
Orthopaedics & Traumatology: Surgery & Research (2010) 96S, S119—S128

REVIEW ARTICLE

ACL injury and reconstruction: Clinical related in
vivo biomechanics

A.D. Georgoulis ∗, S. Ristanis, C.O. Moraiti, N. Paschos, F. Zampeli,
S. Xergia, S. Georgiou, K. Patras, H.S. Vasiliadis, G. Mitsionis

Orthopaedic Sports Medicine Center of Ioannina, Department of Orthopaedic Surgery, University of Ioannina,
Georgiou Papandreou 2, PO Box 1042, Ioannina 45110, Greece

KEYWORDS
ACL reconstruction;
Tibial rotation;
Electromechanical
delay;
Gait variability;
Muscle strength;
Knee biomechanics;
Sports performance

Summary Several researchers including our group have shown that knee joint biomechanics
are impaired after anterior cruciate ligament (ACL) injury, in terms of kinematics and neuro-
muscular control. Current ACL reconstruction techniques do not seem to fully restore these
adaptations. Our research has demonstrated that after ACL reconstruction, excessive tibial
rotation is still present in high-demanding activities that involve both anterior and rotational
loading of the knee. These findings seem to persist regardless of the autograft selection for the
ACL reconstruction. Our results also suggest an impairment of neuromuscular control after ACL
reconstruction, although muscle strength may have been reinstated. These abnormal biome-
chanical patterns may lead to loading of cartilage areas, which are not commonly loaded in the
healthy knee and longitudinally can lead to osteoarthritis. Muscle imbalance can also influence

patients’ optimal sports performance exposing them to increased possibility of knee re-injury.
In this review, our recommendations point towards further experimental work with in vivo and
in vitro studies, in order to assist in the development of new surgical procedures that could
possibly replicate more closely the natural ACL anatomy and prevent future knee pathology.
© 2010 Elsevier Masson SAS. All rights reserved.
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Introduction

The anterior cruciate ligament (ACL) is composed of two

functional bundles, the anteromedial (AM) and the postero-
lateral (PL) named by their tibial attachment [1—4]. Tension
in the AM bundle increases with knee flexion, whereas the PL
bundle takes up greater tension in extension and in response
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o coupled internal rotation [5,6]. The ACL is the guide of
he screw-home mechanism. This refers to an ‘‘automatic’’
ype of axial rotation that is inevitably and involuntarily
inked to movements of flexion and extension. When the
nee is flexed, the tibia is internally rotated. As the knee
s extended, the femoral condyles roll and glide on the
ibial condyles, the tibia is gradually externally rotated

nd at full extension the knee joint ‘‘locks’’ presenting
he maximal stability at the upright standing position. This
crew-home mechanism is very important for the synchro-
ization of the knee joint to the adjacent joints of the hip
nd the ankle. Although the principal movement of the knee

served.
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s flexion-extension, the internal-external rotation plays a
ery significant role especially in all these activities that
nclude pivoting.

In the clinical setting, the anterior tibial translation is
stimated with the Lachman-Noulis test, a reliable noninva-
ive diagnostic test for the ACL rupture. As Paessler H. and
ichel D. reported [7], this test was originally described by
eorge K. Noulis (1849—1919) in his doctoral thesis ‘‘Entorse
u genou’’ which was defended at the University of Paris in
875 [8]. This was perhaps the first biomechanical study on
nee ligaments in cadavers.

Aristotle (384—322 BC) stated the principal idea that
‘every movement requires a cause’’. This is the main core
f interest of the in vivo biomechanics. The movement is
tudied with the kinematics and the cause is studied with
he kinetics. Through its long history, in vivo biomechanics
an nowadays be a valuable tool also for the arthroscopic
urgeon. In recent years, important findings with clinical
elevance have arisen from in vivo biomechanical studies
nd have improved our understanding for the ACL deficient
nd the ACL reconstructed knee and more interestingly has
nfluenced even the way that we operate these patients.
he current review article presents significant amount of
nowledge regarding the in vivo biomechanics of an ACL-
eficient patient, starting from the ACL rupture, including
he ACL reconstruction and being completed with the return
o sports and previous activity level.

CL injury risk factors and prevention

n team sport settings, 50 to 80% of ACL injuries
ccur in non-contact situations [9—11]. The risk fac-
ors for a non-contact ACL injury can be divided into
our categories: environmental, anatomical, hormonal and
iomechanical—neuromuscular [12]. From a biomechanical
erspective, ACL is loaded not only by extreme anterior
ranslation, but also by both valgus and internal rotation
oments. In fact, during landing and sidestep cutting tasks,

nterior drawer load in isolation is probably not sufficient
o injure the ACL and rather a loading combination on the
hree movement planes is needed to increase the likeli-
ood of rupture. Besides that, when the knee flexion angle
ncreases, there is a reduction in the resultant strain on the
CL [13—17].

