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Abstract

Composition of services is necessary for realizing complex tasks on the Web. It has been characterized either
as a plan synthesis problem or as a software synthesis problem: given a goal and a set of Web services,
generate a composition of the Web services that satisfies the goal. We propose algorithms for performing
automated Web service composition. We also examine the composition of services from the perspective of
computational complexity.
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1 Introduction

The development of service oriented architectures for implementing distributed soft-
ware systems demands that organizations make their abilities accessible via the In-
ternet through Web service interfaces. The web services are published using Web
service standards like WSDL [3] or the abstract WS-BPEL [2,15]. In most cases,
Web services are nothing more than elementary components in a client-server ar-
chitecture. Their importance lies in the fact that we can compose them to create
complex business processes, using Web service standards like concrete WS-BPEL [2]
and WS-CDL [14,23]. The WS-CDL is used to specify the choreography between
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services and concrete WS-BPEL is used for the orchestration of services. Com-
position of Web services involves multifarious difficulties and requires to formally
define the semantics of the input services. If one tries to compose complex business
processes from given input services then plan synthesis algorithms from artificial in-
telligence or software synthesis algorithms from computer science can be employed.
There exist many approaches to the composition problem [17]. Characterizing Web
service composition as a plan synthesis problem forces us to devise algorithms tack-
ling incomplete information and uncertain effects. Different automated techniques
have been proposed to solve the composition/plan problem [21,22,25]. Nevertheless,
their computational complexity has not been investigated in details. Characterizing
Web service composition as a software synthesis problem compels us to devise algo-
rithms working with behavioural descriptions given in terms of automata. Different
automated techniques have been proposed to solve the composition/software prob-
lem [5,6,7,9,10,24]. Nevertheless, their completeness rests on syntactical restrictions
that prevent them from being fully applicable.
Although services might be considered as non autonomous agents which know
only about themselves, service oriented architectures and multi-agent systems share
many characteristics [12]. To illustrate the truth of this, one has only to mention
the fact that several researchers have recently advocate the use of Web service tech-
nology to build multi-agent systems accessible through the Web [16] or the use of
multi-agent-based coalition formation approaches for Web service composition [18].
In this paper, we propose a solution for the compositon/software problem. More
precisely, we propose algorithms for performing automated Web service composi-
tion. We also examine the composition of services from the perspective of compu-
tational complexity. The differences between the work presented in this paper and
the works done in [7,10,24] are the following. First, we do not consider the same
relation between the goal and the available services. We consider the bisimulation
relation whereas the papers mentioned above consider the simulation relation. In-
tuitively, the bisimulation relation does not allow the available services to perform
sequences of actions not performed by the goal. In practice, this is important. For
example, from a security point of view, if one wants to prohibit sequences of actions
that allow services to guess secret information. The second difference is that we
consider internal actions and communication actions as well. More precisely, the
communication actions are performed through bounded channels. We impose this
constraint since otherwise the composition problem will be undecidable. In other
respect, in [7], the authors consider that the goal and the available services are
deterministic. This restriction, that we do not consider in our paper, is also usually
considered in the theory of controller and greatly simplifies the synthesis problem.
Finally, in [7,10,24], there are guards/conditions on the transitions. Nevertheless,
our result still hold if we add guards/conditions on transitions.
The section-by-section breakdown of the paper is as follows. Section 2 recalls the
notion of finite automata and establishes the concept of Web service. In section 3,
basic definitions are given and preliminary results are proved. These definitions and
these results will be used in great depth in the remaining sections. Section 4 intro-
duces the composition problem: given a goal and a set of Web services, generate a
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composition of the Web services that satisfies the goal. In section 5, we examine
the composition of services from the perspective of computational complexity. Two
ways of solving the composition problem are presented in section 6. In section 7,
we talk about some open problems.

2 Web services as finite automata

In this section, the notion of finite automata is recalled and the concept of Web
service is established.

2.1 Finite automata

Let Σ be a finite set of actions. A finite automaton over Σ is a structure A =
(S, Δ, sin) where S is a finite set of states, Δ is a function

• Δ: S × Σ → 2S ,

sin ∈ S is an initial state. For all Σ′ ⊆ Σ, the relation →Σ′
A ⊆ S × S describes

how the finite automaton can move from one state to another in 1 step under some
action in Σ′. It is defined formally as follows: s →Σ′

A t iff there exists a ∈ Σ′ such
that t ∈ Δ(s, a). Furthermore, let →Σ′

A
�

be the reflexive transitive closure of →Σ′
A .

For all Σ′ ⊆ Σ, we shall say that A loops over Σ′ iff for all a ∈ Σ′, →{a}
A = IdS .

2.2 Products

Let A1 = (S1,Δ1, s
in
1 ) and A2 = (S2,Δ2, s

in
2 ) be finite automata over Σ. By A1⊗A2,

we denote the asynchronous product of A1 and A2, i.e. the finite automaton A =
(S, Δ, sin) over Σ such that S = S1 × S2, Δ is the function defined by

• (t1, t2) ∈ Δ((s1, s2), a) iff either t1 ∈ Δ1(s1, a) and t2 = s2 or t1 = s1 and t2 ∈
Δ2(s2, a),

sin = (sin
1 , sin

2 ). By A1 × A2, we denote the synchronous product of A1 and A2,
i.e. the finite automaton A = (S, Δ, sin) over Σ such that S = S1 × S2, Δ is the
function defined by

• (t1, t2) ∈ Δ((s1, s2), a) iff t1 ∈ Δ1(s1, a) and t2 ∈ Δ2(s2, a),

sin = (sin
1 , sin

2 ).

