |Ψn〉〈Ψn| ∈ S(F �N) converges geometrically to Γ = G00 ⊕
· · · ⊕ GNN . If ‖Ψ ‖2 = Tr(GNN) = 1 then we have strong convergence Γn → Γ in S1(F �N),
hence Ψn → Ψ in L2. Under our assumptions on W , this can then be used to prove that the
two-body term converges strongly:

lim
n→∞

∑
1�i<j�N

∫
Rd

dx1 · · ·
∫
Rd

dxN W(xi − xj )
∣∣Ψn(x1, . . . , xN)

∣∣2

=
∑

1�i<j�N

∫
Rd

dx1 · · ·
∫
Rd

dxN W(xi − xj )
∣∣Ψ (x1, . . . , xN)

∣∣2.
Since the interaction term is the only one which can fail from being weakly lower semi-
continuous, we deduce that

EV
r (N) = lim

n→∞ E V (Ψn) � E V (Ψ ) � EV
r (N),

hence that Ψ is a ground state for EV (N). Finally, strong convergence in H 1
a/s((R

d)N) is

obtained by noting that limn→∞ E V (Ψn) = E V (Ψ ), hence that the kinetic energy must also con-
verge.

Summarizing the previous paragraph, we only have to prove that Gkk = 0 for all k =
0, . . . ,N − 1. We follow the proof of Theorem 12: we localize the system in and outside a ball of
radius R, by means of a smooth partition of unity, χ2

R + η2
R = 1. In the lower bound correspond-

ing to (58), we may use that each Gn
χR,k has rank � r by Lemma 16 (or rank � r − N + k for

fermions, by Lemma 17). To be more precise, each Gn can be diagonalized as follows
χR,k
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Gn
χR,k =

∑
j

g
R,k,n
j

∣∣Ψ R,k,n
j

〉 〈
Ψ

R,k,n
j

∣∣

where g
R,k,n
j � 0 and (Pn)

⊗kΨ
R,k,n
j = Ψ

R,k,n
j for an orthogonal projector Pn of rank � r (or

r + N − k for fermions). Saying differently each Gn
χR,k is a convex combination of pure states

of rank � r . Hence we have an estimate of the form

TrHk

(
HV (k)Gn

χR,k

)
� EV

r (k)TrHk

(
Gn

χR,k

)
,

with EV
r (k) replaced by EV

r−N+k(k) for fermions. A similar argument applies to the terms in-
volving Gn

ηR,k . Taking the limit n → ∞ first and then removing the radius R of the localization,
following the proof of Theorem 12, we arrive at the following estimate, similar to (53):

EV
r (N) �

N∑
k=0

(
EV

r (k) + E0
r (N − k)

)
TrHk (Gkk)

(with an obvious modification for fermions). The term on the right is a convex combination of
EV

r (N) (for k = N ) and EV
r (k)+E0

r (N − k) for k = 0, . . . ,N − 1. When (69) holds, this is only
possible if Gkk = 0 for all k = 0, . . . ,N − 1. �

Unfortunately Theorem 19 only provides a sufficient condition for the compactness of mini-
mizing sequences. In general we do not expect that (69) (or (70) for fermions) is also a necessary
condition. The reason is that when two systems are placed far away in space, the rank of the
whole system becomes the sum of the ranks of the two subsystems. This sum being 2r for (69)
and 2r −N for (70), the inequalities (69) and (70) are not expected to be correct in general when
the strict inequality < is replaced by a large inequality �. It is usually when large inequalities
hold true that one can get necessary and sufficient conditions.

In the next section we will give two examples for fermions, due to Friesecke [19], for which
one can reduce (70) to inequalities of the form

EV
r (N) < EV

r−r ′(N − k) + E0
r ′(k), (71)

hence providing a necessary and sufficient condition of compactness of minimizing sequences.
The case of geometric methods for finite-rank bosonic systems is still largely unexplored.

4.2.2. Two corollaries for fermions
We give two corollaries of Theorem 19 in the fermionic case. These two results are contained

in a paper [19] of Friesecke (see in particular Corollary 6.1 of [19]), with a proof that is not very
much different from our approach. Our formalism automatically takes care of the complicated
geometrical methods for finite-rank states which was detailed in [19] (in particular, the reader
should compare Friesecke’s Lemma 4.1 in [19] with our Lemma 17).

The first result deals with the Hartree–Fock case, corresponding to having rank r = N .

Corollary 20 (Hartree–Fock HVZ-type). Assume that all the particles are fermions, and that V

and W satisfy the same assumptions as before. Then the following assertions are equivalent:
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1. EV
N(N) < EV

N−k(N − k) + E0
k (k) for all k = 1, . . . ,N ;

2. all the minimizing sequences {Ψn} for the Hartree–Fock ground state energy EV
N(N) are

precompact in H 1
a ((Rd)N), hence converge, up to a subsequence, to a minimizer for EV

N(N).

Proof. The implication (1.) ⇒ (2.) follows from Theorem 19 in the fermionic case, with r = N .
To prove the converse inequality we first notice that it always holds EV

N(N) � EV
N−k(N − k) +

E0
k (k) for all k = 1, . . . ,N . This is easily seen by taking a trial function of the form

Ψn = Ψ 1 ∧ Ψ 2(· − n�v) (72)

where �v ∈ R
d \ {0}, Ψ 1 = ϕ1 ∧ · · · ∧ ϕN−k and Ψ 2 = ϕN−k+1 ∧ · · · ∧ ϕN are trial functions for,

respectively, the problems EV
N−k(N − k) and E0

k (k). For simplicity one can take all the ϕj ’s of
compact support. If there is equality EV

N(N) = EV
N−k(N − k) + E0

k (k) for some k ∈ {1, . . . ,N},
then a minimizing sequence for EV

N(N) of the same form as (72) can be constructed and it is
clearly not compact. This shows the converse implication (2.) ⇒ (1.). �

There are now many different proofs for the existence of ground states in Hartree–Fock theory.
For atoms and molecules, the first is due to Lieb and Simon [35]. An approach based on a second-
order Palais–Smale information was proposed later by Lions [42]. These two methods rely on a
formulation of the problem in terms of the N orbitals ϕ1, . . . , ϕN of the Hartree–Fock state as
well as on the assumption that W � 0. A different approach due to Lieb [32] (see also [2,4,3])
uses generalized Hartree–Fock states and the fact that, when W � 0, a generalized ground state
is necessarily a pure state. In this formulation the minimization problem is expressed using as
main variable the one-body density matrix [Γ ](1) which completely characterizes the Hartree–
Fock state. When W is not positive, it cannot be guaranteed that a generalized ground state is
necessarily a pure state, and Lieb’s variational principle of [32] cannot be employed.

