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We systematically analyze the radiative corrections to the S3 symmetric neutrino mass matrix at high 
energy scale, say the GUT scale, in the charged lepton basis. There are significant corrections to the 
neutrino parameters both in the Standard Model (SM) and Minimal Supersymmetric Standard Model 
(MSSM) with large tanβ , when the renormalization group evolution (RGE) and seesaw threshold effects 
are taken into consideration. We find that in the SM all three mixing angles and atmospheric mass 
squared difference are simultaneously obtained in their current 3σ ranges at the electroweak scale. 
However, the solar mass squared difference is found to be larger than its allowed 3σ range at the low 
scale in this case. There are significant contributions to neutrino masses and mixing angles in the MSSM 
with large tanβ from the RGEs even in the absence of seesaw threshold corrections. However, we find 
that the mass squared differences and the mixing angles are simultaneously obtained in their current 3σ
ranges at low energy when the seesaw threshold effects are also taken into account in the MSSM with 
large tanβ .

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

The neutrino oscillation experiments have enriched our knowl-
edge of masses and mixings of neutrinos and thus flavor structure 
of leptons. These developments aspire theorists to construct mod-
els for unraveling the symmetries of lepton mass matrices. With 
the evidence of nonzero value of reactor mixing angle θ13 [1] we 
now have information of all three mixing angles contrary to ear-
lier studies where only an upper bound on θ13 existed. The lepton 
flavor mixing matrix comprises three mixing angles and a Dirac CP 
violating phase, δC P . There are two additional CP phases if neu-
trinos are Majorana particles. The best fit values along with their 
3σ ranges of neutrino oscillation parameters [2] are shown in Ta-
ble 1. The strength of this leptonic CP violation is parametrized 
by Jarlskog rephasing invariant [3] J = c12s12c23s23c2

13s13 sin δC P . 
The two Majorana phases, however, contribute to the lepton num-
ber violating processes like neutrinoless double beta decay. The 
cosmological constraint on the sum of neutrino masses by the 
Planck Collaboration [4] is Σmνi < 0.23 eV at 95% C.L. Depend-
ing on the values chosen for the priors this sum can be in the 
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Table 1
The experimental constraints on neutrino parameters taken from [2].

Parameter Best fit 3σ

�m2
12/10−5 eV2 (NH or IH) 7.54 6.99–8.18

�m2
13/10−3 eV2 (NH) 2.43 2.19–2.62

θ12 33.64◦ 30.59◦–36.8◦
θ13 8.93◦ 7.47◦–10.19◦
θ23 37.34◦ 35.1◦–52.95◦

range (0.23–0.933) eV. There are some challenges left namely to 
determine the absolute mass scale, mass hierarchy of neutrinos 
and the CP violation in leptonic sector amongst others. Evidence 
for nonzero θ13 has led to many studies for the deviation from the 
assumed symmetries that predict the vanishing θ13 value. Among 
many possible discrete flavor symmetries to produce the current 
data, S3 has been extensively studied in the literature [5]. It is 
the smallest discrete non-Abelian group which is the permutation 
of three objects. Perturbations to S3 symmetric leptonic mass ma-
trices have been used to study the mass spectra of the leptons 
and predict well known democratic [6] and tri-bimaximal neutrino 
mixing scenarios [7]. The most general form of S3 invariant Majo-
rana neutrino mass matrix [8] is given as

Mν = pI + qD, (1)
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where I is the identity matrix and D is democratic matrix with 
all elements equal to 1, p and q are in general complex parame-
ters. There are quite a few studies on the breaking of S3 symmetry 
in the leptonic sector [8,9] to produce the currently observed neu-
trino oscillation data. However, in the light of nonzero θ13 another
interesting possibility can be to study radiative corrections to S3
symmetric neutrino mass matrix between the GUT scale Λg and 
the electroweak scale Λew in the SM and MSSM.

