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Abstract

We address the question of unified description of dark ingredients in the Universe by a vacuum dark fluid with continuous density and pressures,
which represents both distributed vacuum dark energy by a time evolving and spatially inhomogeneous cosmological term, and compact self-
gravitating objects with de Sitter vacuum trapped inside. The existence of spherically symmetric globally neutral gravitationally bound vacuum
objects without horizons (called G-lumps) asymptotically de Sitter at the center, is implied by the Einstein equations. Their masses are restricted
by m < mcrit where mcrit = αmPl

√
ρPl/ρ0 with a coefficient α depending on the model. We introduce vacuum dark fluid and present the criterion

of stability of G-lumps to external polar perturbations.
© 2006 Elsevier B.V.

PACS: 04.70.Bw; 04.20.Dw

Open access under CC BY license.
1. Introduction

The idea that

(1.1)p = −ρ

can be the equation of state for a superdense matter, was put
forward in 1965 by Sakharov who considered it as one of possi-
ble initial states of the universe evolution [1]. In the same year
Gliner suggested that (1.1) could be a final state in a gravita-
tional collapse and interpreted a medium specified by (1.1) as
a dense vacuum [2] due to the algebraic structure of its stress–
energy tensor

(1.2)T ν
μ = ρδν

μ.

It has an infinite set of comoving reference frames which makes
impossible to fix a velocity with respect to it.

In 1988 Poisson and Israel stated that de Sitter vacuum can
arise in place of a black hole singularity since geometry can be
self-regulatory and describable semiclassically by the Einstein
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equations with a source term representing vacuum polarization
effects [3].

The symmetry of a vacuum stress–energy tensor (1.2) can
be reduced keeping its vacuum identity. In the spherically sym-
metric case, the anisotropic spherically symmetric vacuum is
defined by [4,5]

(1.3)T t
t = T r

r , T θ
θ = T

φ
φ .

A stress–energy tensor with such a symmetry is invariant under
radial Lorentz boosts, so that one cannot single out a preferred
comoving reference frame and thus determine the velocity with
respect to a medium specified by (1.3)—which is the intrinsic
property of a vacuum [6].

A regular vacuum stress–energy tensor (1.3) describes a
smooth continuous de Sitter–Schwarzschild transition by the
equation of state (following from the contracted Bianchi iden-
tities) for anisotropic perfect fluid with continuous density and
pressures [4]

(1.4)pr = −ρ, p⊥ = −ρ − r

2
ρ′.

Globally regular spherically symmetric spacetime with de
Sitter center [7] (for a recent review [8]) represents, depen-
dently on the choice of observers (coordinate mapping) dis-
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tributed or localized vacuum dark energy: Regular vacuum
dominated cosmologies [9–11], vacuum nonsingular black
holes [4,12] (for review [13,14]) and globally neutral self-
gravitating vacuum structures without horizons [15,16], called
G-lumps [17] since they are bounded by their own gravity
balanced at the surface where the strong energy condition is
violated and gravitational attraction becomes gravitational re-
pulsion.

The existence of the class of solutions to the Einstein equa-
tions representing compact vacuum objects with de Sitter center
follows from the requirements of regularity of density, finite-
ness of the ADM mass, and the weak energy condition for Tμν

which requires monotonic decrease of a density profile while
the requirement of regularity leads to the obligatory de Sitter
center [7,17,18].

Mass of vacuum nonsingular black hole and G-lump is
generically related to smooth breaking of space–time symmetry
from the de Sitter group in the origin, and to de Sitter vacuum
trapped inside [5,16,17,19–22].

Another approach involving the interior de Sitter vacuum, is
based on direct matching of de Sitter interior to the Schwarz-
schild exterior via thin transitional shell where the tangen-
tial pressure diverges and metric suffers from discontinuities
[3,23–29].

In a gravastar [30], dominated by a quantum condensate
which undergoes phase transition near the Schwarzschild radius
where the event horizon would have been expected to form [31],
an interior de Sitter condensate phase is matched to an exterior
Schwarzschild geometry through a phase boundary of a stiff
matter (p = ρ). Compensation of discontinuities in the pres-
sure profile needs involving two additional infinitely thin shells
to stabilize the resulting onion-like structure [30].