2.3 Bisimulations

Let A1 = (S1,Δ1, s
in
1 ) and A2 = (S2,Δ2, s

in
2 ) be finite automata over Σ. For all Σ′

⊆ Σ, a relation Z ⊆ S1×S2 such that (sin
1 , sin

2 ) ∈ Z is called a bisimulation between
A1 and A2 modulo Σ′, notation Z: A1 ←→ A2 (Σ′), iff the following conditions are
satisfied for all (s1, s2) ∈ Z and for all a ∈ Σ \ Σ′:

• for all t1 ∈ S1, if s1 →Σ′
A1

�◦ →{a}
A1

◦→Σ′
A1

�
t1 then there exists t2 ∈ S2 such that s2

→Σ′
A2

�◦ →{a}
A2

◦→Σ′
A2

�
t2 and (t1, t2) ∈ Z,
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• for all t2 ∈ S2, if s2 →Σ′
A2

�◦ →{a}
A2

◦→Σ′
A2

�
t2 then there exists t1 ∈ S1 such that s1

→Σ′
A1

�◦ →{a}
A1

◦→Σ′
A1

�
t1 and (t1, t2) ∈ Z.

Furthermore, for all Σ′ ⊆ Σ, if there is a bisimulation between A1 and A2 modulo
Σ′ then we write A1 ←→ A2 (Σ′).

Fig. 1.

2.4 Web services

Let Π be a finite set of channels. Following the line of reasoning suggested by [5,6,9],
we model Web services on finite automata with input and output. Web services
communicate by sending asynchronous messages through channels. Communication
through channels can be assumed to be reliable so that messages, once they are sent,
do not get lost during their transmission. In this paper, for simplicity, we abstract
from message contents and we consider that channels cannot contain, at all times,
more than 1 message. Formally, a Web service over Π and Σ is a finite automaton
over ({!, ?}×Π)∪Σ. For all π ∈ Π, the send action !π consists of adding a message
at channel π whereas the receive action ?π consists of taking away a message at
channel π. The action !π can be executed provided the channel is not full (i.e. π

must contain exactly 0 message) whereas the action ?π can be executed provided the
channel is not empty (i.e. π must contain exactly 1 message). This motivates the
following definition. Let A = (S, Δ, sin) be a finite automaton over ({!, ?}×Π)∪Σ.
By FA(A), we denote the finite automaton A′ = (S′,Δ′, sin′) over ({!, ?} × Π) ∪ Σ
of exponential size such that S′ = S × 2Π, Δ′ is the function defined by

• (t, Q) ∈ Δ′((s, P ), !π) iff t ∈ Δ(s, !π), Q = P ∪ {π}, π 	∈ P ,
• (t, Q) ∈ Δ′((s, P ), ?π) iff t ∈ Δ(s, ?π), Q = P \ {π}, π ∈ P ,
• (t, Q) ∈ Δ′((s, P ), a) iff t ∈ Δ(s, a), Q = P ,

Fig. 2.

sin′ = (sin, ∅). Intuitively, FA(A) is the finite automaton obtained from A when the
status of channels is included into states. Remark that one can construct FA(A)
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in exponential time. Take the case of A, the finite automaton from figure 1. Then
FA(A) is the finite automaton from figure 2.

3 Basic definitions and preliminary results

In this section, basic definitions are given and preliminary results are proved. These
definitions and these results will be used in great depth in the remaining sections.

3.1 Basic definitions

It is convenient to take a finite set Π◦ of channels such that (Σ ∪ Π) ∩ Π◦ = ∅ and
Card(Π) = Card(Π◦) and to use a bijection π �→ π◦ from Π to Π◦. By L◦, we mean
the finite automaton A′ = (S′, Δ′, sin′) over {!, ?} × Π◦ such that S′ = {0}, Δ′ is
the function defined by

• Δ′(0, !π◦) = {0} and Δ′(0, ?π◦) = {0},
sin′ = 0. Let A = (S, Δ, sin) be a finite automaton over ({!, ?} × (Π ∪ Π◦)) ∪ Σ.
By Del◦(A), we denote the finite automaton A′ = (S′, Δ′, sin′) over ({!, ?}×Π)∪Σ
such that S′ = S, Δ′ is the function defined by

• Δ′(s, !π) = Δ(s, !π) ∪ Δ(s, !π◦) and Δ′(s, ?π) = Δ(s, ?π) ∪ Δ(s, ?π◦),
• Δ′(s, a) = Δ(s, a),

sin′ = sin. By FA◦(A), we denote the finite automaton A′ = (S′,Δ′, sin′) over
({!, ?}× (Π∪Π◦))∪Σ of exponential size such that S′ = S × 2Π, Δ′ is the function
defined by

• (t, Q) ∈ Δ′((s, P ), !π) iff t ∈ Δ(s, !π), Q = P ∪ {π}, π 	∈ P and (t, Q) ∈
Δ′((s, P ), ?π) iff t ∈ Δ(s, ?π), Q = P \ {π}, π ∈ P ,

