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Abstract

In the present investigation, ‘rosea’ and ‘alba’ varieties of Catharanthus roseus (L.) G. Don. seeds were grown with different concentrations
(15, 30, 45 and 60 mM) of sodium chloride (NaCl), in order to study the effects of salinity on germination behaviour, seedling vigour (root and
shoot length), lipid peroxidation (LPO) and proline metabolism. It was found that germination was delayed at lower salinity levels and inhibited at
higher salinity regimes. NaCl treatment caused a serious decrease in the early seedling growth by means of reduced seedling vigour at higher
salinity levels. The LPO was estimated as thiobarbituric acid reactive substances (TBARS) and found increased under salt stress. Glycine betaine
(GB) and proline (PRO) contents significantly accumulated in both the varieties of seedlings under salt stress. Under NaCl stress, the activity of

proline oxidase (PROX) decreased and the y-glutamyl kinase ('y-GK) activity increased.

© 2006 SAAB. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Salinity is one of the major abiotic stresses which adversely
affect the crop growth and yield. High concentrations of salt
resulting from natural processes or disarrangement in irrigated
agriculture result in inhibition of plant growth and yield
(Demiral and Turkan, 2006). Salinity also induces water deficit
even in well watered soils by decreasing the osmotic potential of
soil solutes, thus making it difficult for roots to extract water
from their surrounding media (Sairam and Srivastava, 2002).
Germination of seeds, one of the most critical phases of plant
life, is greatly influenced by salinity (Misra and Dwivedi, 2004).
Salinity either completely inhibits germination at higher levels
or induces a state of dormancy at low levels (Igbal et al., 2006).
Pahlavani et al. (2006) proved that genetic information regar-
ding seed germination and related traits could help improve
seedling emergence in saline soils through breeding programs.
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The reduction in plant growth under salinity is a conse-
quence of several physiological responses including modifica-
tion of water status, photosynthetic efficiency, carbon allocation
and utilization (Nabil and Coudret, 1995). Under saline envi-
ronments, the plant lipid metabolism is interrupted as a result of
oxidative damage to membrane lipids by active oxygen species
and lipid peroxidation (LPO) (Hernandez and Almansa, 2002;
Misra and Gupta, 2006). LPO can also be initiated enzymat-
ically by lipoxygenases (Axelord et al., 1981) and this enzyme
incorporates molecular oxygen in to linoleic and linolenic acids,
to form lipid hydroperoxides (Elkahoui et al., 2005). Compat-
ible solutes accumulation in the cytoplasm is considered as a
mechanism to contribute salt tolerance (Hare et al., 1998).
Compatible solutes such as proline (PRO) and glycine betaine
(GB) are thought to function as osmoprotectants for proteins
(Bohnert and Jenson, 1996). Accumulation of PRO (Misra and
Gupta, 2005) and GB (Khan et al., 1998) provides an envi-
ronment compatible with macromolecular structure and func-
tion and helps to adapt the salinity injury (Girija et al., 2002).
Protein hydrolysis under salt stressed plants is associated with
increased PRO content (Irigoyen et al., 1992). Proline oxidase
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(PROX) and v-glutamyl kinase (y-GK) play an important role
in controlling the level of PRO, PROX catalyzes the conversion
of PRO to glutamate and y-GK plays an important role in the
synthesis of PRO (Girija et al., 2002). Though the previous
works demonstrated the effects of salinity on agricultural crops
(Muthukumarasamy and Panneerselvam, 1997; Panneerselvam
et al., 1997, 1998; Muthukumarasamy et al., 2000), it is not so
with respect to medicinal plants.