The picture of a gravastar is somewhat similar to scalar field
dominated boson star [32,33] if one assumes [34] that for some
field configurations the scalar field is constant in the star interior
and its self-interaction potential plays the role of a cosmological
constant. A boson star can have a mass comparable to that of a
neutron star [35].

In the paper [36] a gravastar is related to a dark energy due
to gravitational Casimir-like boundary effect at the cosmologi-
cal horizon on the scale of the whole universe. A model consists
of a de Sitter interior and Schwarzschild exterior separated by
a thin boundary layer near rH ∼ 1028 cm, which is a quantum
transition region replacing the de Sitter and Schwarzschild hori-
zons [36].

Dark energy particles as quanta of the cosmological con-
stant (considered as the fundamental constant) were presented
in [37] and called cosmons.1 These particles can form stable
stellar-type configurations. From the requirement of the ener-

1 The term cosmon was originally introduced in [38] for a new field which is
the Goldstone boson of dilatation invariance assumed to be spontaneously bro-
ken near the Planck scale, whose task was to drive the cosmological constant
to zero. The dominant component of the related force is attractive, couples to
mass and should be weaker than gravity (α ∼ 10−2–10−3). There is also a re-
pulsive baryon-number-dependent component of calculable strength (∼ α/20)
[38].
getic stability of configuration of the minimum density (related
to the fundamental λ as absolute minimum density [39]) one ob-
tains a mass of order of 1055 g concluding that the observable
universe may be regarded as a dark energy dominated object
with the absolute minimum density. The analysis is based on a
lower bound on the mass and density of an object of a given ra-
dius [40] with using the Buchdahl identity generalized in [34]
for the case of isotropic fluid spheres in the presence of cosmo-
logical constant.

An approach unifying dark energy and dark matter into a
single dark fluid was proposed in [41–43] for the generalized
Chaplygin gas model. Analysis of spherical objects dominated
by an isotropic perfect fluid with a polytropic equation of state
of negative index [44,45] (see also [46]), suggests that arising
of Chaplygin dark stars of stellar masses can be made com-
patible with observational constraints [45,47]. A unified dark
fluid based on a scalar field is proposed in [48]. Although the
form of the scalar field potential cannot be directly derived from
high energy theories, it is possible to elaborate a dark fluid
model using a complex scalar field [49] (in a way resembling
repulsive-attractive consideration of [37,38]).

Contained in general relativity class of spherically symmet-
ric solutions specified by (1.3) which describe time-dependent
and spatially inhomogeneous vacuum dark energy, represents
actually, in a model-independent way, anisotropic vacuum dark
fluid with continuous density and pressures, which can both be
distributed and form compact objects.

In this Letter we introduce vacuum dark fluid in gen-
eral setting, and investigate stability of spherically symmetric
G-lumps, globally neutral gravitationally bound vacuum struc-
tures without horizons.

G-lumps can originate as possible endpoint of the Hawking
evaporation of vacuum nonsingular black holes [15–17] as well
as from initial inhomogeneities on the early stages of the Uni-
verse evolution by a mechanism similar to formation of primor-
dial black holes [50]. They can be responsible for local effects
related typically to dark matter, in a way similar to λ-particles
of Ref. [37] or complex scalar field particles of Ref. [49].

Let us note that in the context of a vacuum fluid unifica-
tion, relation dark energy–matter (not necessary dark) may ap-
pear quite nontrivial if we take into account that in nonlinear
electrodynamics coupled to gravity regular charged structures
must have obligatory de Sitter center [18] which for a spinning
particles transforms into rotating de Sitter vacuum disk which
displays superconducting behavior within a single spinning par-
ticle [51].

2. Vacuum fluid and spherical G-lumps

In the Petrov classification scheme stress–energy tensors are
classified on the basis of their algebraic structure. When eigen-
values of Tμν are real, the eigenvectors of Tμν are nonisotropic
and form a comoving reference frame with a timelike eigenvec-
tor representing a velocity.