• (t, Q) ∈ Δ′((s, P ), !π◦) iff t ∈ Δ(s, !π◦), Q = P ∪ {π}, π 	∈ P and (t, Q) ∈
Δ′((s, P ), ?π◦) iff t ∈ Δ(s, ?π◦), Q = P \ {π}, π ∈ P ,

• (t, Q) ∈ Δ′((s, P ), a) iff t ∈ Δ(s, a), Q = P ,

sin′ = (sin, ∅). Remark that one can construct FA◦(A) in exponential time. Let
A = (S, Δ, sin) be a finite automaton over {!, ?} × Π. By Ren◦(A), we denote the
finite automaton A′ = (S′, Δ′, sin′) over ({!, ?} × (Π ∪ Π◦)) ∪ Σ such that S′ = S,
Δ′ is the function defined by

• Δ′(s, !π) = {s} and Δ′(s, ?π) = {s},
• Δ′(s, !π◦) = Δ(s, !π) and Δ′(s, ?π◦) = Δ(s, ?π),
• Δ′(s, a) = {s},
sin′ = sin. Obviously, Ren◦(A) loops over ({!, ?} × Π) ∪ Σ.

3.2 Preliminary results

Now, we present some useful lemmas.
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Lemma 3.1 Let A1 = (S1,Δ1, s
in
1 ) be a finite automaton over ({!, ?}×Π)∪Σ and

A2 = (S2,Δ2, s
in
2 ) be a finite automaton over {!, ?} × Π. Then, FA(A1 ⊗ A2) is

isomorphic to Del◦(FA◦(A1 ⊗ L◦) × Ren◦(A2)).

Proof. States in FA(A1 ⊗ A2) are of the form ((s1, s2), P ) with s1 ∈ S1, s2 ∈
S2 and P ⊆ Π whereas states in Del◦(FA◦(A1 ⊗ L◦) × Ren◦(A2)) are of the
form (((s1, 0), P ), s2) with s1 ∈ S1, P ⊆ Π and s2 ∈ S2. Obviously, the bi-
jection ((s1, s2), P ) �→ (((s1, 0), P ), s2) is an isomorphism from FA(A1 ⊗ A2) to
Del◦(FA◦(A1 ⊗ L◦) × Ren◦(A2)). �

Lemma 3.2 Let A1 = (S1,Δ1, s
in
1 ) be a finite automaton over ({!, ?} × Π) ∪ Σ

and A2 = (S2,Δ2, s
in
2 ) be a finite automaton over ({!, ?} × (Π ∪ Π◦)) ∪ Σ looping

over ({!, ?} × Π) ∪ Σ. Then, Del◦(FA◦(A1 ⊗ L◦) ×A2) is isomorphic to FA(A1 ⊗
Del◦(L◦ ×A2)).

Proof. States in Del◦(FA◦(A1 ⊗ L◦) × A2) are of the form (((s1, 0), P ), s2) with
s1 ∈ S1, P ⊆ Π and s2 ∈ S2 whereas states in FA(A1 ⊗ Del◦(L◦ ×A2)) are of the
form ((s1, (0, s2)), P ) with s1 ∈ S1, s2 ∈ S2 and P ⊆ Π. Obviously, the bijection
(((s1, 0), P ), s2) �→ ((s1, (0, s2)), P ) is an isomorphism from Del◦(FA◦(A1⊗L◦)×A2)
to FA(A1 ⊗ Del◦(L◦ ×A2)). �

Lemma 3.3 Let A1 = (S1,Δ1, s
in
1 ) be a finite automaton over ({!, ?}×Π)∪Σ and

Π′ ⊆ Π. Then, one can construct in polynomial time a modal μ-calculus formula
f(A1, Π′) over ({!, ?} × (Π ∪ Π◦)) ∪ Σ of polynomial size such that for all finite
automata A2 = (S2, Δ2, s

in
2 ) over ({!, ?}× (Π∪Π◦))∪Σ, A1 ←→ Del◦(A2) ({!, ?}×

Π′) iff A2 |= f(A1,Π′).

Proof. See [8] for details. �

By lemmas 3.1, 3.2 and 3.3, we infer immediately the following theorem.

Theorem 3.4 Let A = (SA,ΔA, sin
A ) and B = (SB,ΔB, sin

B ) be finite automata over
({!, ?} × Π) ∪ Σ and Π′ ⊆ Π. Then, the following conditions are equivalent:

(i) There exists a finite automaton C over {!, ?}×Π such that FA(A) ←→ FA(B⊗
C) ({!, ?} × Π′).

(ii) There exists a finite automaton C over ({!, ?} × (Π ∪ Π◦)) ∪ Σ looping over
({!, ?}×Π)∪Σ and such that FA(A) ←→ Del◦(FA◦(B⊗L◦)×C) ({!, ?}×Π′).

(iii) There exists a finite automaton C over ({!, ?} × (Π ∪ Π◦)) ∪ Σ looping over
({!, ?} × Π) ∪ Σ and such that FA◦(B ⊗ L◦) × C |= f(FA(A), Π′).

This theorem will be used in section 6 to define decision procedures for the
composition problem of Web services.