Our approach here (due first to Friesecke [19]) is completely different and it is based on
geometric properties of N -body Hartree–Fock states. It leads to quantized inequalities of the
form of that of Corollary 20, without any assumption on the sign of W .

Of course, the next step when studying a specific model is to prove that the binding inequality
holds true. As explained by Friesecke in [19], this can be done by induction: using that there exist
ground states for the problems with k particles (1 � k < N ), one tries to prove by a convenient
trial state that EV

N(N) < EV
N−k(N − k) + E0

k (k), showing the existence of a ground state for
EV

N(N). For atoms and molecules, this argument can be carried over as soon as N − 1 < Z,
where Z is the total charge of the nuclei.

Our second application of Theorem 19 in the fermionic case is the multiconfiguration case
N � r for repulsive interactions.

Corollary 21 (Multiconfigurational HVZ-type in the repulsive case). We assume that all the
particles are fermions, that V and W satisfy the same assumptions as before and, additionally,
that W � 0. For every r � N , the following two assertions are equivalent:

1. EV
r (N) < EV

r−1(N − 1);
2. all the minimizing sequences {Ψn} for EV

r (N) are precompact in H 1
a ((Rd)N), hence con-

verge, up to a subsequence, to a minimizer for EV
r (N).
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The reason why we restrict to W � 0 is because it then holds

E0
r−N+k(k) = E0

k (k) = 0.

Hence if we insert this in (70) we are left with an inequality of the form of (71). It is still an open
question to understand the geometric behavior of multiconfiguration methods for non-repulsive
interaction potentials (see, in particular, the comments on page 56 of [19]).

Proof of Corollary 21. The proof follows that of Corollary 20, using that E0
r−N+k(k) = 0 since

W � 0, and that infk=1,...,N {EV
r−k(N − k)} = EV

r−1(N − 1). �
Again for atoms and molecules, one can prove by induction the existence of a ground state as

soon as N < Z + 1, see [19].

4.2.3. Translation-invariant Hartree–Fock theory
In this subsection we study a translation-invariant Hartree–Fock model, that is, we assume

that V = 0. It is known that (by translation-invariance) the N -body Hamiltonian H 0(N) never
has any ground state, but it can happen that there is one when restricting to Hartree–Fock states.
Of course translation-invariance is not really broken: minimizers are not unique as they can
be translated anywhere in space and it is the whole set of minimizers which is invariant under
translations.

Because of the action of the group of translations it can only be hoped to prove compactness
of all minimizing sequences up to translations.

Theorem 22 (Translation-invariant Hartree–Fock). We assume that W satisfies the same as-
sumptions as before (but W need not be non-negative). Then for all N � 2, the following
assertions are equivalent:

1. E0
N(N) < E0

N−k(N − k) + E0
k (k) for all k = 1, . . . ,N − 1;

2. all the minimizing sequences {Ψn} for E0
N(N) are precompact in H 1

a ((Rd)N) up to transla-
tions. Hence there exists {vn} ⊂ R

d such that Ψn(· − vn) converges, up to a subsequence, to
a Hartree–Fock minimizer for E0

N(N).

The notation Ψn(· − vn) is interpreted in the sense of (x1, . . . , xN) �→ Ψn(x1 − vn, . . . ,

xN − vn). A result of the same kind was shown for the first time by Lenzmann and the author
in [29], for a model of neutron stars with a pseudo-relativistic kinetic energy and the gravitational
Newton interaction. The pseudo-relativistic kinetic energy yields new difficulties concerning
boundedness from below of the energy and localization errors (see Lemma A.1 in [29]). For
nonrelativistic systems one easily arrives at the following result:

Corollary 23 (Nonrelativistic Newtonian Hartree–Fock systems). Assume that all the particles
are fermions, that d = 3 and W(x − y) = −g/|x − y| with g > 0. Then E0

N(N) has a Hartree–
Fock ground state for all N � 2 (hence infinitely many by translation-invariance).

Proof. The binding inequality E0
N(N) < E0

N−k(N − k) + E0
k (k) can be proved by induction

using Newton’s theorem, as explained in [29]. �
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We are now ready to prove Theorem 22.

Proof of Theorem 22. It was already shown in the proof of Corollary 20 that E0
N(N) �

E0
N−k(N − k) + E0

k (k) for all k = 1, . . . ,N − 1. Furthermore, if there is equality for some k,
then one can construct a minimizing sequence which is not compact, even up to translations.
Therefore we only have to prove that (1.) ⇒ (2.).

To this end, we consider one minimizing sequence Ψn = ϕn
1 ∧ · · · ∧ ϕn

N for E0
N(N) and we

define the associated state in F �N , Γn = 0 ⊕ · · · ⊕ |Ψn〉〈Ψn|. Since E 0(Γn) is bounded, by (38)
we have a uniform bound on the kinetic energy:

TrH
(
(−�)[Γn](1)

)
� C.

This itself implies a uniform bound on the H 1(Rd) norm of
√

ρΓn , by the Hoffmann-Ostenhof
inequality (42).

Our goal is to prove convergence of Ψn(·− vn) for an appropriate translation vn. The first step
is to determine this translation vn by detecting a piece of mass which retains its shape for n large
and, possibly, escapes to infinity. We therefore consider all the possible geometric limits, up to
translations, of subsequences of {Γn} and we define the largest possible average particle number
that these limits can have:

m
({Γn}

) := sup
{
TrF (N Γ ): ∃{�vk} ⊂ R

d, τ�vk
Γnk

τ−�vk
⇀g Γ

}
. (73)

Here τ�v is the translation unitary operator defined by (τ�vΨ )(x1, . . . , xN) = Ψ (x1 −�v, . . . , xN −�v)

when Ψ ∈ HN and extended by linearity on the whole Fock space. By the strong convergence
ρΓn → ρΓ in L1

loc(R
d) when Γn ⇀g Γ (with bounded kinetic energy), we also have that

m
({Γn}

)= sup

{∫
Rd

ρ: ∃{�vk} ⊂ R
d, ρΓnk

(· − �vk)
1/2 ⇀ ρ1/2 weakly in H 1(

R
d
)}

. (74)

The definition of m({Γn}) is inspired of a result of Lieb [33] as well as of the concentration-
compactness method of Lions [38,39]. The purpose of m({Γn}) is to detect the piece containing
the largest average number of particles, which possibly escape to infinity (when |�vk| → ∞).
Following Lions’ terminology, a sequence {Γn} is said to vanish when m({Γn}) = 0, which is
equivalent to the property that

∀{�vn} ⊂ R
d, τ�vn

Γnτ−�vn
⇀
g

|Ω〉〈Ω|

or that

∀{�vn} ⊂ R
d, ρΓn(· − �vn) → 0 a.e.