In this classification an anisotropic fluid is specified by [IIII]
and [II(II)], and an isotropic fluid by [I(III)]. The first sym-
bol denotes the eigenvalue related to the timelike eigenvector.
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Parentheses combine degenerate eigenvalues. A comoving ref-
erence frame is defined uniquely if and only if none of spacelike
eigenvalues λk (k = 1,2,3) coincides with a timelike eigen-
value λ0. Otherwise there exists an infinite set of comoving
reference frames.

The maximally symmetric de Sitter vacuum (1.2), specified
by [(IIII)] in the Petrov classification scheme (all eigenvalues
equal, all reference frames comoving), represents the isotropic
vacuum fluid.

A symmetry of a vacuum stress–energy tensor (1.2) can be
reduced to the case when one (or two) of the spacelike eigen-
values of Tμν coincides with its timelike eigenvalue

(2.1)pk = −ρ.

A vacuum stress–energy tensor with a reduced symmetry is in-
variant under Lorentz boosts in the k-direction, which makes
impossible to single out a preferred comoving reference frame
and thus fix the velocity with respect to a vacuum fluid.

A vacuum defined by symmetry of its stress–energy tensor,
must be evidently anisotropic (except the maximally symmetric
de Sitter vacuum (1.2)).

The Petrov classification scheme suggests three types of
anisotropic vacuum fluid: [(II)(II)], [(II)II], [(III)I].

For the class of spherically symmetric solutions specified
by (1.3), requirement of regularity and the weak energy con-
dition lead to the existence of the class of metrics with a static
spherically symmetric line element [17]

(2.2)ds2 = g(r) dt2 − dr2

g(r)
− r2 dΩ2,

where dΩ2 is the metric on a unit 2-sphere, and the metric func-
tion g(r) is given by

(2.3)g(r) = 1 − Rg(r)

r
, Rg(r) = 2GM(r);

with the mass function

(2.4)M(r) = 4π

r∫
0

ρ(x)x2 dx.

The metrics are asymptotically Schwarzschild at large r

(2.5)ds2 =
(

1 − rg

r

)
− dr2(

1 − rg
r

) − r2 dΩ2, rg = 2Gm

with the mass parameter (ADM mass) m =M(r → ∞).
Behavior at r → 0 is dictated by the weak energy condi-

tion [17]. The equation of state near the center becomes p =
−ρ, which gives de Sitter asymptotic

(2.6)ds2 =
(

1 − r2

r2
0

)
dt2 − dr2

(
1 − r2

r2
0

) − r2 dΩ2,

(2.7)Tμν = ρ0gμν, r2
0 = 3/Λ, Λ = κρ0,

where ρ0 = ρ(r → 0).
The weak energy condition defines also the form of the met-

ric function g(r): It has one minimum and the geometry can
have not more than two horizons [17].
The 4-curvature scalar R = κT is proportional to (ρ − p⊥),
and the 3-curvature scalar is given by P(r) = κ[(ρ − p⊥) + ρ]
[13]. In the case when the dominant energy condition is satis-
fied (e.g., [18]) both scalars remain non-negative. Spacetime of
this kind specified as the DEC-subclass [13], does not exhibit
changes in topology of space-like hypersurfaces.

For solutions satisfying only weak energy condition spec-
ified as WEC-subclass [13], the curvature scalars can change
sign somewhere and geometry can experience changes in topol-
ogy of space-like hypersurfaces.

In the coordinates of comoving observers, the metrics (2.2)
describe regular vacuum dominated cosmologies of the
Lemaitré class and Kantowski–Sachs type whose dynamics
depends on the number of horizons [10,11]. Vacuum density
evolves smoothly from a big initial value to a small value re-
quired by observations [52].