4 Composition of Web services

This section considers issues that arise when addressing the task of combining and
coordinating a set of Web services. We assume the process of Web service com-
position to be goal oriented: given a goal and a set of Web services, generate a
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composition of the Web services that satisfies the goal. According to [21,22,25],
goals are conditions on the behaviour of the composition that can be expressed
in the EaGLe language. In this approach, service composition boils down to the
task of combining and coordinating the available Web services into a complex busi-
ness process satisfying the given condition. According to [5,6,9], goals are finite
automata with input and output, i.e. Web services as defined in section 2.4. In this
approach, service composition boils down to the task of combining and coordinating
the available Web services into a complex business process that can simulate the
given finite automaton with input and output. In this paper, we automate compo-
sition as defined in the second approach. This brings us to the following decision
problem:

• CP : given a finite set Σ of actions, a finite set Π of channels, finite automata A =
(SA, ΔA, sin

A ) and B1 = (SB1 ,ΔB1 , s
in
B1

), . . ., Bn = (SBn ,ΔBn , sin
Bn

) over ({!, ?}×Π)∪
Σ and Π′ ⊆ Π, determine whether there exists a finite automaton C = (SC ,ΔC , sin

C )
over {!, ?} × Π such that FA(A) ←→ FA(B1 ⊗ . . . ⊗ Bn ⊗ C) ({!, ?} × Π′).

In CP , A plays the role of the given finite automaton with input and output and B1,
. . ., Bn play the role of the available Web services. As for the finite automaton C, it
plays the role of the Web service that will combine and coordinate the available Web
services into a complex business process that can simulate the given finite automaton
with input and output. Take the case of A, B1, B2, the finite automata from figure 3.
Then the finite automaton C from figure 4 is such that FA(A) ←→ FA(B1⊗B2⊗C)

Fig. 3.

({!, ?} × {π1, π
′
1, π2, π

′
2}).

Fig. 4.
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5 Lower bound

Now, we are ready to announce the first result of this paper:

CP is EXPTIME-hard.

Let Σ be a finite set of actions. A Petri net over Σ is a structure of the form N
= (P, T, F, l) where P is a finite set of places, T is a finite set of transitions, F ⊆
(P × T ) ∪ (T × P ) is a relation, l is a function

• l: T → Σ.

The Petri nets considered in this paper are 1-safe, that is to say: their places
cannot contain more than one token (see [19] for details). For all t ∈ T , let the
preset denoted •t be the set of all p ∈ P such that p F t and the postset denoted t•

be the set of all p ∈ P such that t F p. By FA(N ), we denote the finite automaton
A′ = (S′,Δ′, uin′) over Σ such that S′ = 2P , Δ′ is the function defined by

• v′ ∈ Δ′(u′, a) iff there exists t ∈ T such that l(t) = a, •t ⊆ u′ and v′ = (u′\• t)∪t•,

uin′ = ∅. Let us consider the following decision problem:

• PN : given a finite set Σ of actions and Petri nets N = (PN , TN , FN , lN ), O =
(PO, TO, FO, lO) over Σ, determine whether FA(N ) ←→ FA(O) (∅).

Seeing that PN is EXPTIME-hard [13], it suffices to reduce PN to the restriction
of CP where n = 1, in order to demonstrate that CP is EXPTIME-hard.

Fig. 5.

Given a finite set Σ of actions and Petri nets N = (PN , TN , FN , lN ), O =
(PO, TO, FO, lO) over Σ, we are asked whether FA(N ) ←→ FA(O) (∅). The in-
stance ρ(Σ,N ,O) of CP that we construct is given by the finite set Σe of actions, the
finite set Π of channels, the finite automata A = (SA, ΔA, sin

A ) and B = (SB, ΔB, sin
B )

over ({!, ?} × Π) ∪ Σe and Π′ ⊆ Π defined by

• Σe = Σ ∪ {ae
1, a

e
2, a

e
3, a

e
4} where ae

1, ae
2, ae

3 and ae
4 are new actions,

• Π = PN ∪ PO,
• Π′ = PN ∪ PO,
• A is the finite automaton from figure 6,
• B is the finite automaton from figure 7.

P. Balbiani et al. / Electronic Notes in Theoretical Computer Science 229 (2009) 3–1810



Fig. 6.

Fig. 7.

In order to understand how the flower-form parts of A and B are defined, the reader
is invited to consult figure 5. This figure shows that the firing of the transition a

empties the places P1, . . . , P|•t| that are in the preset of the transition and fills up
the places P ′

1, . . . , P
′
|t•| that are in the postset of this transition. This transition is

represented in the automata A and B by the following sequence of actions: receive
messages on the channels P1, . . . , P|•t| corresponding to the places in the preset of
the transition, which has the effect to empty the channels, then the transition a

followed by the emission of messages in the channels P ′
1, . . . , P

′
|t•| corresponding

to the places in the postset of the transition, which has the effect to fill up these
channels. The actions sequences of the automata A and B containing the actions
ae