Earlier studies have shown that there are significant RGE cor-
rections to neutrino masses and mixing angles particularly for 
quasi-degenerate neutrino spectrum in the MSSM with large tan β . 
The SM is extended by three heavy right handed neutrinos at high 
energy scale to generate neutrino masses in Type I seesaw mech-
anism [10]. The seesaw threshold corrections arise due to subse-
quent decoupling of these heavy right handed Majorana neutrinos 
at their respective masses. The structure of the Dirac mass matrix 
MD is proportional to the neutrino Yukawa coupling matrix Yν . 
We take a general Yν and scan the parameter space to obtain 
the desired mixing pattern. The right handed Majorana mass ma-
trix MR is found by inverting the Type I seesaw formula at Λg . 
Above the heaviest seesaw scale (MR3) there is a full theory and 
thus RGEs for Yukawa couplings Ye , Yν and mass matrix MR are 
considered. However, since our right handed neutrino mass ma-
trix MR is hierarchical (MR1 < MR2 < MR3), we also consider the 
seesaw threshold effects and thus the respective set of effective 
theories in-between these scales, arising from the subsequent de-
coupling of heavy right handed fields at their respective masses. 
In the SM we find that �m2

13 along with the neutrino mixing an-
gles are generated in their present 3σ ranges at the low energy 
scale. However, �m2

12 is greater than its allowed value (≈ 10−4) 
in the SM. We find that it is possible to radiatively generate the 
current neutrino masses and mixing angles from the S3 invariant 
neutrino mass matrix Mν in the charged lepton basis, when the 
seesaw threshold effects are taken into account in the MSSM with 
large tan β . In the MSSM with large tanβ , �m2

12 can be produced 
in its current range along with the other neutrino oscillation pa-
rameters at Λew in the presence of these threshold corrections.

In Section 2 we give the form of lepton mass matrices consid-
ered at Λg . In the subsequent section, we give the RGE equations 
governing from Λg to Λew , in presence of the seesaw threshold 
effects both in the SM and MSSM. In Section 4 we study the or-
der of corrections to the neutrino mass matrix in the presence of 
seesaw threshold effects. Section 5 gives our numerical results for 
both cases under consideration. We conclude in the last section.

2. Form of lepton mass matrices at the GUT scale

We consider the basis where charged lepton mass matrix (Ml)

is diagonal and the effective light neutrino mass matrix (Mν ) is 
S3 symmetric as given in Eq. (1). The Yukawa coupling matrix for 
charged leptons is given as

Ye = 1

v
Diag(me,mμ,mτ ), (2)

where the Higgs vacuum expectation value (VEV) v is taken to be 
246 GeV in the SM and 246 · cosβ GeV in the MSSM. The Yukawa 
coupling matrix Yν for the light neutrinos is taken of the form 
Yν = yνUν D as given in [11] where D is the diagonal matrix 
Diag(r1, r2, 1). The three parameters yν , r1 and r2 are real, pos-
itive and dimensionless that characterize eigenvalues of Yν . The 
unitary matrix Uν is the product of the three rotation matrices 
R23(ϑ2) · R13(ϑ3e−iδ) · R12(ϑ1) having one CP violating phase δ. 
Thus, Yν has seven unknown parameters viz. three eigenvalues, 
three mixing angles and one CP phase. We vary the three hierarchy 
(yν , r1, r2) parameters and, though they are completely arbitrary, 
but assumed to be < O(1). Three angles ϑ1, ϑ2, ϑ3 and δ are var-
ied in the range of (0–2π ).