As we now explain, saying that m({Γn}) = 0 is actually quite a strong statement.

Lemma 24 (Vanishing). Let {Γn} be any sequence of states on F �N , with a uniformly bounded
kinetic energy. The following assertions are equivalent:
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(i) m({Γn}) = 0;
(ii) for all R > 0, one has limn→∞ supx∈Rd

∫
B(x,R)

ρΓn = 0;

(iii) ρΓn → 0 strongly in Lp(Rd) for all 1 < p < p∗, where p∗ = d/(d − 2) if d � 3, p∗ = ∞ if
d = 1,2.

Proof. The fact that (i) ⇒ (ii) follows from the strong local convergence of ρΓn . The implication
(ii) ⇒ (iii) was proved first by Lions in [39] (Lemma I.1). Finally, it is clear that if ρΓn → 0
strongly in one Lp(Rd), then ρΓn(·−xn) → 0 strongly in Lp(Rd) for every sequence {xn} ⊂ R

d ,
hence (i) follows. �

We will now show using Lemma 24 that our Hartree–Fock minimizing sequence cannot van-
ish. We have, using Wick’s Theorem for generalized Hartree–Fock states [35,4],

∣∣∣∣
〈
Ψn,

( ∑
1�i<j�N

W(xi − xj )

)
Ψn

〉∣∣∣∣
�
〈
Ψn,

( ∑
1�i<j�N

|W |(xi − xj )

)
Ψn

〉

= 1

2

∫
Rd

∫
Rd

∣∣W(x − y)
∣∣(ρΓn(x)ρΓn(y) − ∣∣[Γn](1)(x, y)

∣∣2)dx dy

� 1

2

∫
Rd

ρΓn

(
ρΓn ∗ |W |).

When m({Γn}) = 0, we have that ρΓn → 0 in Lp(Rd) for all 1 < p < p∗ by Lemma 24. Under
our assumptions on W , this implies that the interaction term converges to 0. The kinetic energy
being non-negative, this shows that in the case of vanishing

E0
N(N) = lim

n→∞ E 0(Γn) � 0,

which contradicts the assumption that (1.) holds true (it is clear that (1.) implies that E0
k (k) �

kE0
1(1) = 0 hence, since the inequality is strict in (1.), that E0

N(N) < 0).
We have shown that m({Γn}) > 0. This proves that there exists a sequence {�vk} ⊂ R

d and
a subsequence Γnk

such that Γ ′
k := τ�vk

Γnk
τ−�vk

⇀g Γ with Γ �= |Ω〉〈Ω|. Since the problem
E0

N(N) is invariant under translations, the new sequence Γ ′
k is also a minimizing sequence for

E0
N(N). To simplify our exposition, we do not change our original notation and we assume

that Γn ⇀g Γ with Γ = G00 ⊕ · · · ⊕ GNN . The assumption that Γ �= |Ω〉〈Ω| means that 0 �
G00 < 1. As usual strong convergence of {Ψn} in L2 implies strong convergence in H 1 and it
suffices to prove that Gkk = 0 for all k = 0, . . . ,N − 1.

We can now follow the proof of Theorem 19 which uses a localization in a ball of radius R

as well as strong convergence in this ball, before passing to the limit R → ∞. This yields an
inequality of the form
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E0
N(N) �

N∑
k=0

(
E0

N−k(N − k) + E0
k (k)
)

TrHN−k (Gkk).

Note that in comparison with Theorem 19, the terms corresponding to k = 0 and k = N are equal.
When the binding inequality holds, this is only possible when Gkk = 0 for all k = 1, . . . ,N − 1.
Hence we have

Γ = G00 ⊕ 0 ⊕ · · · ⊕ 0 ⊕ GNN.

We also know that G00 �= 1, hence GNN �= 0. We have already explained in Example 16 that the
only geometric limit of a sequence of pure Hartree–Fock states of this form must have G00 = 0.
This ends the proof of Theorem 22. �
5. Many-body systems with effective nonlinear interactions

In this section we consider a system of N quantum particles whose many-body energy is not
linear with respect to the state |Ψ 〉〈Ψ | of the system, but also contains a nonlinear term F :

E (Ψ ) = 〈Ψ,H(N)Ψ
〉+ F

(|Ψ 〉〈Ψ |).
The purpose of the last term is often to effectively describe complicated interactions between our
N particles, through a second quantum system which has been eliminated from the model. Even
when the model is translation-invariant, the N particles can form bound systems thanks to the
nonlinear term F .

Situations of this kind are ubiquitous in quantum physics. In Section 5.2, we study the example
of the N -polaron, which is a system of N electrons in a polar crystal. In the so-called Pekar–
Tomasevich model, the crystal is eliminated and replaced by an effective nonlinear Coulomb-like
force between the electrons.

In nuclear physics, strong forces between nucleons are also often described by effective non-
linear terms. The most celebrated ones are the Skyrme [63] and the Gogny [10] forces. Although
these methods have been mainly used in the context of mean-field theory, their extension to
correlated models was recently considered in [49].

In this section we illustrate our geometric techniques by studying the simple case of a concave
nonlinear term F depending only on the density ρΨ of the system. We state a general theorem in
Section 5.1 and apply it to the multi-polaron in Section 5.2.