The following biomechanical factors are not directly con-
ected with the actual knee movement patterns, but also
eem to play an important role on increasing the injury risk:
ecreased core stabilization and balance, low trunk and hip
exion angles and high ankle dorsiflexion when performing
port tasks. Furthermore, the combination of lateral trunk
isplacement with increased knee abduction moments and
ncreased hip internal rotation with tibial external rotation
xposes the ACL in high risk [13].

Neuromuscular deficiencies are also commonly observed
n female athletes and have been classified in three cate-
ories: The ‘ligament dominance’ appears when an athlete

bsorb a significant portion of the ground reaction force dur-
ng sports maneuvers with the knee ligaments, rather than
he lower extremity musculature [18]. ‘Quadriceps domi-
ance’ is the preferential activation of the knee extensors
ver the knee flexors during high-torque force movements
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19]. ‘Leg dominance’ is the side-to-side imbalance on
trength and coordination between the dominant and the
ther leg, which may increase the risk for both limbs
19—21].

The prevention programs have focused on neuromus-
ular training methods to change the above-described
odifiable biomechanical and neuromuscular risk factors

nd to reduce the non-contact ACL injury rates [22].
ost of these effective prevention studies included a
ombination of proprioceptive, neuromuscular and core bal-
nce training, plyometric, closed kinetic chain and other
trengthening exercises, in order to modify the sport-
pecific movement patterns that lead to increased ACL
njury risk.

More specific, the intervention programs focus on nor-
alizing the landing technique [23], decreasing the valgus

nd internal/external rotation moments on cutting maneu-
ers [23] and increasing the hamstrings [19,24] and gluteal
25] muscles recruitment and strength.

upture pattern and injury mechanism of the
CL

CL injury is very common during athletic performance
ompared to the incidence in the general population [26].
ecently, the interest on ACL failure has been increased
ince several studies highlight ACL injury as a risk fac-
or for knee osteoarthritis regardless of ACL reconstruction
27,28]. During ACL injury, the most common symptoms
nclude pain, audible pop, and oedema. The presence and
mportance of these signs in relation to isolated ACL injury
ave been evaluated in the past [29]. Several studies have
ontributed in better understanding of the biomechani-
al properties of the ACL like strength [30], stiffness [31]
nd tension patterns in relation to its failure properties
32].

A very interesting point is that a part of ACL fibers fail
nitially while the rest remain intact and have the ability
o withstand load [32]. This condition could represent the
artial ACL tear or the tear of only the AM or the PL bundle
f the ACL. Three different patterns have been described in
oth in vitro and in vivo studies. All of these agree that the
nal pattern is related to the biomechanical features of the
CL and the mechanism of the injury [33,34].

Acute ACL rupture is accompanied in more than 80%
y bone bruises, shown in MRI scanning. Spindler et al.
35] showed that 86% and 67% of the contusions involved
he lateral femoral condyle (LFC) and lateral tibial plateau
LTP) respectively; in 56% of the cases, bruises at both
ides occurred. Lesions in the medial femoral condyle (MFC)
nd medial tibia plateau (MTP) were less common (7%
nd 21% respectively). During the ACL injury, the tibia
ubluxes anteriorly and rotates internally subjecting the
nterior parts of femoral condyles and posterior parts of
ibial plateaus to direct contact. The excessive internal

otation of the tibia explains why the contusions of the
FC are usually more anterior than those seen on the
FC [36]. The axial and valgus force applied on the knee
specially during contact injuries also plays an important
ole.
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Biomechanics in ACL injury and reconstruction

Clinical related in vivo biomechanics

Pathological internal-external rotation after ACL
injury and reconstruction

During the last few years, the scientific community has
given more attention to the role of the internal-external
rotation of the knee joint. There is a lot of work in this
area from very important centres [3,37—40] which have
influenced significantly the reconstruction of the ACL. Our
investigations have examined knee joint rotational move-
ment patterns during high- and low-demanding activities
in ACL reconstructed patients with a BPTB or a hamstrings
graft, using gait analysis. In our first study, we examined
13 ACL-deficient patients, 21 BPTB reconstructed patients
and 10 healthy matched controls during walking [41]. We
found that during this low-demanding activity, the surgi-
cal reconstruction with a BPTB graft restores tibial rotation
to normal levels. Next, we wanted to identify if this was
also the case in a higher demanding activity, like descending
stairs and subsequent pivoting [42] (Fig. 1). We evaluated 18
BPTB reconstructed patients 12 months postoperatively and

15 controls. We found that the tibial rotation during the piv-
oting period was significantly larger in the ACL reconstructed
leg when was compared to the contralateral intact leg and
the healthy control. To verify these findings, we examined
11 BPTB reconstructed, 11 ACL-deficient patients and 11

d
b

l

Figure 1 A patient descending the stairway. The descending per
Following foot contact, the subjects were instructed to pivot on th
While pivoting, the contralateral leg was swinging around the body
oriented perpendicularly to the stairway.