The right handed mass matrix MR is found by inverting the 
Type I seesaw formula at Λg as

MR = − v2

2
Yν M−1

ν Y T
ν . (3)

The three right handed neutrino masses MR1, MR2 and MR3 are 
obtained by diagonalizing the right handed Majorana mass ma-
trix MR . The light neutrino mass matrix Mν can be diagonalized 
by the unitary transformation R as RT Mν R . One of the possible 
forms of R can be

R = UTBM =
⎛
⎜⎝

2√
6

1√
3

0

− 1√
6

1√
3

− 1√
2

− 1√
6

1√
3

1√
2

⎞
⎟⎠ . (4)

The mass eigenvalues of Mν are p, p + 3q and p corresponding to 
the light neutrino masses m1, m2 and m3, respectively. Due to the 
degeneracy in the mass eigenvalues m1 and m3, the diagonalizing 
matrix R is not unique. Degeneracy of masses implies that R is ar-
bitrary up to orthogonal transformation R13(φ), where φ is in 1–3 
plane. Thus, most general diagonalizing matrix R is UTBM R13(φ), 
which implies the same physics as UTBM . In this work we set φ = 0
without loss of generality [8,9]. From the neutrino oscillation data 
we know �m2

12 ≈ 10−5 and thus, there is small difference in the 
mass eigenvalues m1 and m2 which is a possible objection to this 
scenario of S3 invariant approximation as here m1 and m3 are de-
generate. This problem was elegantly solved in [8] where complex 
values of p and q are allowed. In that case we can easily achieve a 
situation where all three neutrinos are degenerate.

As shown in [9], q can be chosen completely imaginary and p
is taken to be |p|e−i α

2 . The magnitudes of p and q can be written 
in terms of parameter x as

|p| = x sec
α

2
, |q| = 2

3
x tan

α

2
, (5)

where x is a real free parameter and allowed range of α is 0 ≤
α < π . The magnitude of p and p + 3q can be made equal by ad-
justing the phase α. The parameter x vanishes when α = 180◦ and 
thus this value is disallowed. Substituting the values of p and q
given in Eq. (5), the magnitudes of the mass eigenvalues are given 
as

|m1| = |m2| = |m3| = x sec
α

2
. (6)

This results in equal magnitude of all three mass eigenvalues and 
thus a degenerate spectrum of neutrinos to begin with at Λg . As 
pointed out earlier in [9] the phase α affects the rate of neutrino-
less double beta decay but will not affect neutrino oscillation pa-
rameters. Thus, this phase is of Majorana type. When we run these 
masses from Λg to MR3, the degeneracy of the mass eigenvalues 
is lifted by RGE corrections. We consider the normal hierarchical 
spectrum of masses where m1 is the lowest mass. The other two 
masses are given as m2 =

√
m2

1 + �m2
12 and m3 =

√
m2

1 + �m2
13. 

Since the three mass eigenvalues at Λg have equal magnitude the 
two mass squared differences are vanishing to begin with. Once 
the degeneracy of three mass eigenvalues is lifted, their nonzero
values are generated. In subsequent sections we will explore gen-
eration of the solar and atmospheric mass squared differences, 
together with the three mixing angles in their current 3σ limit at 
Λew through the radiative corrections from S3 invariant neutrino 
mass matrix at Λg .
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3. RGE equations with seesaw threshold effects

In Type I seesaw the SM is extended by introducing three heavy 
right handed neutrinos and keeping the Lagrangian of electroweak 
interactions invariant under SU(2)L × U (1)Y gauge transformation. 
In this case, the leptonic Yukawa terms of the Lagrangian are writ-
ten as

−Lν = l̄eφYeeR + l̄eφ̃YννR + 1

2
ν̄c

R MRνR + h.c. (7)

Here φ is the SM Higgs doublet and φ̃ = iσ 2φ∗ . eR and νR are right 
handed charged lepton and neutrino singlets, Ye and Yν are the 
Yukawa coupling matrices for charged leptons and Dirac neutrinos, 
respectively. The last term of Eq. (7) is the Majorana mass term for 
the right handed neutrinos.