1, ae
2, ae

3 or ae
4 ensure that no mediator can interfere with the simulation of the

1-safe Petri nets N and O. This completes the construction. The flower part of
A (resp. of B) will be denoted A′ (resp. B′). The construction of A and B is
done such that FA(A′) and FA(N ) are isomorphic modulo {!, ?}×Π′. In the same
way, FA(B′) and FA(O) are isomorphic modulo {!, ?} × Π′. Obviously, ρ can be
computed in logarithmic space. Moreover, FA(N ) ←→ FA(O) (∅) iff there exists a
finite automaton C = (SC , ΔC , sin

C ) over {!, ?}×Π such that FA(A) ←→ FA(B⊗C)
({!, ?} × Π′).
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Concerning the left to right implication, suppose that the Petri nets N and O
are bisimilar. Hence, FA(A′) and FA(B′) are bisimilar modulo {!, ?} × Π′. Let C
be the finite automaton that does nothing, i.e. C contains only one state (its initial
state) and has no transition. With such a C, the automata FA(B) and FA(B ⊗ C)
are isomorphic. Thus, it is enough to prove that FA(A) and FA(B) are bisimilar
modulo {!, ?} × Π′. Indeed, FA(A′) and FA(B′) are bisimilar modulo {!, ?} × Π′.
Moreover, in FA(A) and FA(B), the transitions labelled !p and ae

1 are executable for
all places p ∈ PN ∪PO whereas, in FA(B), the transitions labelled ?p, ae

4 and ae
3 are

executable for no place p ∈ PN ∪PO. Hence, with such a C, FA(A) ←→ FA(B⊗C)
({!, ?} × Π′).

Concerning the right to left implication, suppose that the Petri nets N and O are
not bisimilar and that there exists a finite automaton C such that FA(A) and FA(B)
are bisimilar modulo {!, ?} ×Π′. In the case C is the automaton that does nothing,
the fact that FA(A) and FA(B ⊗ C) are bisimilar modulo {!, ?} × Π′ implies that
FA(A′) and FA(B′) are bisimilar modulo {!, ?}×Π′. This contradicts the fact that
N and O are not bisimilar. Hence, C has, at least, a !p transition or a ?p transition
starting from its initial state for some place p ∈ PN ∪ PO. If C has a !p transition
starting from its initial state, then, in FA(B⊗C), the transitions !p (executed by C),
?p (executed by B) and ae

4 (executed by B) can be executed from the initial state,
whereas no sequence in FA(A) ends with a transition labelled ae

4. This contradicts
the fact that FA(A) and FA(B ⊗ C) are bisimilar modulo {!, ?} × Π′. If C has a
?p transition starting from its initial state, then, in FA(B ⊗ C), the transitions !p
(executed by B), ?p (executed by C), ae

1 (executed by B), !p (executed by B) and
ae

3 (executed by C) can be executed from the initial state, whereas no sequence in
FA(A) ends with a transition labelled ae

3. This contradicts the fact that FA(A)
and FA(B ⊗ C) are bisimilar modulo {!, ?} × Π′.

Hence, CP is EXPTIME-hard.

6 Upper bound

Whether CP is in EXPTIME or not is not known to us. Now, we are ready to
announce the second result of this paper:

CP is in 2EXPTIME.

6.1 A 2EXPTIME decision procedure based on controller synthesis

Let us consider the following decision problem:

• CS: given a finite set Σ of actions, a finite set Π of channels, a finite automaton
B = (SB, ΔB, sin

B ) over ({!, ?} × (Π ∪ Π◦)) ∪ Σ and a modal μ-calculus formula φ

over ({!, ?} × (Π∪Π◦))∪Σ, determine whether there exists a finite automaton C
= (SC ,ΔC , sin

C ) over ({!, ?}× (Π∪Π◦))∪Σ looping over ({!, ?}×Π)∪Σ and such
that B × C |= φ.

Arnold et al. [4] have proposed a decision procedure to resolve this problem. This
procedure is based on modal μ-calculus. The language of modal μ-calculus cannot
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express the fact that a finite automaton over ({!, ?} × (Π ∪ Π◦)) ∪ Σ loops over
({!, ?} ×Π) ∪Σ. That is why Arnold et al. [4] extend it in such a way that looping
becomes expressible. This extension is called modal-loop μ-calculus. It consists in
associating with each θ ∈ ({!, ?} × Π) ∪ Σ a proposition λθ whose interpretation is
that a state s of a finite automaton A = (S, Δ, sin) over ({!, ?} × (Π ∪ Π◦)) ∪ Σ
satisfies λθ iff Δ(s, θ) = {s}. Thus, one can construct in polynomial time a modal-
loop μ-calculus formula g(Π,Σ) over ({!, ?} × (Π ∪ Π◦)) ∪ Σ of polynomial size
such that for all finite automata A = (S, Δ, sin) over ({!, ?} × (Π ∪ Π◦)) ∪ Σ, A |=
g(Π,Σ) iff A loops over ({!, ?} × Π) ∪ Σ. Moreover, given a finite automaton B =
(SB,ΔB, sin

B ) over ({!, ?} × (Π ∪ Π◦)) ∪ Σ and a modal μ-calculus formula φ over
({!, ?} × (Π ∪ Π◦)) ∪ Σ, Arnold et al. [4] show how to construct in polynomial time
a modal μ-calculus formula φ/B over ({!, ?}× (Π∪Π◦))∪Σ of polynomial size such
that for all finite automata C = (SC ,ΔC , sin

C ) over ({!, ?} × (Π ∪ Π◦)) ∪ Σ, B × C |=
φ iff C |= φ/B. Hence, CS is equivalent to the following decision problem:

• given a finite set Σ of actions, a finite set Π of channels, a finite automaton B =
(SB,ΔB, sin

B ) over ({!, ?} × (Π ∪ Π◦)) ∪ Σ and a modal μ-calculus formula φ over
({!, ?} × (Π ∪ Π◦)) ∪ Σ, determine whether φ/B ∧ g(Π,Σ) is satisfiable.