In order to meet the ever increasing demand of medicinal
plants, for the indigenous systems of medicine as well as for the
pharmaceutical industry, some medicinal plants need to be
cultivated commercially, but the soil salinity and other forms of
pollutions pose serious threats to plant production (Qureshi et al.,
2005). So it seems valuable, to test the important medicinal plants
for their salt tolerance capacity. Catharanthus roseus (L.) G. Don.
(Family: Apocynaceae) is one of the highly exploited and studied
medicinal plants. This plant contains alkaloids which are valuable
source of antitumour agents like vinblastine and vincristine used
in chemotherapy of leukemia and in the treatment of Hodgkin’s
disease, and also a popular ornamental plant (Filippini et al.,
2003). C. roseus is classed as a glycophyte. Two distinct varieties
of this plant, the pink flowered ‘rosea’ and white flowered ‘alba’
were taken for the present study. Many investigations have been
already carried out in this plant on its medicinal importance (Jaleel
et al., 20006), but the salinity effects on this medicinal plant
attracted a little attention. This investigation was aimed to find out
the extent of changes in germination behaviour, seedling vigour,
LPO, GB and PRO contents, PRO synthesizing (y-GK) and PRO
degrading (PROX) enzyme activities in ‘rosea’ and ‘alba’
varieties of C. roseus under NaCl treatment.

2. Materials and methods
2.1. NaCl treatments and germination behaviour

The seeds of both the varieties of C. roseus were collected
from the Department of Horticulture, Annamalai University,
Tamil Nadu, India. Germination trials were conducted in 9 cm
sterile petri dishes lined with Whatman No.1 filter papers and
moistened with distilled water to ensure adequate moisture for
the seeds. Seed treatments included 15, 30, 45 and 60 mM NaCl
concentrations. In an attempt to remove germination inhibitors,
the seeds were leached with distilled water for 5 days before the
experiment. Seeds were then surface sterilized in aqueous
solution of 0.1% HgCl, for 60 s to prevent fungal attack and
rinsed in several changes of sterile water. The seeds were sowed
in petri dishes and placed in seed germinator at 34+1 °C. The
seeds were examined daily and considered germinated when the
radicle was visible. The germination percentage was calculated
from 8 days after sowing (DAS) to 12 DAS. The morphological
parameters like shoot length and root length were measured on
20 DAS.

2.2. Lipid peroxidation (TBARS content)

LPO was estimated as TBARS (Heath and Packer, 1968).
Fresh sample (0.5 g) was homogenized in 10 ml of 0.1%

trichloroacetic acid (TCA), and the homogenate was centrifuged
at 15000 rpm for 15 min. To 1.0 ml aliquot of the supernatant,
4.0 ml of 0.5% thiobarbituric acid (TBA) in 20% TCA was added.
The mixture was heated at 95 °C for 30 min in the laboratory
electric oven and then cooled in an ice bath. After centrifugation at
10,000 rpm for 10 min the absorbance of the supernatant was
recorded at 532 nm in spectrophotometer (U-2001-Hitachi). The
TBARS content was calculated according to its extinction
coefficient of 155 mM 'cm ' and expressed in units (U). One
‘U’ is defined as pmol of MDA formed min~ ' mg™ ' protein.

2.3. Glycine betaine content

The amount of GB was estimated according to the method of
Grieve and Grattan (1983). The plant tissue was finely ground,
mechanically shaken with 20 ml deionised water for 24 h at
25 °C. The samples were then filtered and filtrates were diluted
to 1:1 with 2 N H,SOy4. Aliquots were kept in centrifuge tubes
and cooled in ice water for 1 h. Cold KI-I, reagent was added
and the reactants were gently stirred with a vortex mixture. The
tubes were stored at 4 °C for 16 h and then centrifuged at
10,000 rpm for 15 min at 0 °C. The supernatant was carefully
aspirated with a fine glass tube. The periodide crystals were
dissolved in 9 ml of 1,2-dichloroethane. After 2 h, the absor-
bance was measured at 365 nm using GB as standard and
expressed in mg g~ ' DW.

2.4. Proline content

The PRO content was estimated by the method of Bates et al.
(1973). The plant material was homogenized in 3% aqueous
sulfosalicylic acid and the homogenate was centrifuged at
10,000 rpm. Supernatant was used for the estimation of PRO
content. The reaction mixture consisted of 2 ml acid ninhydrin
and 2 ml of glacial acetic acid, which was boiled at 100 °C for
1 h. After termination of reaction in ice bath, the reaction
mixture was extracted with 4 ml of toluene and absorbance was
read at 520 nm.