Quite intensive studies have been done in the literature [12,13]
regarding the general features of RGE of neutrino parameters. At 
the energy scale below seesaw threshold i.e. when all the heavy 
particles are integrated out, the RGE of neutrino masses and mix-
ing angles is described by the effective theory which is the same
for various seesaw models. But above the seesaw scale full theory 
has to be considered and thus, there can be significant RGE effects 
due to the interplay of heavy and light sector. The RGE equa-
tions and subsequent decoupling of heavy fields at their respective 
scales are elegantly given in Ref. [14,15]. The comprehensive study 
of the RGE and seesaw threshold corrections to various mixing sce-
narios is recently done in [16].

The effective neutrino mass matrix Mν above MR3 is given as

Mν(μ) = − v2

2
Y T

ν (μ)M−1
R (μ)Yν(μ), (8)

where v = 246 · sin β GeV in the MSSM and μ is the renormal-
ization scale. Yν and MR are μ dependent. Since we study the 
evolution of leptonic mixing parameters from Λg to Λew scale in 
a generic seesaw model we need to take care of the series of ef-
fective theories that arise by subsequent decoupling of the heavy 
right handed fields MRi (i =1,2,3) at their respective mass thresh-
olds. The Yukawa couplings Yν and MR are dependent on the 
energy scale Λ. At the GUT scale we consider the full theory and 
the one loop RGEs for Ye , Yν and MR are given as

Ẏ{e,ν} = 1

16π2
Ye[α{e,ν} + C{1,3}He + C{2,4}Hν ],

ṀR = 1

16π2
C5

[(
Yν Y †

ν

)
MR + MR

(
YνY †

ν

)T ]
, (9)

where Ẏ i = dYi
dt (i = e, ν), t = ln(μ/μ0) with μ(μ0) being the run-

ning (fixed) scale, and Hi = Y †
i Y i (i = e, ν). The coefficients are 

C1 = 3
2 , C2 = − 3

2 , C3 = − 3
2 , C4 = 3

2 , C5 = 1 in the SM and C1 = 3, 
C2 = 1, C3 = 1, C4 = 3, C5 = 2 in the MSSM, respectively. The ex-
pressions for αe and αν in the SM and MSSM are explicitly given 
as

α{e,ν}(SM) = Tr(3Hu + 3Hd + He + Hν) −
(

K 1{e,ν} g2
1 + 9

4
g2

2

)
,

α{e,ν}(MSSM) = Tr(3H{d,u} + H{e,ν}) − (
K 2{e,ν} g2

1 + 3g2
2

)
, (10)

where g1,2 are the U (1)Y and SU(2)L gauge coupling constants. 
The heavy right handed mass matrix MR obtained from Eq. (3) is 
nondiagonal and thus is diagonalized by the unitary transformation 
U R as U T

R MR U R = Diag(MR1, MR2, MR3). The Yukawa coupling Yν

is accordingly transformed as Yν U∗
R . At MR3, the effective operator 

κ(3) is given by the matching condition as

κ(3) = 2Y T
ν M−1Yν, (11)
R3
in the basis where MR is diagonal. The Yukawa coupling Yν above 
is a 3 × 3 matrix and all the variables are set to the scale MR3. At 
the scale lower than MR3 (μ < MR3) the effective neutrino mass 
matrix Mν is given as

Mν = − v2

4

{
κ(3) + 2Y T

ν(3)M−1
R(3)Yν(3)

}
. (12)

As can be seen, Mν is the sum of κ(3) given in Eq. (11) and the 
seesaw factor which is obtained after decoupling MR3. Thus, Yν(3)

is 2 × 3 and MR(3) is 2 × 2 mass matrices. RGE between the scales
MR3 and MR2 is governed by the running of κ(3) , Yν(3) and MR(3) . 
The running of κ(3) is given as

κ̇3 = 1

16π2

[
(C3 He + C6 Hν(3))

T κ(3) + κ(3)(C3 He + C6 Hν(3))

+ α(3)κ(3)