Now, let us go back to CP and take a finite set Σ of actions, a finite set Π of
channels, finite automata A = (SA,ΔA, sin

A ) and B1 = (SB1 , ΔB1 , s
in
B1

), . . ., Bn =
(SBn ,ΔBn , sin

Bn
) over ({!, ?} × Π) ∪ Σ and Π′ ⊆ Π. To determine whether there

exists a finite automaton C = (SC , ΔC , sin
C ) over {!, ?} × Π such that FA(A) ←→

FA(B1 ⊗ . . . ⊗ Bn ⊗ C)({!, ?} × Π′), we consider the following algorithm:

(i) Compute φ = f(FA(A), Π′).

(ii) Compute B = FA◦(B1 ⊗ . . . ⊗ Bn ⊗ L◦).

(iii) Compute φ′ = φ/B ∧ g(Π,Σ).

(iv) If φ′ is satisfiable then return the value true else return the value false.

By theorem 3.4, the above algorithm returns the value true iff there exists a finite
automaton C over {!, ?}×Π such that FA(A) ←→ FA(B1⊗. . .⊗Bn⊗C) ({!, ?}×Π′).
It can be implemented in double exponential time. More precisely:

• In step (i), the computation of FA(A) takes exponential time in the size of Π
whereas the computation of φ (the existence of which is implied by lemma 3.3)
takes polynomial time in the size of FA(A). Moreover, the size of FA(A) is
exponential in the size of Π whereas the size of φ is polynomial in the size of
FA(A).

• In step (ii), the computation of B1⊗, . . . ,⊗Bn ⊗L◦ takes exponential time in the
size of B1, . . . ,Bn whereas the computation of B takes exponential time in the
size of Π. Hence, the computation of B takes exponential time in the size of
B1, . . . ,Bn and in the size of Π. Moreover, the size of B is exponential in the size
of B1, . . . ,Bn and in the size of Π.

• In step (iii), the computation of φ′ can be done in polynomial time in the size of
φ, B, Π and Σ. Moreover, the size of φ′ is polynomial in the size of φ, B, Π and
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Σ. Hence, the size of φ′ is exponential in the size of A, B1, . . . ,Bn and Π.
• Step (iv) can be executed in deterministic exponential (with respect to the size

of φ′) time, seeing that the satisfiability problem for the modal-loop μ-calculus is
in EXPTIME.

6.2 A 2EXPTIME decision procedure based on filtration

Let us consider the following decision problem:

• FIL: given a finite set Σ of actions, a finite set Π of channels, a finite automaton
A = (SA,ΔA, sin

A ) over ({!, ?} × Π) ∪ Σ, a finite automaton B = (SB, ΔB, sin
B )

over ({!, ?} × (Π ∪ Π◦)) ∪ Σ and Π′ ⊆ Π, determine whether there exists a finite
automaton C = (SC ,ΔC , sin

C ) over ({!, ?}×(Π∪Π◦))∪Σ looping over ({!, ?}×Π)∪Σ
and such that A ←→ Del◦(B × C) ({!, ?} × Π′).

Suppose that we are given a finite set Σ of actions, a finite set Π of channels, a
finite automaton A = (SA, ΔA, sin

A ) over ({!, ?} × Π) ∪ Σ, a finite automaton B =
(SB,ΔB, sin

B ) over ({!, ?} × (Π ∪ Π◦)) ∪ Σ and Π′ ⊆ Π. Let C = (SC ,ΔC , sin
C ) be a

finite automaton over ({!, ?} × (Π∪Π◦))∪Σ looping over ({!, ?} ×Π)∪Σ and such
that A ←→ Del◦(B×C) ({!, ?}×Π′). Hence, there exists a bisimulation Z between
A and Del◦(B×C) modulo ({!, ?}×Π′) such that sin

A Z (sin
B , sin

C ). Let ≡ ⊆ SC ×SC
be the binary relation such that for all s1

C , s
2
C ∈ SC ,

• s1
C ≡ s2

C iff for all sA ∈ SA and for all sB ∈ SB, sA Z (sB, s1
C) iff sA Z (sB, s2

C).