2.5. y-Glutamyl kinase [ATP: L-glutamate 5-phosphotrans-
ferases (EC 2.7.2.11)] activity

v-GK activity was assayed by the method of Hayzer and
Leisinger (1980). Plant samples (1 g) were extracted with 50 mM
Tris—HCI buffer and centrifuged at 40,000 g for 30 min at 4 °C.
0.1 ml reaction buffer was prepared by adding 0.1 ml 10 x ATP
and 1.8 ml of extract and incubated at 37 °C for 30 min, 2 ml of
stop buffer was added. y-GK activity was measured at 535 nm
and expressed in units (Umg ' protein). One unit (U) of enzyme
activity is defined as pg of y-glutamylhydroxamate formed
min~ ' mg ! protein.

2.6. Proline oxidase [L. proline: O, oxidoreductase (EC
1.4.3.1)] activity

PROX activity was determined according to the method
outlined by Huang and Cavelieri (1979). Plant samples (1 g)
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were extracted with 5 ml of Tris—HCI buffer (pH 8.5) grinding (a) 40 -
medium and centrifuged at 10,000 g for 10 min at 4 °C. The
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Fig. 2. Effect of increasing concentrations of NaCl on LPO (a), GB (b) and PRO
' (c) contents of C. roseus seedlings. Values are given as mean+SD of six
Alba experiments in each group. Bar values are not sharing a common superscript (a,
b,c,d,e) differ significantly at P <0.05 (DMRT).
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C. Abdul Jaleel et al. / South African Journal of Botany 73 (2007) 190—195 193

v-GK (U mg™! protein)

Rosea Alba
b
( ) 0.2 1
= a
]
o
o i
£ 0.1
2
S 0.05 4
oc
o
0 T
Rosea Alba
E Control 15 mM NacCl 30 mM NaCl

B4 45 mM NaCl 60 mM NaCl

Fig. 3. Effect of increasing concentrations of NaCl on y-GK (a) and PROX (b)
activities of C. roseus seedlings. Values are given as mean+SD of six
experiments in each group. Bar values are not sharing a common superscript (a,
b,c,d,e) differ significantly at P <0.05 (DMRT).

was noted at 0, 1, 2, 3, 4 and 5 min. PROX activity was
expressed in U mg™ ' protein (one U = mM DCPIP reduced
min~ ' mg~" protein).

2.7. Statistical analysis

Statistical analysis was performed using one way analysis of
variance (ANOVA) followed by Duncan’s Multiple Range Test
(DMRT). The values are mean+SD for six samples in each
group. P values <0.05 were considered as significant.

3. Results and discussion
3.1. Germination percentage

The effect of increasing levels of NaCl salinity on the
germination percentage of C. roseus is presented in Fig. la. A

trend of decreasing germination percentage with increasing
NaCl concentrations was found. At 60 mM NaCl, the ger-

mination was highly inhibited. The inhibition was high in the
case of rosea variety when compared to alba. Inhibition of
germination due to salinity has been reported earlier in
greegram cultivars (Misra and Dwivedi, 2004). The decreasing
germination due to increasing salinity can be correlated to the
nature of salinity to reduce imbibition of water due to lowered
osmotic potentials of the medium and causes changes in meta-
bolic activity (Yupsanis et al., 1994). Moreover, salinity
perturbs plant hormone balance (Khan and Rizvi, 1994) and
reduces the utilization of seed reserves (Ahmad and Bano,
1992).

3.2. Seedling vigour

The seedling vigour was estimated by means of shoot and
root length of seedlings. The shoot and root growth was
inhibited by salinity stress (Fig. 1b and c). The extent of
decrease under higher salinity levels is more or less equal in
both rosea and alba varieties. Salt stress inhibits the efficiency
of the translocation and assimilation of photosynthetic products
(Xiong and Zhu, 2002) and might have caused reduction in
shoot growth. Reduction in plant growth has also been
attributed to reduced water absorption due to osmotic effect,
nutritional deficiency on account of ionic imbalance and
decrease in many metabolic activities (Kumar et al., 2005).