Figure 2 A patient jumping off the platform and land with bo
pivot (externally rotate) on the right or left (ipsilateral) leg at 9
the contralateral leg is swinging around the body and the trunk is or
S121

ontrols during an even higher demanding activity, like land-
ng from a platform and subsequent pivoting (Fig. 2), which
ould apply increased rotational loading at the knee. We
ound no significant differences between the deficient leg
f the ACL-deficient group and the reconstructed leg of
he ACL reconstructed group [43]. In addition, both the
econstructed leg of the ACL reconstructed group and the
eficient leg of the ACL-deficient group demonstrated signif-
cantly larger tibial rotation values than the healthy control.

Subsequently, we performed a follow-up evaluation [44]
n nine BPTB reconstructed subjects that participated in this
tudy [43] and examined them for both the aforementioned
igh-demanding activities [42,43]. We found that tibial rota-
ion remained significantly excessive even 2 years after the
econstruction. Thus, we questioned whether the configura-
ion and placement of the BPTB graft in the femur had an
ffect on rotational knee kinematics and we tried to identify
f a more horizontal placement of the femoral tunnel can
estore rotational kinematics, during these activities. We
valuated 10 patients BPTB reconstructed with the femoral
unnel in the 11-o’clock position and 10 patients with the
emoral tunnel in the 10-o’clock position [45]. We noticed
hat positioning the tunnel at 10-o’clock resulted in slightly

ecreased rotation values that may have a clinical relevance
ut did not show a statistical significance.

Following our research work with the BPTB graft, it was
ogical to question if tibial rotation will remain excessive if

iod was concluded upon initial foot contact with the ground.
e landing leg at 90 degrees and walk away from the stairway.
(as it was coming down from the stairway) and the trunk was

th feet on the ground. Following foot contact, the subjects
0 degrees and walk away from the platform. While pivoting,
iented perpendicularly to the platform.
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quadrupled hamstrings graft (semitendinous and gracilis;
T/G) was used. We examined 11 ST/G and 11 BPTB recon-
tructed patients along with 11 healthy controls [46], during
anding with subsequent pivoting. We found significantly
ncreased tibial rotation in both ACL reconstructed groups
hen compared with the healthy controls. To verify our
ndings, we performed an additional experiment where we
valuated 11 ST/G reconstructed patients, 9 months after
he surgery and 11 healthy controls during descending and
ubsequent pivoting [47]. Our results also showed that the
T/G reconstruction did not restore excessive tibial rotation
o normal healthy levels. We expected better results from
he ST/G graft because it has been demonstrated in several
tudies [48] that this graft has mechanical properties similar
o those of the ACL. It also provides a two-stripe replace-
ent graft that may better approximate the function of the

wo-bundle ACL.
Our results were in agreement with recent dynamic

adiostereometric analysis technique (dRSA) [49] and MRI
50] studies. Brandsson et al. [49] using a dRSA system found
hat one year after BPTB reconstruction, tibial rotation was
ot significantly different when compared with the preoper-
tive measurements. In addition, Logan et al. [50] showed
ith an ‘‘open-access’’ MRI system and during a dynamic
eight-bearing activity, that tibiofemoral kinematics are
ot restored in ACL reconstructed patients with hamstrings,
ven though sagittal laxity is restored to normative val-
es.

In summary, our research work has showed increased
otation after ACL reconstruction in activities that are more
emanding than walking and involve both anterior and rota-
ional loading of the knee (pivoting). These findings persist
egardless of autograft selection. Restore of tibial rotation
s of great importance, as studies have shown [51] that
agittal plane knee joint forces cannot rupture the ACL dur-
ng sidestep cutting, and valgus-rotational loading seems to
e the most likely injury mechanism. In addition, exces-
ive tibial rotation may cause abnormal loading of cartilage
reas which are not commonly loaded in the healthy knee
nd longitudinally can lead to osteoarthritis [52,53]. The
mprovement and development of new surgical techniques,

hat can replicate better the actual anatomy of the nat-
ral ACL, like the double-bundle (DB) ACL reconstruction,
eems to be a way to address the problem of excessive tib-
al rotation. Many colleagues have described the details of
his technique [54—59]. Although it is a technically demand-
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igure 3 In this graph, knee flexion-extension is plotted versus a
rajectories do not overlap revealing that variations exist from one
A.D. Georgoulis et al.