Note that ≡ is an equivalence relation. Let sC ∈ SC . The set of all states in SC
equivalent to sC modulo ≡, in symbols | sC |, is called the equivalence class of sC in
SC modulo ≡ with sC as its representative. The set of all equivalence classes of SC
modulo ≡, in symbols SC/ ≡, is called the quotient set of SC modulo ≡. Suppose
that Cf = (SCf ,ΔCf , sin

Cf ) is the finite automaton over ({!, ?}× (Π∪Π◦))∪Σ looping
over ({!, ?} × Π) ∪ Σ and such that SCf = SC/ ≡, ΔCf is the function such that

• | tC | ∈ ΔCf (| sC |, ϑπ◦), ϑ ∈ {!, ?} and π◦ ∈ Π◦, iff for all sA ∈ SA and for all
sB, tB ∈ SB, if tB ∈ ΔB(sB, ϑπ◦) and sA Z (sB, sC) then there exists tA ∈ SA such
that tA ∈ ΔA(sA, ϑπ) and tA Z (tB, tC),

sin
Cf = | sin

C |. Then Cf is called the greatest filtration of C through A and B. Let
Zf ⊆ SA × (SB × SCf ) be the binary relation such that for all sA ∈ SA and for all
(sB, | sC |) ∈ SB × SCf , sA Zf (sB, | sC |) iff sA Z (sB, sC). It is a simple matter
to check that Zf : A ←→ Del◦(B × Cf ) ({!, ?} × Π′). For our purpose, the crucial
property of the greatest filtration is that the following conditions are equivalent:

• there exists a finite automaton C = (SC , ΔC , sin
C ) over ({!, ?}×(Π∪Π◦))∪Σ looping

over ({!, ?}×Π)∪Σ and there exists a relation Z ⊆ SA × (SB ×SC) such that Z:
A ←→ Del◦(B × C) ({!, ?} × Π′),

• there exists a finite automaton C = (SC , ΔC , sin
C ) over ({!, ?}×(Π∪Π◦))∪Σ looping

over ({!, ?}×Π)∪Σ and there exists a relation Z ⊆ SA × (SB ×SC) such that Z:
A ←→ Del◦(B × C) ({!, ?} × Π′) and
(C1) SC ⊆ 2SA×SB ,
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(C2) tC ∈ ΔC(sC , ϑπ◦), ϑ ∈ {!, ?} and π◦ ∈ Π◦, iff for all sA ∈ SA and for all
sB, tB ∈ SB, if tB ∈ ΔB(sB, ϑπ◦) and (sA, sB) ∈ sC then there exists tA ∈ SA
such that tA ∈ ΔA(sA, ϑπ) and (tA, tB) ∈ tC ,

(C3) sA Z (sB, sC) iff (sA, sB) ∈ sC .

Hence, we can give a simple algorithm for solving FIL:

(i) Compute the finite automaton C0 = (S0
C , Δ

0
C , s

in
C

0) over ({!, ?} × (Π ∪Π◦)) ∪Σ
looping over ({!, ?} × Π) ∪ Σ and the relation Z0 ⊆ SA × (SB × S0

C) such that
• S0

C = 2SA×SB ,
• tC ∈ Δ0

C(sC , ϑπ◦), ϑ ∈ {!, ?} and π◦ ∈ Π◦, iff for all sA ∈ SA and for all sB, tB
∈ SB, if tB ∈ ΔB(sB, ϑπ◦) and (sA, sB) ∈ sC then there exists tA ∈ SA such
that tA ∈ ΔA(sA, ϑπ) and (tA, tB) ∈ tC ,

• sA Z0 (sB, sC) iff (sA, sB) ∈ sC .

(ii) For all non negative integers n, compute the set �n of all sC ∈ SCn such that
for some sA ∈ SA and for some sB ∈ SB such that sA Zn (sB, sC), there exists
ϑ ∈ {!, ?} and there exists π◦ ∈ Π◦ such that one of the following cases holds:
• there exists tA ∈ ΔA(sA, ϑπ) such that for all tB ∈ ΔB(sB, ϑπ◦) and for all

tC ∈ Δn
C(sC , ϑπ◦), not tA Zn (tB, tC),

• there exists tB ∈ ΔB(sB, ϑπ◦) and there exists tC ∈ Δn
C(sC , ϑπ◦) such that for

all tA ∈ ΔA(sA, ϑπ), not tA Zn (tB, tC).

(iii) For all non negative integers n, compute the finite automaton Cn+1 =
(Sn+1

C ,Δn+1
C , sin

C
n+1) over ({!, ?} × (Π ∪ Π◦)) ∪ Σ looping over ({!, ?} × Π) ∪ Σ

and the relation Zn+1 ⊆ SA × (SB × Sn+1
C ) such that

• Sn+1
C = Sn

C \ �n,
• tC ∈ Δn+1

C (sC , ϑπ◦), ϑ ∈ {!, ?} and π◦ ∈ Π◦, iff for all sA ∈ SA and for all
sB, tB ∈ SB, if tB ∈ ΔB(sB, ϑπ◦) and (sA, sB) ∈ sC then there exists tA ∈ SA
such that tA ∈ ΔA(sA, ϑπ) and (tA, tB) ∈ tC ,

• sA Zn+1 (sB, sC) iff (sA, sB) ∈ sC .

The following lemma shows that the above algorithm returns the value true iff there
exists a finite automaton C = (SC , ΔC , sin

C ) over ({!, ?}× (Π∪Π◦))∪Σ looping over
({!, ?} × Π) ∪ Σ and such that A ←→ Del◦(B × C) ({!, ?} × Π′).