]
, (13)

where C6 = 1
2 and Hν(3) = Y †

ν(3)Yν(3) . α(3) in the SM and MSSM is 
explicitly given as

α(3)(SM) = 2Tr(3Hd + 3Hu + He + Hν(3)) − 3g2
2 + λ,

α(3)(MSSM) = 2Tr(3Hu + Hν(3)) − 6

5
g2

1 − 6g2
2,

where all the parameters are set to seesaw scale MR2. The low 
energy effective theory operator κ(1) is obtained after integrating 
out all three heavy right handed fields. The one loop RGE for κ(1)

from lowest seesaw scale MR1 down to Λew scale is given as

κ̇(1) = (
C3 H T

e

)
κ(1) + κ(1)(C3 He) + ακ(1), (14)

where

α = 2Tr(3Hu + 3Hd + He) − 3g2
2 + λ in the SM,

α = 2Tr(3Hu) − 6

5
g2

1 − 6g2
2 in the MSSM. (15)

When the Higgs field gets VEV, the light neutrino mass matrix is 
obtained from κ(1) as Mν = κ(1)v2

4 . We diagonalize Mν to obtain 
neutrino masses, mixing angles and CP phases.

4. Neutrino masses and mixings

The RGE above the MR3 depends on more parameters than be-
low the lowest seesaw scale MR1 due to presence of the neutrino 
Yukawa couplings (Yν). The RGE equations consist of He , MR and 
Hν out of which latter can be large. In the basis where charged 
lepton mass matrix is diagonal, Mν at two different energy scales 
Λew and Λg are homogeneously related as [17,18]

MΛew
ν = I K · I T · M

Λg
ν · I. (16)

Here I K is a flavor independent factor arising from gauge inter-
actions and fermion antifermion loops. It does not influence the 
mixing angles. The matrix I has the form

I = Diag
(
e−�e , e−�μ, e−�τ

)
� Diag(1 − �e,1 − �μ,1 − �τ ) +O

(
�2

e,μ,τ

)
, (17)

where

� j = 1

16π2

∫ [
3(H j) − (Hν j )

]
dt, (18)

where j = e, μ, τ . Numerically, �S M
τ can be of the order of 10−3

when Yτ ∼ 0.01 and Yν = 0.2 and the scales μ and μ0 are 1012

and 102, respectively. In the MSSM, �MSSM
τ ∼ 10−3(1 + tan2 β) for 

the same values of Yν and Yτ . In the absence of seesaw threshold 
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Table 2
Numerical values of input and output parameters that are radiatively generated via the RGE and seesaw threshold effects both in the SM and MSSM. The input parameters 
are taken at Λg = 2 × 1016 GeV and tanβ = 55 in the MSSM.

Parameters 
Input

SM MSSM Observables 
Output

SM MSSM

r1 7 × 10−3 3 × 10−4 m1 (eV) 9.4 × 10−2 1.47 × 10−2

r2 0.33 0.34 θ12 34.3◦ 35.2◦
δ 158.1◦ 96.3◦ θ13 7.88◦ 9.85◦
yν 0.72 0.49 θ23 47.7◦ 47.4◦
θ1 225.2◦ 188.5◦ �m2

12 (eV2) 4.18 × 10−4 7.14 × 10−5

θ2 244.6◦ 245.8◦ �m2
13 (eV2) 2.48 × 10−3 2.35 × 10−3

θ3 345.5◦ 241.7◦ MR1 (GeV) 3.1 × 105 2.86 × 103

x (eV) 7.46 × 10−2 1.9 × 10−3 MR2 (GeV) 4.43 × 108 9 × 108

α 102.5◦ 170.2◦ MR3 (GeV) 2.83 × 109 4.7 × 109

J −2.99 × 10−2 −3.87 × 10−2

|mee | (eV) 9.2 × 10−2 1.03 × 10−2

Fig. 1. The RGE of the mixing angles, masses and mass squared differences between Λg and Λew in the SM. The initial values of the parameters are given in the second 
column of Table 2. The boundaries of three gray shaded areas, i.e. dark, medium and light denote the points when heavy right handed singlets MR3, MR2 and MR1 are 
integrated out respectively.
effects, �τ is small ≈ 10−5 in the SM for the above mentioned 
values of Yτ .