5.1. A general result

Let us consider a system of N spinless particles (bosons or fermions) in R
d , interacting via a

potential W and a nonlinear effective term F . For simplicity we assume that F only depends on
the density of charge ρΨ of the many-body state Ψ :

E (Ψ ) :=
〈
Ψ,

(
N∑

j=1

−�xj

2
+

∑
1�k<��N

W(xk − x�)

)
Ψ

〉
+ F(ρΨ ). (75)
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We also introduce the corresponding ground state energy, for bosons or fermions,

E(N) = inf
Ψ ∈H 1

a/s ((R
d )N )

‖Ψ ‖=1

E (Ψ ). (76)

As before we make the assumption that W can be written in the form
∑K

i=1 Wi with
Wi ∈ Lpi (Rd) where max(1, d/2) < pi < ∞ or pi = ∞ but Wi → 0 at infinity. As for the
functional F , we assume that it satisfies the following assumptions:

(A1) (Subcriticality) F is a locally uniformly continuous functional on Lp1(Rd) ∩ Lp2(Rd), for
some 1 < p1 � p2 < p∗, where p∗ = d/(d − 2) when d > 2 and p∗ = ∞ when d = 1,2,
and such that F(0) = 0. Furthermore, there exist 0 < ε < 1 and C > 0 such that

∀ϕ ∈ H 1(
R

d
)
,

∫
Rd

|ϕ|2 � N ⇒ F
(|ϕ|2)� −ε

2

∫
Rd

|∇ϕ|2 − C. (77)

(A2) (Translation invariance) F(ρ(�v + ·)) = F(ρ) for all ρ ∈ Lp1(Rd) ∩ Lp2(Rd) and all
�v ∈ R

d .
(A3) (Decoupling at infinity) If {ρ1

n} and {ρ2
n} are two bounded sequences of L1(Rd)∩Lp2(Rd)

such that d(supp(ρ1
n), supp(ρ1

n)) → ∞, then it holds

F
(
ρ1

n + ρ2
n

)− F
(
ρ1

n

)− F
(
ρ2

n

)→ 0 as n → ∞.

(A4) (Concavity) F is concave on the cone {ρ ∈ Lp1(Rd) ∩ Lp2(Rd): ρ � 0}.
(A5) (Strict concavity at the origin) For all ρ ∈ Lp1(Rd) ∩ Lp2(Rd) with ρ � 0 and ρ �= 0, one

has F(tρ) > tF (ρ) for all 0 < t < 1.

Example 17. Consider the following functional:

F(ρ) = −α

∫
Rd

ρβ + ρ(ρ ∗ h).

It can be verified that F satisfies all the previous assumptions when α > 0, 1 < β < 1 + 2/d ,
and when the function h is of positive type (ĥ � 0) and can be written in the form h =∑k

i=1 hi

with hi ∈ Lqi (Rd) for some max(1, (d + 1)/2) < qi < ∞. When d = 3, this covers Coulomb
interactions h(x) = 1/|x|, as well as Dirac’s term corresponding to β = 4/3.

In the proof, the concavity of the functional F is crucially used to extend the energy E to
mixed states in the truncated Fock space F �N , making possible the use of geometric methods.
Concavity might seem a very strong assumption but it is indeed very natural from a physical point
of view. As we have explained the term F(ρΨ ) usually empirically describes the interaction of
our N particles with a second (infinite) system (for instance phonons of a crystal for the multi-
polaron studied in Section 5.2). In most physical models the real coupling between the two
systems is linear with respect to the state of the N particles (for instance linear with respect
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to ρΨ ). Eliminating the degrees of freedom of the second system by simple perturbation theory
or minimization over product states always leads to concave functionals F .

The assumption (A1) that F is subcritical will be used in the proof to discard the possibility
that minimizing sequences vanish. The other assumptions on F are of a more technical nature,
and they can certainly be relaxed a bit. It is possible to treat non-translation-invariant functionals
but in this case the main result below is not stated the same. It is also easy to generalize the main
theorem below to the case of a functional F which is not a simple function of the density (for
instance when F is a function of the one-body density matrix), with appropriate assumptions.

It is a simple exercise to verify that, under the previous assumptions, the energy functional E
is well defined and continuous on H 1

a/s((R
d)N). Moreover, using (77) in (A1) and the Hoffmann-

Ostenhof inequality (42), we have

E (Ψ ) �
〈
Ψ,

(
(1 − ε)

N∑
j=1

−�xj

2
+

∑
1�k<��N

W(xk − x�)

)
Ψ

〉
− C

� 1 − ε

2

〈
Ψ,

(
N∑

j=1

−�xj

2

)
Ψ

〉
− C′. (78)

In the second line we have used the assumptions on W , similarly as in (38). This shows that E is
bounded from below, hence that E(N) is finite. In the following we denote by

H(N) :=
N∑

j=1

−�xj

2
+

∑
1�k<��N

W(xk − x�)

the translation-invariant many-body Hamiltonian. The main theorem is the following:

Theorem 25 (Nonlinear HVZ for many-body systems). Under the previous assumptions, the fol-
lowing assertions are equivalent:

1. One has

E(N) < E(N − k) + E(k) for all k = 1, . . . ,N − 1, (79)

and

E(N) < infσ
(
H(N)

)
. (80)

2. All the minimizing sequences {Ψn} for E(N) are precompact in H 1
a/s((R

d)N ) up to transla-

tions. Hence there exists {�vn} ⊂ R
d such that Ψn(· − �vn) converges, up to a subsequence, to

a minimizer for E(N).

As we will explain in the proof, the role of the additional condition (80) is to avoid vanishing.

Proof of Theorem 25. We split the proof in several steps. We start by proving that the inequali-
ties (79) and (80) always hold true when the strict inequality < is replaced by a large inequality �,
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and that if there is equality, then there exists a minimizing sequence which is non-compact, for
any translations. This shows that (2.) implies (1.).

Step 1 (Large binding inequalities). The inequalities in (79) always hold true when the strict
inequality < is replaced by �. If there is equality for some 1 � k � N − 1, then there exists a
minimizing sequence {Ψn} for E(N) which is not compact, even up to translations.

Proof. The proof proceeds as usual by constructing a trial sequence Ψn = Ψ 1
n ◦ Ψ 2

n (· − Rn�v)

(with ◦ = ∧ for fermions and ◦ = ∨ for bosons), where Ψ 1
n and Ψ 2

n are minimizing sequences
of compact support for E(N − k) and E(k) and Rn is large enough. The energy is decoupled by
(A3). We omit the details. �
Step 2 (Large inequality (80)). The inequality (80) always holds true when the strict inequality
< is replaced by �. If there is equality, then there exists a minimizing sequence {Ψn} for E(N)

which is not compact, even up to translations.

Proof. Removing the center of mass by performing the change of variables x′
0 =∑N

j=1 xj /N,

x′
1 = x2 − x1, . . . , x

′
N−1 = xN − x1, we see that the original Hamiltonian H(N) can be rewritten

as

H(N) = |p′
0|2

2N
+
(

N−1∑
j=1

|p′
j |2
2

+ 1

2

∣∣∣∣∣
N−1∑
j=1

p′
j

∣∣∣∣∣
2

+
N−1∑
j=1

W
(
x′
j

)+ ∑
1�k<��N−1

W
(
x′
k − x′

�

))

:= |p′
0|2

2N
+ H ′(N − 1).