3.3. Lipid peroxidation (TBARS content)

Oxidative damage to tissue lipid was estimated by the
content of total TBARS. The TBARS content increased with
the increasing concentrations of NaCl (Fig. 2a). The extent of
increase was more significant in rosea when compared to alba.
In NaCl-treated plants, oxidative stress might be induced due to
the decreased stomatal conductance in response to the osmotic
imbalance and reduced leaf water potential. LPO has been
associated with damages provoked by a variety of environ-
mental stresses (Hernandez et al., 2003). Poly unsaturated fatty
acids (PUFA) are the main membrane lipid components
susceptible to peroxidation and degradation (Elkahoui et al.,
2005). The increase in LPO can be correlated with the
accumulation of ions and active oxygen species (AOS)
production under salt stress (Hernandez et al., 2001; Misra
and Gupta, 2006). The level of LPO, indicates the extent of salt
tolerance as reported by Bor et al. (2003) in sugarbeet and wild
beet under NaCl treatment.

3.4. Glycine betaine content

One of the most important mechanisms exerted by higher
plants under salt-stress conditions is the accumulation of
compatible solutes such as GB. In the present study, the amount
of GB content increased with the increasing concentration of
NaCl in C. roseus plants (Fig. 2b). The GB content was less in
alba variety when compared to rosea. GB accumulation resulted
from the NaCl-induced oxidative stress, and is helpful in the
stimulation of salt tolerance mechanisms (Girija et al., 2002;
Demiral and Turkan, 2006).
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3.5. Proline content

Another compatible solute which accumulates under salt
stress in plants is PRO. In the present study, an increase in PRO
accumulation in both the varieties of C. roseus seedlings under
salinity (Fig. 2¢) with a concomitant increase in y-GK (PRO
synthesizing enzyme) and a decrease in PROX (PRO degrading
enzyme) activities (Fig. 3a and b). The content was more or less
equal in both rosea and alba varieties. Although the precise role
of proline accumulation is still debated, PRO is often considered
as a compatible solute involved in osmotic adjustment (Azooz
et al.,, 2004). The accumulation of PRO may be through an
increase in its synthesis constantly with inhibition of its
catabolism (Yoshiba et al., 1997) and may be a mechanism
for stress tolerance. However, its role in imparting stress
resistance under saline conditions is controversial. Anyway,
understanding the biosynthesis, degradation, transport and role
of PRO during stress and the signalling events that regulate
stress-induced accumulation is vital in developing plants for
stress tolerance (Kavikishore et al., 2005).

3.6. y-Glutamyl kinase activity

The PRO metabolising enzyme, vy-GK increased under the
NaCl salinity in both the varieties of C. roseus seedlings
(Fig. 3a). This enzyme plays an important role in the synthesis
of PRO. The y-GK activity can be inversely correlated with
proline oxidase activity and protein content in salt treated plants
(Girija et al., 2002). PRO accumulation in NaCl stressed
seedlings can be attributed in part to the increased level of y-GK
activity (Sakamoto et al., 1998).

3.7. Proline oxidase activity

PROX activity decreased under NaCl stress in C. roseus
seedlings when compared to control (Fig. 3b). The activity was
more or less equal in both rosea and alba varieties. This enzyme
converts free PRO into glutamate. Reduction in PROX activity
and simultaneous increase in PRO level were reported in low
temperature stressed wheat (Charest and Phan, 1990). PRO may
act as a non-toxic osmotic solute preferentially located in the
cytoplasm or as an enzyme protectant, stabilizing the structure
of macromolecules and organelles. Accumulated proline may
supply energy to increase salinity tolerance (Misra and Gupta,
2005). PRO as an osmoprotectant compound, plays a major role
in osomoregulation and osmotolerance (Demir, 2000). However
its definite role in exerting salinity resistance continues to be a
debate (Demiral and Turkan, 2006).

From the results of this investigation, it can be concluded
that increasing NaCl concentration inhibits germination and
seedling vigour both in rosea and alba varieties of C. roseus.
The LPO in terms of TBARS content showed an increasing
trend under salt stress. The increased TBARS content showed
the membrane peroxidation and degradation under salinity. The
compatible solutes like GB accumulated under salt stress, with a
concomitant increase in PRO content. The present investigation
indicates that the responses occurring in the PRO metabolism

enable both rosea and alba varieties of C. roseus seedlings to
withstand the saline conditions to a certain extent, eventhough
both varieties are sensitive to salinity. These facts should be
taken into consideration in the economic cultivation of this
valuable medicinal plant. However, the present study addressed
only the range of salinity that was relatively mild in soil. The
impact of highly adverse conditions resulting from increased
soil salinity on this medicinal plant requires additional
investigation, which is underway in our lab.
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