Above seesaw scale appreciable deviations may occur only for 
large values of Yτ or Yν . In the absence of seesaw threshold effects 
i.e. when there is no Hν term in Eq. (18) the radiative corrections 
are governed by �τ term as �e,μ is too small. On the other hand, 
due to the presence of large Hν , �e,μ can have comparable contri-
butions as �τ . Below the seesaw scales, deviations are obtained 
from Yτ ∼ √

2mτ /v ≈ O(10−2) in the SM, and ∼
√

2mτ
v cos β

in the 
MSSM. There can be significant deviations in the MSSM with large 
tan β which enhances Yτ . The analytic expressions for the running 
neutrino mixing angles, masses and CP phases are quite long and 
have been earlier derived in literature [19].

At Λg we have seven free parameters in Yν and two free pa-
rameters α and x in Mν . The three mixing angles in ϑ1, ϑ2 and ϑ3

and phase δ are allowed to take the values in the range (0–2π ). 
The hierarchy parameters yν , r1, r2 and x are randomly varied and 
are expected to be < O(1). The physical range of phase α is from 
(0–π ). The mass spectrum at the high scale is degenerate and thus 
we have vanishing solar and atmospheric mass squared difference 
to begin with. The parameter space at Λg with which the low en-
ergy neutrino data is obtained at Λew is illustrated in Table 2. The 
set of input parameters in that particular parameter space is also 
given in the table. We choose the set of input parameters in pa-
rameter space at the high scale for which maximum value of θ13

is obtained and the other mixing angles and mass squared differ-
ences are simultaneously obtained in current 3σ range at Λew . 
However, the parameter space under consideration is only for il-
lustration and not unique. Search for complete parameter space is 
an elaborate study and thus independent future work.
5. Radiative and threshold corrections in the SM

Study of radiative corrections to S3 symmetric neutrino mass 
matrix can be divided into three regions that are governed by dif-
ferent RGE equations. The first region is above the highest seesaw 
scale MR3 to Λg , where there can be considerable contribution 
of Yν . The second region is in-between the three seesaw scales 
and the third region is below the lowest seesaw scale MR1, where 
all heavy fields are decoupled. The solar mixing angle θ12 can have 
large RGE corrections as the running is enhanced by the factor 
proportional to m2

�m2
12

at the leading order, which can be large for 
degenerate spectrum. The RGE is comparatively small for other two 
mixing angles θ23 and θ13, where the RGE is proportional to m2

�m2
13

. 
However, for the degenerate neutrino mass spectrum there can be 
considerable corrections for these mixing angles, too. Below the 
seesaw scale the RGE corrections to the mixing angles in the SM 
are negligible as they get contributions only from Yτ . In Fig. 1, we 
show the RGE corrections to the mixing angles and masses in the 
SM for the set of input parameters given in second column of Ta-
ble 2. Fig. 1 shows that below MR1 scale there are no significant 
corrections to the mixing angles. Below MR1, running of the mass 
eigenvalues is significant even in the SM for degenerate as well as 
hierarchical neutrinos [13] due to the factor α given in Eq. (15), 
which is much larger than Y 2