This shows that the bottom of the spectrum of H(N) is also the bottom of the spectrum
of H ′(N − 1). To account for the original statistics of our particles, the latter Hamiltonian
H ′(N − 1) is restricted to (N − 1)-body functions Φ that are symmetric (bosons) or antisym-
metric (fermions), and additionally satisfy the following relation

Φ
(−x′

1, x
′
2 − x′

1, . . . , x
′
N−1 − x′

1

)= τΦ
(
x′

1, x
′
2, . . . , x

′
N−1

)
with τ = 1 for bosons and τ = −1 for fermions. Let {Φn} be a Weyl sequence for the bottom of
the spectrum of the Hamiltonian H ′(N − 1) (under the appropriate symmetry constraints) and
let ϕn := n−d/2ϕ(·/n) for a fixed normalized function ϕ ∈ H 2(Rd) ∩ L∞(Rd). We take as a test
function the product state

Ψn(x1, . . . , xN) = ϕn

(∑N
j=1 xj

N

)
Φn(x2 − x1, . . . , xN − x1)

whose density is

ρΨn(x) = N

∫
d

dx2 · · ·
∫
d

dxN

∣∣∣∣ϕn

(∑N
j=2 xj

N
+ x

N

)∣∣∣∣2∣∣Φn(x2 − x, . . . , xN − x)
∣∣2. (81)
R R
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This proves that

‖ρΨn‖L∞(Rd ) �
N‖ϕ‖2

L∞(Rd )

nd
→n→∞ 0,

hence that ρΨn → 0 in Lp(Rd) for all 1 < p � ∞. Under our assumption (A1) on the nonlinear-
ity F , this implies that F(ρΨn) → 0. On the other hand we have by construction

lim
n→∞

〈
Ψn,H(N)Ψn

〉= infσ
(
H(N)

)
and it follows that E(N) � infσ(H(N)). If there is equality, the previous sequence {Ψn} fur-
nishes a vanishing minimizing sequence. It is not compact, even up to translations. This ends the
proof of Step 2. �

The previous steps show that (2.) implies (1.). We now turn to the proof of the converse
implication. We consider a minimizing sequence {Ψn} and note that it is necessarily bounded in
H 1

a/s((R
d)N), by (78). As usual we denote by Γn = 0⊕· · ·⊕|Ψn〉〈Ψn| the associated mixed state

in the truncated Fock space. We define like in the proof of Theorem 22 the number

m
({Γn}

) := sup
{
TrF (N Γ ): ∃{�vk} ⊂ R

d, τ�vk
Γnk

τ−�vk
⇀g Γ

}
. (82)

We start by proving that vanishing does not hold, that is, m({Γn}) > 0.

Step 3 (Absence of vanishing). One has m({Γn}) > 0.

Proof. As we have already seen in Lemma 24, m({Γn}) = 0 is equivalent to having ρΨn → 0
strongly in Lp((Rd)N), for all 1 < p < p∗. By assumption (A1), the function F is uniformly
continuous on Lp1(Rd)∩Lp2(Rd) for some 1 < p1 � p2 < p∗. Hence m({Γn}) = 0 implies that
F(ρΨn) → 0 and therefore that

E(N) = lim
n→∞ E (Ψ ) = lim

n→∞
〈
Ψ,H(N)Ψ

〉
� infσ

(
H(N)

)
.

This contradicts (1.), hence shows that it must hold m({Γn}) > 0. �
Up to a translation (we use that E is translation-invariant) and extraction of a subsequence,

we may therefore assume that Γn ⇀g Γ geometrically, with Tr(N Γ ) > 0, that is Γ = G00 ⊕
· · · ⊕ GNN with 0 � G00 < 1. In order to show that {Γn} is compact, we have to prove that
Tr(GNN) = 1. This only shows that Ψn → Ψ strongly in L2

a/s((R
d)N) but strong convergence

in H 1
a/s((R

d)N) follows by usual arguments.

Step 4 (Decoupling via localization). In this step we split Γn into a part which converges to Γ

strongly and a part which escapes to infinity. Contrary to the previous sections, we use a radius of
localization which depends on n, following Lions [38,39]. The following is a well-known result:
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Lemma 26 (Dichotomy). Up to extraction of a subsequence, it holds

lim
n→∞

∫
|x|�Rn

ρΨn(x) dx =
∫
Rd

ρΓ (x) dx,

lim
n→∞

∫
Rn�|x|�6Rn

(
ρΨn(x) + ∣∣∇√ρΨn(x)

∣∣2)dx

= lim
n→∞

∫
Rn�|x1|�6Rn

dx1

∫
Rd

dx2 · · ·
∫
Rd

dxN

∣∣∇x1Ψn(x1, . . . , xN)
∣∣2 = 0

for a sequence Rn → ∞.

The proof of this lemma uses concentration functions in the spirit of Lions [38,39] as well as
the strong local compactness of ρΨn . See for instance Lemma 3.1 in [19] for a similar result. Let
χ be a smooth radial localization function with 0 � χ � 1, χ(x) = 1 if |x| � 1 and χ(x) = 0 if
|x| � 2, and let η :=√1 − χ2. Let us consider the smooth localization functions χn := χ(·/Rn)

and ηn = η(·/Rn), in and outside the ball of radius Rn. By Lemma 8, we have (Γn)χn ⇀g Γ

geometrically. However by Lemma 26 it holds

lim
n→∞ Tr

[
(Γn)χn

](1) = lim
n→∞

∫
Rd

(χn)
2ρΓn =

∫
Rd

ρΓ = Tr[Γ ](1).

This shows that [(Γn)χn ](1) → [Γ ](1) strongly in the trace-class, hence by Lemma 4 that

(Γn)χn → Γ strongly in S
(

F �N
)

as n → ∞.

We can now show that the energy decouples. For the linear part we have by the IMS formula
(like in the proof of Theorem 12)

〈
Ψn,H(N)Ψn

〉
� TrF �N

(
H(Γn)χn

)+ TrF �N

(
H(Γn)ηn

)− CN

R2
n

+ N(N − 1)

∫
Rd

dx1 · · ·
∫
Rd

dxN W(x1 − x2)χn(x1)
2ηn(x2)

2
∣∣Ψn(x1, . . . , xN)

∣∣2,
(83)

where H = 0 ⊕⊕N
n=1 H(n) is the second quantization of H(N) in F �N . Performing a decom-

position similar to (56) and using Lemma 26, one sees that the last term of (83) goes to zero as
n → ∞. For the nonlinear term, we write

ρΨn = |χn|2ρΨn + |ηn|2ρΨn = |χn|2ρΨn + |ηn|2|χ3Rn |2ρΨn + |η3Rn |2ρΨn.