In the coordinates of a distant observer at rest (e.g., r , t

in (2.2)) the class of solutions specified by (1.3), describes
compact objects dominated by anisotropic vacuum dark fluid
(the word ‘dark’ in this case refers to their interiors) which
can have two horizons, a black hole horizon and an internal
Cauchy [3,17] horizon. For a certain value of the mass parame-
ter, m = mcr, which puts a lower limit on a black hole mass,
horizons come together (in the course of the Hawking evapo-
ration [15]), and beyond mcr we have self-gravitating vacuum
soliton, G-lump, globally regular and globally neutral [15–17].

For any geometry with de Sitter center there exists a zero
gravity surface defined by p⊥(r) = 0 [5,15], beyond which the
strong energy condition is violated and gravitational attraction
becomes gravitational repulsion.

For geometries from the WEC-subclasss, there exist two
characteristic surfaces in a self-gravitating vacuum soliton: sur-
faces of zero 4- and 3-curvature.

Three compact vacuum configurations (a black hole, ex-
treme black hole and G-lump) are shown in Fig. 1 plotted for
the density profile [4]

(2.8)ρ(r) = ρ0e
−r3/r2

0 rg , r2
0 = 3/κρ0, rg = 2Gm

which describes a smooth de Sitter–Schwarzschild transition in
a simple semiclassical model for vacuum polarization in the

Fig. 1. The metric function g(r) for compact vacuum objects with de Sitter
center. Mass m is normalized to mcr.
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spherically symmetric gravitational field [15]. In this case the
critical mass is mcr 	 0.3mPl

√
ρPl/ρ0.

Stability of G-lumps

We apply the approach of direct studying perturbations in
the metric coefficients using the Einstein equations linearized
about the unperturbed spacetime [53]. The perturbation analy-
sis is fulfilled for the polar perturbations with the line element
ds2 = e2ν dt2 − e2ψ dφ2 − e2μ2 dr2 − e2μ3 dθ2, in general case
of an arbitrary regular density profile ρ(r).

The polar perturbations in the metric coefficients δν, δμ2,

δμ3, δψ , and perturbations of a stress–energy tensor δρ, δpr ,

δpθ , δpφ satisfy seven linear partial differential equations which
we complete by imposing an assumption δpr = ((dpr)/dρ)δρ

valid for small perturbations, getting as a result the system
of eight equations for eight functions which decouples into
the system of four linear partial differential equations for
δν, δμ2, δμ3, δψ , the system of three algebraic equations re-
lating δpr, δpθ , δpφ with δν, δμ2, δμ3, δψ , and the equation
following from the above assumption δpr = −δρ [13].

The perturbations in the metric coefficients are presented as
the series [53]

(3.1a)δν(r, θ, t) =
+∞∑
l=2

Nl(r)Pl(cos θ)eiσl t ,

(3.1b)δμ2(r, θ, t) =
+∞∑
l=2

Ll(r)Pl(cos θ)eiσl t ,

(3.1c)

δμ3(r, θ, t) =
+∞∑
l=2

[
Tl(r)Pl(cos θ) + Vl(r)Pl,θθ (cos θ)

]
eiσl t ,

(3.1d)

δψ(r, θ, t) =
+∞∑
l=2

[
Tl(r)Pl(cos θ) + Vl(r)Pl,θ (cos θ)ctgθ

]
eiσl t .

The Einstein equations give the linear system of three differ-
ential equations for Nl(r), Ll(r), Tl(r), Vl(r) and the rela-
tion Tl = Vl − Ll . Introducing Xl(r) = Ll(r) + nVl(r) where
n = l(l + 1)/2 − 1, we obtain the system of three differential
equations in the normal form [13]

xg2(x)Nl,x = (n + 1)gNl + g

(
x

2
g′ − (n + 1)

)
Ll

(3.2a)+ x2
(

1

4
(g′)2 − 1

2
gg′′ + σ 2

l

)
Xl,

(3.2b)xgLl,x +
(

x

2
g′ + g

)
Ll = xgNl,x +

(
x

2
g′ − g

)
Nl,

(3.2c)xgXl,x = −gLl +
(

x

2
g′ − g

)
Xl,

where x = r/r1 is the dimensionless radial coordinate; r1 =
(r2

0 rg)
1/3 is the characteristic scale of de Sitter–Schwarzschild

geometry; ρ(x) is normalized to ρ0; the prime denotes differ-
entiation with respect to x.
By the linear transformation