τ . The running of masses is given by 
a common scaling of the mass eigenvalues [20]. Clearly, the RGE 
of each mass eigenvalue is proportional to the mass eigenvalue it-
self. The running of masses in Fig. 1 can be seen to start from 
the degenerate values of masses at Λg and there are significant 
corrections to the masses below MR1. Earlier analysis [21] studied 
the successful generation of mass squared differences and mixing 
angles for degenerate neutrinos in the SM. In their analysis it is 
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Fig. 2. The RGE of the mixing angles, masses and mass squared differences between Λg and Λew in the MSSM with tanβ = 55. The initial values of the parameters are given 
in the third column of Table 2. The boundaries of three gray shaded areas, i.e. dark, medium and light denote the points when heavy right handed singlets MR3, MR2 and 
MR1 are integrated out respectively.
shown that the generation of mass squared differences is very sen-
sitive to the value of sin2 θ12, which should be greater than 0.99 
to fit the mass squared differences simultaneously with the con-
sistent angles. This limit is, however, completely ruled out by the 
current oscillation data. The degeneracy of three mass eigenvalues 
is lifted by the RGE running from Λg to MR3. Potentially signifi-
cant breaking of neutrino mass degeneracy is provided by the RGE 
effects. The seesaw threshold effects in addition increase the mass 
splitting between the masses m2 and m3 required to fit the masses 
with the current data in terms of mass squared differences.

Running between and above the seesaw scales is modified by 
the contribution of Yukawa couplings Yν . The contribution of Yν

in the RGE can result all the three mixing angles in their currently
allowed ranges at the EW scale in the SM. Thus, there are sig-
nificant corrections to mixing angles even in the SM in presence 
of the seesaw threshold effects when there is exactly the degen-
erate mass spectrum to begin with. As can be seen from Fig. 1, 
the mixing angles at the GUT scale are θ23 = 45◦ , θ12 = 35.3◦ and 
θ13 = 0◦ . For the set of parameters given in the second column 
of Table 2 we get the mixing angles in the allowed range at the 
electroweak scale in the SM. θ23 is found to have values below 
maximality. The presence of Yν in the RGE equations makes this 
possible even in the SM, as can be seen in Fig. 1. The gray shaded 
area in Fig. 1 and Fig. 2 illustrates the ranges of effective theories 
that emerge when we integrate out heavy right handed singlets. 
At each seesaw scales, i.e. MR1, MR2 and MR3, one heavy singlet 
is integrated out and thus (n − 1) × 3 sub-matrix of Yν remains. 
Therefore, the running behavior between these scales can be differ-
ent from running behavior below or above these scales. Between 
these scales the neutrino mass matrix comprises two terms κ(n)

and 2Y T
ν(n)

M−1
R(n)

Yν(n) , as given in Eq. (12). It is shown in [13] that 
in the SM these two terms between the thresholds are quite differ-
ent which can give dominant contribution to the running of mixing 
angles in this region. Both θ12 and θ13 in Fig. 1 get large correc-
tions between three seesaw scales. θ23 gets the deviation of ≈ 2.7◦
in the upper direction. In the SM, �m2

13 is generated within the 
current oscillation data limit (≈ 2.48 × 10−3 eV2) starting from the 
vanishing value at the Λg since all masses are degenerate, as seen 
from Fig. 1. The solar mass squared difference �m2

12 of the order 
of ≈ 10−4 eV2 is simultaneously generated at the Λew , as shown 
in Fig. 1 which is larger than its present value. The byproduct of 
this analysis is the masses of right-handed neutrinos that are de-
termined from Eq. (3) and are not free parameters. The values of 
|Mee| and J at the Λew are also calculated for particular set of 
parameters given in Table 2. The value of |Mee| will be useful to 
provide limit on unknown absolute neutrino mass.
6. Radiative and Threshold corrections in the MSSM

As stated earlier we divide the radiative corrections to S3 sym-
metric neutrino mass matrix into three regions governed by differ-
ent RGE equations in the MSSM. In the region below the lightest 
seesaw scale, for the SM and MSSM with small tan β , Yukawa cou-
pling Yτ ∼ 0.01 is small, and thus there are small corrections. For 
large tan β these corrections can be larger due to the presence of 
factor Y 2