By Lemma 26 we have that |ηn|2|χ3Rn |2ρΨn → 0 in L1(Rd) ∩ Lp∗
(Rd), hence in Lp1(Rd) ∩

Lp2(Rd). Using that F is locally uniformly continuous on Lp1(Rd)∩ Lp2(Rd), we deduce since
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ρΨn is bounded in Lp1(Rd) ∩ Lp2(Rd), that

F(ρΨn) = F
(|χn|2ρΨn + |η3Rn |2ρΨn

)+ o(1).

By assumption (A3) we have

F
(|χn|2ρΨn + |η3Rn |2ρΨn

)= F
(|χn|2ρΨn

)+ F
(|η3Rn |2ρΨn

)+ o(1).

Using again that |ηn|2|χ3Rn |2ρΨn → 0 we finally deduce that

F(ρΨn) = F
(|χn|2ρΨn

)+ F
(|ηn|2ρΨn

)+ o(1).

Hence we arrive at the following estimate

〈
Ψn,H(N)Ψn

〉
� TrF �N

(
H(Γn)χn

)+ F(ρ(Γn)χn
) + TrF �N

(
H(Γn)ηn

)+ F(ρ(Γn)ηn
) + o(1).

(84)

Let us write the localized states on F �N as

(Γn)χn = G
χ,n

0 ⊕ · · · ⊕ G
χ,n
N , (Γn)ηn = G

η,n
0 ⊕ · · · ⊕ G

η,n
N .

By the concavity of F , we have

F(ρ(Γn)ηn
) �

N∑
j=0

Tr
(
G

η,n
j

)
F(ρ

G̃
η,n
j

), (85)

with G̃
η,n
j := G

η,n
j /Tr(Gη,n

j ) (and an obvious convention when G
η,n
j = 0). Using the fundamen-

tal relation Tr(Gχ,n
j ) = Tr(Gη,n

N−j ), we arrive at the lower bound

TrF �N

(
H(Γn)ηn

)+ F(ρ(Γn)ηn
) �

N∑
j=0

Tr
(
G

χ,n
j

)
E
(
G̃

η,n
N−j

)
�

N∑
j=0

Tr
(
G

χ,n
j

)
E(N − j). (86)

In the previous bounds, the energy E is extended to mixed states of HN in an obvious fash-
ion. Furthermore, for any mixed state G ∈ S(HN), we have, writing G =∑j gj |Ψj 〉〈Ψj | with∑

j gj = 1,

E (G) =
∑
j

gj

〈
Ψj ,H(N)Ψj

〉+ F

(∑
j

gjρΨj

)
�
∑
j

gj E (Ψj ) � E(N),

by the concavity of F . Therefore minimizing over mixed states is the same as minimizing over
pure states, a property that we have used in (86).

Coming back to the term involving χn in (84), we claim that it holds

lim inf
(
TrF �N

(
H(Γn)χn

)+ F(ρ(Γn)χn
)
)
� TrF �N (HΓ ) + F(ρΓ ).
n→∞
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Indeed the interaction term and F(ρΓn) converge as n → ∞, by the strong convergence of (Γn)χn

towards Γ in S1(F �N). The kinetic energy is lower semi-continuous, by Lemma 5.
Summarizing, we have obtained the following lower bound

E(N) � TrF �N (HΓ ) + F(ρΓ ) +
N∑

j=0

Tr(Gjj )E(N − j). (87)

Using the concavity of F as for (Γn)ηn , we have

TrF �N (HΓ ) + F(ρΓ ) �
N∑

j=0

Tr(Gjj )E(j),

hence it follows that

E(N) �
N∑

j=0

Tr(Gjj )
(
E(j) + E(N − j)

)
.

When the binding condition (79) holds true, this is only possible when G11 = · · · =
GN−1N−1 = 0.

Step 5 (Conclusion). It rests to prove that G00 = 0. Let Ψ be the weak limit in HN of the original
minimizing sequence {Ψn} and notice that GNN = |Ψ 〉〈Ψ |. Since GNN �= 0, it holds Ψ �= 0.
Inserting all this in (87) (recall ρG00 = 0), we obtain the estimate

(
1 − Tr(G00)

)
E(N) = ‖Ψ ‖2E(N) �

〈
Ψ,H(N)Ψ

〉+ F(ρΨ ). (88)

If ‖Ψ ‖ < 1, then we use (A5) and get

F(ρΨ ) > ‖Ψ ‖2F(ρΨ/‖Ψ ‖),

that is

〈
Ψ,H(N)Ψ

〉+ F(ρΨ ) > ‖Ψ ‖2 E
(

Ψ

‖Ψ ‖
)

� ‖Ψ ‖2E(N).

This contradicts (88), hence implies that it must hold ‖Ψ ‖ = 1 and G00 = 0. This ends the proof
of Theorem 25. �

Theorem 25 can be generalized to finite-rank fermionic systems (Hartree–Fock case or mul-
ticonfiguration theory when W � 0), following the arguments of Section 4. For instance, in the
Hartree–Fock case one can easily prove the following
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Theorem 27 (Nonlinear HVZ for Hartree–Fock systems). Let EN(N) be the ( fermionic) ground
state energy in the Hartree–Fock approximation, defined by

EN(N) := inf
Ψ ∈H 1

a ((Rd )N )

rank(Ψ )=N

‖Ψ ‖=1

E (Ψ ). (89)

Under the previous assumptions, the following assertions are equivalent:

1. One has

EN(N) < EN−k(N − k) + Ek(k) for all k = 1, . . . ,N − 1. (90)

2. All the Hartree–Fock minimizing sequences {Ψn} for EN(N) are precompact in H 1
a ((Rd)N )

up to translations. Hence there exists {�vn} ⊂ R
d such that Ψn(· − �vn) converges, up to a

subsequence, to a minimizer for EN(N).

Note the absence of a condition of the form (80): as we have seen in the proof of Theorem 22,
in the case of vanishing of a Hartree–Fock state, the interaction energy always tends to zero. The
condition (90) is sufficient to avoid this.