(3.3a)

Nl =
[

1

x
z1l −

((
b(x) − n − 1

) g′

2g
+ σ 2

l

x

g

)
z2l + z3l

]√
g(x),

(3.3b)Ll = (−b,xz2l + z3l )
√

g(x),

(3.3c)Xl = b(x)
√

g(x)

x
z2l ,

where

b(x) = n + 1 + x

2
g′(x) − g(x)

(3.4)= n + 3α

2x

(
M(x) − x3ρ

)

and α is the characteristic parameter of the problem

(3.5)α = rg/r1

we transform the normal system (3.2) to the form

z1l,x =
(

2

x
− g′

g

)
z1l −

(
1

2
x2g′′′ + xg′′ − g′

)
z2l

(3.6a)+
[

2 + x2

b(x)

(
g′′

2
− (g′)2

4g
− σ 2

l

1

g

)]
z3l ,

(3.6b)z2l,x = − 1

b(x)
z3l ,

z3l,x = b(x)g−1

x2
z1l −

[
2

x
+ (xg′′ − g′)

2b(x)

]
z3l

(3.6c)+ 1

x

(
x2

2
g′′′ + xg′′ − g′

)
z2l .

Differentiating (3.6c), expressing z1l from (3.6c) and using
(3.6a) we come to the system which includes one second-order
equation, and one first-order equation

(3.7a)z3l,xx + 2

(
g′

g
+ 1

x

)
z3l,x + ql(x)z3l = rl(x)z2l ,

(3.7b)z2l,x = − 1

b(x)
z3l ,

where

ql(x) = σ 2
l

1

g2
− 2(n + 1)

x2g
− 1

2

g′′

g
+ 1

4

(
g′

g

)2

+ 3

x

g′

g

− (xg′′ − g′)
b(x)

[
(xg′′ − g′)

2b(x)
− g′

g
+ 1

x

]

(3.8)+ xg′′′

2b(x)
+ 3αx

b(x)
p′⊥

and

rl(x) = −3αp′⊥
[
(n + 1)

g
− 3x

2

g′

g

(3.9)+ x

2b(x)
(xg′′ − g′)

]
+ 3α

x

(
x2p′⊥

)′
.

Introducing the “tortoise” coordinate x∗ by d
dx

= g(x)−1 d
dx∗

and the new function

(3.10)wl(x∗) = x
√

g(x)z3l (x∗)
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we reduce the problem to the integro-differential equation

(3.11)wl,x∗x∗ + [
σ 2

l − Wl(x)
]
wl(x∗) = −Klwl(x∗),

where

(3.12)Klu(x∗) = x(x∗)g5/2(x∗)rl(x∗)
x∗∫

d∗

√
g(z∗)u(z∗) dz∗
x(z∗)b(z∗)

is the integral Volterra operator.
The local potential has the form

Wl(x) = g

[
l(l + 1)

x2
+ g′′ − 1

x
g′

+ g(xg′′ − g′)
b

(
xg′′ − g′

2b
− g′

g
+ 1

x

)
− xgg′′′

2b

(3.13)− g

xb

(
1

2
x2g′′′ + xg′′ − g′

)]
.

In the particular case specified by the condition [13]

(3.14)
(
x2g′′/2 − g

)
,x

= 0 or equivalently
(
x3ρ′)

,x
= 0,

the function rl(x) in (3.12) vanishes identically, and the spec-
tral problem reduces to the standard Schrödinger equation with
the potential which in the case of the Schwarzschild black hole
coincides with the potential in Zerilli equation [53]. The condi-
tion (3.14) is the necessary and sufficient condition for reducing
the spectral problem to the canonic Schrödinger equation [13].