τ (1 + tan2 β) in the MSSM. We show the RGE of mixing 
angles and masses in the MSSM with tan β = 55 in Fig. 2 for the 
set of input parameters given in third column of Table 2. In the 
region above the energy scale MR1, we get contributions from an-
other Yukawa coupling Yν which brings in more free parameters 
in the analysis. In the region for the MSSM with large tan β the 
presence of seesaw threshold effects can enhance the RGE of the 
mixing angles significantly. As can be seen from Fig. 2, we can 
have all three mixing angles simultaneously in the current limit 
at the EW scale starting from S3 symmetric neutrino mass ma-
trix at the Λg . Fig. 2 shows that there are large corrections to 
θ13 (∼9.85◦) between the Λg and M3 scale due to the presence 
of Yν . As mentioned earlier, the running of neutrino mass matrix 
between the seesaw thresholds gets contributions from two terms 
κ(n) and 2Y T

ν(n)
M−1

R(n)
Yν(n) given in Eq. (12). In the MSSM, as can be 

seen from Fig. 2, there are not much deviations in the mixing an-
gles between the energy scales. It is because the two contributions 
κ(n) and 2Y T

ν(n)M−1
R(n)Yν(n) are almost identical and thus cancel each 

other resulting in minimum deviation in those regions. The only 
significant correction occurs in the region above MR3 due to rela-
tively large Yν .

The mixing angle θ12 does not have much corrections and θ23
receives the correction of 2.5◦ in the upper direction and is thus 
above maximal. The running of masses in the MSSM (Fig. 2) is 
much larger than the SM due to the presence of tanβ which in 
our case is large. The dominant effect, however, is the corrections 
in the range MR3 ≤ μ ≤ Λg where the flavor dependent terms (Yl
and Yν ) can be large. The interesting dependence of αν (MSSM) 
and tan β on the running contributions of flavor dependent terms 
is given in [13]. For large tanβ the contribution of Ye and Yν be-
comes important. We also show the radiative corrections to the 
two mass squared differences from the Λg to the Λew for degen-
erate masses at the GUT scale in the MSSM with tan β = 55. To 
begin with both the mass squared differences are zero at the GUT 
scale. From the mass squared differences shown in Fig. 2, we see 
that the RGE in combination with seesaw threshold corrections can 
result both mass squared differences in their current 3σ ranges at 
the low scale. For given set of input parameters in Table 2, the 
value of |Mee| is ≈ 10−2 eV and that of J is ≈ 3.87 × 10−2. Thus, 
we find that it is possible to simultaneously obtain the neutrino 
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oscillation parameters at the electroweak scale for S3 mass matrix 
at the Λg in the MSSM with large tan β .

7. Conclusions

We studied the RGE corrections to the S3 symmetric neutrino 
mass matrix in the presence of seesaw threshold corrections both 
in the SM and MSSM. In the absence of seesaw threshold effects 
there are negligible corrections to the mixing angles in the SM and 
MSSM with low tan β . However, significant corrections are possi-
ble in neutrino parameters once the seesaw threshold effects are 
taken into consideration both in the SM and MSSM. In the SM we 
found that the mixing angles can be obtained in their current 3σ
range at the electroweak scale when we begin with the S3 sym-
metric neutrino mass matrix at the GUT scale Λg . The significant 
running occurs between and above the seesaw threshold scales. 
Below lowest seesaw scale there are no significant corrections as 
the only contribution comes from Yτ which is small. However, in 
this case of exactly equal magnitude of mass eigenvalues, the so-
lar mass squared difference is not simultaneously generated with 
other neutrino parameters in the current range at the electroweak 
scale in the SM. There can be large radiative corrections in the 
MSSM with tanβ = 55 when threshold effects are taken into con-
sideration. The large corrections to the mixing angles occur at the 
scale above the seesaw threshold where the Yukawa coupling, Yν , 
is present and has large free parameters which can enhance run-
ning for large tan β . Thus, in the MSSM with large tan β we can 
simultaneously generate all the masses and mixing angles in the 
currently allowed range at the electroweak scale, starting from ex-
actly degenerate mass spectrum at high scale.
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