Lemma 6.1 Let C = (SC , ΔC , sin
C ) be a finite automaton over ({!, ?}×(Π∪Π◦))∪Σ

looping over ({!, ?} × Π) ∪ Σ and Z ⊆ SA × (SB × SC) be a relation such that Z:
A ←→ Del◦(B × C) ({!, ?} × Π′) and

(C1) SC ⊆ 2SA×SB ,

(C2) tC ∈ ΔC(sC , ϑπ◦), ϑ ∈ {!, ?} and π◦ ∈ Π◦, iff for all sA ∈ SA and for all sB, tB
∈ SB, if tB ∈ ΔB(sB, ϑπ◦) and (sA, sB) ∈ sC then there exists tA ∈ SA such that
tA ∈ ΔA(sA, ϑπ) and (tA, tB) ∈ tC,

(C3) sA Z (sB, sC) iff (sA, sB) ∈ sC.

Then, for all sC ∈ SC and for all non negative integers n, sC ∈ SCn.

Proof. Let sC ∈ SC . If there exists a non negative integer n such that sC ∈ SCn and
sC 	∈ SCn+1 then for some sA ∈ SA and for some sB ∈ SB such that sA Zn (sB, sC),
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there exists ϑ ∈ {!, ?} and there exists π◦ ∈ Π◦ such that one of the following cases
holds:

• there exists tA ∈ ΔA(sA, ϑπ) such that for all tB ∈ ΔB(sB, ϑπ◦) and for all tC ∈
Δn

C(sC , ϑπ◦), not tA Zn (tB, tC),
• there exists tB ∈ ΔB(sB, ϑπ◦) and there exists tC ∈ Δn

C(sC , ϑπ◦) such that for all
tA ∈ ΔA(sA, ϑπ), not tA Zn (tB, tC).

The reader may easily verify that both cases lead to a contradiction. �

An obvious analysis of the complexity of the above algorithm yields the following
facts:

• there exists a non negative integer n such that n ≤ 2Card(SA)×Card(SB) and Cn+1

= Cn,
• for all non negative integers n, Cn+1 can be obtained from Cn in time polynomial

in the size of Cn.

Hence, the above algorithm can be implemented in exponential time. Now, let us
go back to CP and take a finite set Σ of actions, a finite set Π of channels, finite
automata A = (SA,ΔA, sin

A ) and B1 = (SB1 ,ΔB1 , s
in
B1

), . . ., Bn = (SBn ,ΔBn , sin
Bn

) over
({!, ?} ×Π)∪Σ and Π′ ⊆ Π. To determine whether there exists a finite automaton
C = (SC , ΔC , sin

C ) over {!, ?} × Π such that FA(A) ←→ FA(B1 ⊗ . . . ⊗ Bn ⊗ C), we
consider the following algorithm:

(i) Compute A′ = FA(A).

(ii) Compute B′ = FA◦(B1 ⊗ . . . ⊗ Bn ⊗ L◦).

(iii) If there exists a finite automaton C = (SC ,ΔC , sin
C ) over ({!, ?}× (Π∪Π◦))∪Σ

looping over ({!, ?} × Π) ∪ Σ and such that A′ ←→ Del◦(B′ × C) ({!, ?} × Π′)
then return the value true else return the value false.

By theorem 3.4, the above algorithm returns the value true iff there exists a finite
automaton C over {!, ?}×Π such that FA(A) ←→ FA(B1⊗. . .⊗Bn⊗C) ({!, ?}×Π′).
It can be implemented in double exponential time.

7 Conclusion and open problems

We have presented a framework in which Web services are described as message
passing automata. Deterministic algorithms that check a composition’s existence
and return one if it exists have been proposed. In order to ensure their termina-
tion in a finite number of steps, we have characterized the computational complexity
(EXPTIME-hardness and membership in 2EXPTIME) of the composition prob-
lem. Our main results are that CP is EXPTIME-hard and CP is in 2EXPTIME.
An interesting (and still open) question is to evaluate the exact complexity of Web
service composition: is CP in EXPTIME or is CP 2EXPTIME-hard? Variants
of CP can be considered as well. For instance, one may consider that the given
automata are deterministic or that the channels they use can contain more than 1
message at a time. Concerning the second variant, the results obtained in this pa-
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per remain true. The only difference is in the construction of FA(A), for which the
construction will also be done in exponential time. More precisely, if for some pos-
itive integer k, the channels used by automaton A can contain at most k messages
at a time, then states in FA(A) will be pairs of the form (q, (k1, . . . , km)), where q

is a state of the automaton A, m is the cardinality of the set Π of all channels and
(k1, . . . , km) is a sequence of m integers in {0, . . . , k}. Take another example: one
may replace “bisimulation” by “trace equivalence”. What is the complexity of Web
service composition in this case? Let us remark that the construction used in sec-
tion 5 for the case of bisimulation can also be used for the case of trace equivalence.
Seeing that trace equivalence between 1-safe Petri nets is EXPSPACE-hard [13],
it follows that Web services composition is EXPSPACE-hard in the case of trace
equivalence. In other respects, we have not considered which message is actually
sent/received when performing a messaging action. To enrich our formalism that
way, we may augment each send/receive action with an additional first-order term
indicating what kind of message is exchanged. Henceforth, a message exchange ac-
tion consists of a channel π and a first-order term t which indicate that a message
of the form t is sent or received through channel π. For which classes of messages is
Web service composition decidable? When this problem is decidable, how complex
is it?
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