5.2. Application: the multi-polaron

In this section we study a system of N electrons in a polar (ionic) crystal, called N -polaron.
Thanks to the underlying deformations of the crystal, the N electrons can overcome their
Coulomb repulsion and form a bound system. Recently there has been a renewed interest in
the multi-polaron problem, triggered by the possibility of bipolaronic superconductivity in high-
temperature superconductors [15].

Under the assumption that the polaron extends over a region much bigger than the typical
spacing between the ions of the crystal, one can use a continuous model based on phonons.
A model of this form was proposed by H. Fröhlich in [21]. It assumes a linear coupling between
the electrons and the longitudinal optical phonons, together with a constant dispersion relation
for the phonons. The corresponding Hamiltonian takes the form

N∑
j=1

(−�xj

2
− √

αϕ(xj )

)
+

∑
1�k<��N

U

|xk − x�| +
∫
R3

dk a†(k)a(k), (91)

where

ϕ(x) = 1

2π

∫
R3

dk

|k|
(
eik·xa†(k) + e−ik·xa(k)

)
.

The Hamiltonian acts on the Hilbert space L2
a((R

3)N) ⊗ Fs , with a†(k) and a(k) being the
creation and annihilation operators (in the Fourier representation) for the phonons on the bosonic
Fock space Fs . Because of its relation to the dielectric constants of the polar crystal [20,64], the
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parameter α must satisfy the constraint α < U in the physical regime. For simplicity we have
discarded the spin of the electrons.

In the regime of strong coupling, the model reduces to the so-called Pekar–Tomasevich (PK)
theory [47,48,44] in which the interaction with the crystal is modelled by a classical Coulomb
self-interaction. The energy is now given by

Eα,U (Ψ ) =
〈
Ψ,

(
N∑

j=1

−�xj

2
+

∑
1�k<��N

U

|xk − x�|

)
Ψ

〉
− α

2

∫
R3

∫
R3

ρΨ (x)ρΨ (y)

|x − y| dx dy, (92)

for Ψ ∈ L2
a((R

3)N). The corresponding ground state energy is as usual defined as

Eα,U (N) = inf
Ψ ∈H 1

a ((R3)N )
‖Ψ ‖=1

Eα,U (Ψ ). (93)

We have emphasized the dependence in the parameters α and U . A simple scaling argument
shows that Eα,U = U2Eα/U,1, hence we may work in a system of units such that U = 1. In this
case, for simplicity we use the notation Eα := Eα,1 and Eα(N) := Eα,1(N).

Another way to derive the Pekar–Tomasevich energy is to restrict to (uncorrelated) products
states of the form Ψ ⊗ Φ ∈ L2

a((R
3)N) ⊗ Fs and to minimize with respect to the state Φ of the

phonons [22].
Both the original model of Fröhlich and the Pekar–Tomasevich theory have stimulated many

works. On the mathematical side, the validity of PK theory in the large coupling regime was
shown for N = 1 by Donsker and Varadhan in [14], and with a different approach by Lieb and
Thomas in [37]. The case N = 2 was treated by Miyao and Spohn in [44]. The stability or
instability of large polaron systems was studied by Griesemer and Møller [22], then by Frank,
Lieb, Seiringer and Thomas [17,18]. In this latter work, the absence of binding of N -polaron for
small α is also proven.

Using geometric techniques, we are able to study the existence of multi-polaron systems:

Theorem 28 (Binding of Pekar–Tomasevich multi-polarons). Assume U = 1. For every N � 2,
there exists a constant τc(N) < 1 such that the following hold for all α > τc(N):

1. Eα(N) < Eα(N − k) + Eα(k) for all k = 1, . . . ,N − 1.
2. All the minimizing sequences {Ψn} for Eα(N) are precompact in H 1

a/s((R
d)N) up to trans-

lations. Hence there exists {�vn} ⊂ R
d such that Ψn(· − �vn) converges, up to a subsequence,

to a minimizer Ψ for Eα(N).
3. Any such minimizer satisfies the following nonlinear eigenvalue equation:

(
N∑

j=1

(−�

2
− αρΨ ∗ | · |−1

)
xj

+
∑

1�k<��N

1

|xk − x�|

)
Ψ = μΨ (94)

where μ is the first eigenvalue of the many-body Schrödinger operator in the parenthesis.

Our result covers the physical range α ∈ (τc(N),1) but we do not provide any bound on the
critical τc(N). It was proved in [17] that binding does not occur when α is small enough, hence
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one must have τc(N) > 0. We expect that τc(N) → 1 when N → ∞ but we do not have a proof
of this.

For N = 1, the Pekar–Tomasevich energy is defined as

Eα(ϕ) = 1

2

∫
R3

|∇ϕ|2 − α

2

∫
R3

∫
R3

|ϕ(x)|2|ϕ(y)|2
|x − y| dx dy (95)

and it is sometimes also called the Choquard functional. The existence and uniqueness of a
ground state up to translations for all α > 0 was proved by Lieb in [31]. Nothing seems to be
known on the uniqueness of ground states up to translations for N � 2.

For the bipolaron (N = 2), the binding energy

2Eα(1) − Eα(2) = 2E1(1)α2 − Eα(2)

is a convex and non-decreasing function of α. We deduce from Theorem 28 that there exists
τc(2) < 1 such that binding does not hold for all 0 � α � τc(2), whereas binding holds true and
minimizers exist for all α > τc(2). A result of the same form was already announced in [44].
Numerical computations [65,59] suggest that, for the bipolaron, τc(2) � 0.87.

Since the Pekar–Tomasevich model is exact in the limit of strong coupling, α/U < 1 and
α � 1, our result implies the existence of binding for Fröhlich’s N -polaron described by the
Hamiltonian (91), when τc(N) < α/U < 1 and α is large enough. For small α, numerical com-
putations indeed suggest that Fröhlich’s polaron does not bind for any U > α. In [65] (Fig. 4) the
critical value above which Fröhlich’s bipolaron formation is possible was found to be α � 13.15.

Remark 15 (Extensions). For anisotropic materials, one can take F of the form

F(ρ) = −4π

2

∫
R3

|ρ̂(k)|2
kT Mk

dk

where M is a 3 × 3 symmetric matrix satisfying M � 1. Existence of ground states follows from
our method when M is sufficiently close to the identity matrix.

Our results hold the same in 2D, assuming the particles interact with the 3D Coulomb poten-
tial, a model which is often considered in the physical literature (see, e.g., [65,64]).