The asymptotic behavior of perturbations can be seen di-
rectly from the normal system (3.2). As x → ∞ the limiting
system for (3.2) reads

(3.15a)xNl,x = (n + 1)Nl − (n + 1)Ll + x2σ 2
l Xl,

(3.15b)xLl,x + Ll = xNl,x − Nl,

(3.15c)xXl,x = −Ll − Xl.

The linear transformation

Nl = 1

x
z1l − σ 2

l xz2l + z3l ,

(3.16)Ll = z3l , Xl = n

x
z2l

reduces the problem to the second-order equation

(3.17)z3l,xx + 2

x
z3l,x +

[
σ 2

l − l(l + 1)

x2

]
z3l = 0,

which is the radial equation for a particle in a spherically sym-
metric field (see, e.g., [54]).

The functions z1l (x) and z2l (x) are calculated from

(3.18)z1l = x

n
(xz3l,x + 2z3l ), z2l,x = −1

n
z3l .

The function wl(x) satisfies the limiting (x → ∞) equation

(3.19)−wl,xx + l(l + 1)

x2
wl = σ 2

l wl,

which gives asymptotic behavior at infinity

(3.20)wl(x) ∼ Al sin(σlx − lπ/2) + Bl cos(σlx − lπ/2).
In a small neighborhood of x = 0, the limiting system for
(3.2) differs from (3.15) by that in (3.15a) we have σ 2

l + const
in place of σ 2

l . Acting as above, we obtain the restricted asymp-
totic as x → 0

(3.21)wl(x) = O
(
xl+1).

This asymptotic behavior allows us to impose in the case of
G-lump the condition |wl(0)| < ∞ as x → 0 and the boundary
condition for the spectral problem (3.11)

(3.22)wl(x∗) → eiσlx∗ + Rle
−iσlx∗ as x∗ → ∞.

Ultimately the case reduces to investigation of the eigen-
value problem with integro-differential operator (3.11) which
is the Schrödinger equation with non-local potential. The spec-
trum of eigenvalues contains all the values of the parameter σ 2

l ,
at which solutions exist which satisfy the imposed boundary
conditions (3.22).

A considered static configuration is stable if there are no in-
tegrable modes with negative σ 2

l . The appearance of negative
eigenvalues σ 2

l would lead to the existence of exponentially
growing modes of perturbations.

The local potential (3.13) is restricted from below and van-
ishes at infinity. In such a case its spectrum consists of the
essential spectrum (positive semi-axis) and may be isolated
negative eigenvalues which are absent if the potential is non-
negative [55].

The non-local operator (3.12) can be considered as opera-
tor which perturbs the spectrum of the local operator (3.13).
The Weyl theorem on self-conjugated operators states that the
essential spectrum conserves under relatively compact pertur-
bations [56].

In the case without horizons we can neglect in a small neigh-
borhood of x = x∗ = 0 the non-local contribution as compared
with the contribution from the local potential. At the rest of
the positive semi-axis the kernel of the Volterra operator (3.12)
is square integrable smooth function [13]. Hence the non-local
perturbation in this case is relatively compact and the essential
spectrum of the problem (3.11) is the same as for the local po-
tential (3.13). Perturbation of the spectrum due to (3.12) can
lead only to appearance of isolated negative values σ 2

l .
For the case of a black hole the lower limit in the Volterra

integral is d∗ = −∞ (the event horizon). In the case when the
Killing horizons are absent, the coordinates r, t cover the whole
manifold, and the non-local contribution is formed over the
whole way of an initial perturbation wave from infinity (ingo-
ing wave) through the center where an ingoing wave becomes
outgoing, to the observation point x∗ so that its contribution is
given by

∫ 0
∞ + ∫ x∗

0 . When x∗ → ∞, these two components are
evidently cancelled so that non-local contribution does not lead
to existence of isolated negative values σ 2

l .
To obtain the condition of non-negativity of the local po-

tential Wl(x) we write it, introducing the function p(x) =
xg′′(x) − g′(x), in the form

(3.23)