Thanks to Theorem 25, the proof of Theorem 28 is essentially reduced to showing the binding
condition. This is done by building suitable trial states. The easy case is α > 1, when two multi-
polaron always have a Coulomb attraction at large distances. The case α = 1 is more subtle, and
we prove that there is always a Van Der Waals attraction at large distances, following Lieb and
Thirring [36]. The existence of τc(N) is then obtained by continuity of α �→ Eα(N), using that
there are only finitely many binding conditions to verify.

Proof of Theorem 28. The energy Eα is of the general form which we have considered in Sec-
tion 5.1. The nonlinear functional

F(ρ) = −α

2

∫
3

∫
3

ρ(x)ρ(y)

|x − y| dx dy
R R
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is clearly strictly concave, and it satisfies our assumptions (A1)–(A5) with p1 = p2 = 6/5,
by the Hardy–Littlewood–Sobolev inequality [34]. Furthermore, the condition (80) reduces to
Eα(N) < 0 since the interaction potential W(x) = 1/|x| is non-negative. This condition is im-
plied by the binding condition, hence it is only necessary to verify that Eα(N) < Eα(N − k) +
Eα(k) for k = 1, . . . ,N − 1. Since the function α �→ Eα(N) is clearly continuous, it is sufficient
to show that

Eα(N) < Eα(N − k) + Eα(k) for all integers 1 � k � N − 1 and all α � 1. (96)

As usual, we prove these binding inequalities by induction, assuming that Eα(k) has a minimizer
for all k = 1, . . . ,N − 1. For N = 1, we already know that ground states of Eα(1) exist for all
α > 0. The following will be very useful.

Lemma 29 (Properties of multi-polaron ground states). Assume that Ψ is a ground state for
Eα(N) with α > 0. Then Ψ solves the self-consistent equation (94) where μ is the first eigenvalue
of the many-body operator

Hα
Ψ (N) :=

N∑
j=1

(−�

2
− αρΨ ∗ | · |−1

)
xj

+
∑

1�k<��N

1

|xk − x�| .

If α > 1 − 1/N , then μ < infσess(H
α
Ψ (N)) and both Ψ and ∇Ψ decay exponentially at infinity.

Proof. We have already explained in the proof of Theorem 25 that, by the concavity of F , Eα(N)

is also the lowest energy over all mixed states of L2
a((R

3)N). In particular it holds

Eα

(
(1 − t)|Ψ 〉〈Ψ | + t

∣∣Ψ ′〉 〈Ψ ′∣∣)� Eα(N)

for all Ψ ′ ∈ H 1
a ((R3)N) and all 0 � t � 1. The first order in t provides the bound 〈Ψ ′,

Hα
Ψ (N)Ψ ′〉 � 〈Ψ,Hα

Ψ (N)Ψ 〉, showing that μ is the first eigenvalue of Hα
Ψ (N). The Hamilto-

nian Hα
Ψ (N) is a usual Coulomb Hamiltonian of N electrons with an external Coulomb field

of total charge Z = α
∫

R3 ρΨ = αN . It was shown by Zhislin and Sigalov [66,67] that μ is an
isolated eigenvalue as soon as N < Z + 1 = αN + 1. The exponential decay follows from the
well-known results reviewed for instance in Section XIII.11 of [52]. �

Let us now assume that Eα(N − k) and Eα(k) have respective ground states Ψ1 and Ψ2, and
that α � 1. We want to prove that Eα(N) < Eα(N − k) + Eα(k). Using their exponential decay,
we can replace Ψ1 and Ψ2 by functions with support in a ball of radius R, making an error in the
energy of the form e−aR . For the sake of simplicity we do not change our notation and assume
that

Eα(Ψ1) � Eα(N − k) + Ce−aR, Eα(Ψ2) � Eα(k) + Ce−aR.

When α > 1, we can take advantage of a Coulomb attraction at infinity and choose as trial
function

Ψ
U,V := Ψ U ∧ Ψ V (· − 3R�v)
R 1 2
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for rotations U,V ∈ SO(3) and with rotated ground states Ψ U
j = Ψj (U

−1·). Averaging over the
rotations U,V ∈ SO(3) and using Newton’s theorem yields a bound∫

SO(3)

dU

∫
SO(3)

dV Eα

(
Ψ

U,V
R

)
� Eα(N − k) + Eα(k) − (N − k)k(1 − α)

3R
+ Ce−aR.

This shows the binding inequality when α > 1.
When α = 1 there is a priori no simple binding in 1/R. Fortunately, there always exists a Van

Der Waals force between two multi-polarons. Following a method of Lieb and Thirring [36], we
take as trial state

Ψ
U,V
R := Ψ U

1 ∧ Ψ V
2 (· − 3R�v) + λ

{(
m ·

N−k∑
j=1

∇j

)
Ψ U

1

}
∧
{(

n ·
k∑

j=1

∇j

)
Ψ V

2 (· − 3R�v)

}
.

Writing with an obvious convention Ψ
U,V
R = Φ

U,V
R + λΦ̃

U,V
R , we have∫

R3

dx2 · · ·
∫
R3

dxN Φ
U,V
R Φ̃

U,V
R = 0

which is seen by using that Ψ U
1 and Ψ V

2 (· − 3R�v) have disjoint supports, as well as the fact

that Ψ U
1 is orthogonal to (m ·∑N−k

j=1 ∇j )Ψ
U
1 and a similar property for Ψ V

2 . As was already

mentioned in [36], this yields ‖Ψ U,V
R ‖2 = 1 + O(λ2), but this also gives

ρ
Ψ

U,V
R /‖Ψ U,V

R ‖ = ρΨ U
1

+ ρΨ V
2

(· − 3R�v) + O
(
λ2). (97)

Therefore we can mimic the argument of [36] and obtain an upper bound of the form∫
SO(3)

dU

∫
SO(3)

dV Eα

(
Ψ

U,V
R /

∥∥Ψ U,V
R

∥∥)� E1(N − k) + E1(k) + a
λ

R3
+ bλ2 + Ce−aR.

The linear term in λ comes from the cross-term between the two functions appearing in the
definition of Ψ

U,V
R , in the electron–electron interaction term. This term is exactly the same as the

one calculated in [36]. The nonlinear term involving the density only provides an O(λ2) by (97).
Taking λ = −a/2bR3 yields the desired attractive Van Der Waals interaction potential −C/R6,
hence the binding of two polaron systems when α = 1. This ends the proof of Theorem 28. �
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