Wl(x) = g

[
1

2
g

(
p

b

)2

+ 1

2b(x)
(g′)2 + 2(n + 1)

x2
− Il(x)

bx

]
,
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where

Il(x) = α

[
−4α

M2

x3
+ 9

2
αx4ρρ′ + 3(n − 1)x2ρ′ + 9

2
αxρ′M

(3.24)− 3nxρ − 3gx
(
x2ρ′′ + 2ρ

) + 3(n + 2)

x2
M

]
,

The function b(x) in (3.23) can be written as b(x) = n +
3α(M(x) − ρx3)/2x. With taking into account

∫ x

0 ρ,zz
3dz =

x3ρ − M(x) and ρ,x � 0, we find that b(x) � n for all values
of x. One negative contribution from Il(x), given by 3α(n +
2)M(x)/x2, is compensated by the term with 2(n + 1)/x2 in
(3.23). Another gives the sufficient condition

(3.25)x2ρ′′(x) + 2ρ(x) � 0,

which guarantees the positivity of the local potential Wl(x). The
sufficient condition (3.25) constraints the growth of the deriva-
tive of p⊥ + ρ by

(3.26)x(p⊥ + ρ)′ � ρ + (p⊥ + ρ)

and represents the criterion of stability of G-lumps. For the den-
sity profile (2.8) the condition (3.26) is satisfied.

4. Summary and discussion

G-lumps, globally neutral compact vacuum structures with
the de Sitter center are stable to the external polar perturbations
if they satisfy the condition (3.26) on the equation of state. We
expect stability of G-lumps to axial perturbations under reason-
able condition on ρ(r) [57].

Mass of G-lumps is related to de Sitter vacuum in the cen-
ter and smooth breaking of spacetime symmetry. Their masses
are constrained by m < mcr. Characteristic mass scale which
puts an upper limit on G-lump mass is mcr = αmPl

√
ρPl/ρ0

where α < 1 depends on the detailed particular model for the
density profile ρ(r). The limiting density at the center, ρ0 is re-
lated to the scale of symmetry restoration to the de Sitter group
in the origin. For globally neutral vacuum structures the rel-
evant scale is MGUT, then mcr ∼ 103 g, so that G-lumps can
have masses in the wide range below this value. G-lump can
be viewed as model-independent image of mini-gravastar with
continuous density and pressures2 applying the term ‘gravitat-
ing vacuum star’ literally to a self-gravitating object made of a
vacuum with the reduced symmetry.

The class of regular solutions to the Einstein equations spec-
ified by (1.3), includes configurations with vacuum density
evolving smoothly from the big value at the center to a small
value at infinity [5,11,12,17].

A positive cosmological constant may decelerate the onset
of gravitational collapse but does not prevent its completion
[59,60]. G-lump in a cosmological background can arise in a
way similar to primordial black hole formation from quantum
fluctuations resulting in a local density increase. It can emerge

2 Gravastars with continuous density and pressure were considered in the re-
cent paper [58].
in a quantum tunnelling process as an object without BH hori-
zon (m < mcr), either can appear as an end-product of the
Hawking evaporation of a vacuum nonsingular black hole ([17]
and references therein). The semiclassical nucleation rate of
primordial black holes in de Sitter space [61–63] decreases with
the BH mass and reaches the minimum when the event horizon
is equal to cosmological horizon. On the other hand, the nucle-
ation rate grows with increasing of background cosmological
constant λ since higher Gibbons–Hawking temperature makes
quantum fluctuations stronger [64]. Analysis of dynamics of
BH evaporation in an inflationary universe with the spatially
flat de Sitter metric revealed slight decrease in the evaporation
process [65]. Quantum evolution of black holes in the de Sitter
background depends on a BH size: Near maximal black holes
(size comparable to de Sitter horizon) anti-evaporate but there is
also evaporating mode [66]. The study of primordial black hole
dynamics with the one-loop effective action for conformal mat-
ter suggests that cosmological PBHs may survive much longer
than expected [67]. In the case of G-lumps the only difference is
that a singularity is replaced with the interior de Sitter vacuum,
so that one can expect the existence of a population of primor-
dial G-lumps. Analysis of their stability at the background of
small λ will be presented elsewhere.
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