ng procedure, it seems promising towards the consensus
ffort of the complete restoration of abnormal tibial rota-
ion. However, these new techniques should be rigorously
valuated in terms of in vivo biomechanics and relevant long
erm results are necessary to support its effectiveness.

ait variability after ACL injury and reconstruction

ecently a new methodology has been developed which
ffers a more holistic approach concerning the study of gait.
his approach is based on the fact that walking is a rhythmic
ctivity. The legs continuously oscillate forward and back-
ard generating movement. However, a closer examination

eveals that each step is not identical to the previous or
o the next one (Fig. 3). These variations that exist among
ubsequent strides are intrinsic deriving from the underlying
echanisms that produce gait [60,61].
Accordingly, variations exist in all human rhythmic func-

ions (i.e. secretion of the hormones, bearing of the heart).
nterestingly, the concept of studying variability has been
rst applied in domains such as endocrinology cardiology
nd neurology, providing useful information for the func-
ion of human body [62—64]. It is remarkable that in some
ases changes in variability have been found to be predictive
f subsequent clinical changes (i.e. epileptic seizure) [63].
onsequently, new theories have been proposed in order to
ssess and explain the function of human body [65,66].

Concerning human movement, Stergiou et al. [66] devel-
ped the ‘‘optimal amount of movement variability’’
roposition. According to this proposition, under healthy
onditions, each motor task is characterized by an optimal
mount of variability which provides the human body with
exibility, adaptability and the capacity to respond to unpre-
ictable stimuli and stresses and environmental demands.
he achievement of this optimal variability is desired dur-

ng human motor development and motor learning. On the
ontrary, aging and disease are characterized by altered
either increased or decreased) variability and are associ-
ted with diminished flexibility and capability to respond to
timuli. This approach has been used to examine human gait

fter ACL rupture [67—69]. Actually the authors examined
ow knee flexion-extension changes over time over multiple
ootfalls.

It was observed that when compared to a healthy con-
rol knee, the ACL-deficient knee exhibits decreased gait

ngular velocity. Each trajectory corresponds to one gait cycle.
stride to the next.
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Figure 4 Schematic representation of the decreased gait variability encountered after ACL injury. A and C represent knee flexion-
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extension versus time over multiple footfalls for a healthy and a
flexion-extension time series are plotted versus angular veloci
trajectories in the ACL-deficient knee, implying decreased gait

variability [69]. This indicates that in the ACL-deficient
knees, subsequent steps are more similar to each other
than in healthy knees (Fig. 4). This could be due to the
loss of the mechanical restraint or of the proprioceptive
input provided by the ACL [70—74]. This decreased gait vari-
ability indicates that a patient with ACL deficiency is more
‘‘careful’’ in the way he or she walks in order to elimi-
nate any extra movements, exhibiting an increased rigidity
in movement patterns. According to the optimal amount of
movement variability proposition [66], these changes are
associated with decreased flexibility and responsiveness to
environmental demands, leading possibly to injury and the
development of future pathology.

It was assumed that ACL reconstruction could restore
gait variability. However, studies have shown that gait
variability is greater when compared to a healthy knee,
2 years after ACL reconstruction using either a BPTB or a
hamstrings autograft, which indicates decreased flexibil-
ity and adaptability to stimuli and stresses [75,76]. This
could be due to the altered muscle activity found in ACL
reconstructed limbs, which may derive from the altered
proprioceptive input [77,78]. Thus, the ACL reconstructed
patients exhibit greater divergence in the movement tra-
jectories. This could signify that someone who knows that
the ACL is reconstructed feels ‘‘secure’’ to increase and
add extra movement. However, because the innate pro-
prioceptive channels are missing, gait variability and the
function of the knee are not restored to normative lev-
els.

In addition alterations in gait variability were found in
the contralateral intact knee verifying the fact that adapta-
tions do exist in both limbs ACL reconstruction also affected
the structure of gait [76]. This supports previous studies that
have identified bilateral lower extremity accommodations in
gait biomechanics and muscular performance in ACL recon-
structed patient [79]. It should be noted that although the
typical clinical tests (i.e. Lysholm score, IKDC) were nearly
normal in all cases, the study of gait variability showed that
the proper function of the knee was not fully restored after

ACL reconstruction. This indicates that this method is very
sensitive and could prove to be very helpful in the assess-
ment of various conditions as is has already been done in
other medical domains.

O
t
c
u
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L-deficient knee, respectively. In the B and D graphs, the knee
can be noticed that there is more overlapping between the

bility.

ait variability during backward walking

ait variability can also be used to assess the outcome of
ehabilitation protocols after ACL injury. Backward walking
BW) is part of rehabilitation programs [80]. Physical ther-
pists use BW since this task was proved to strength the
amstring muscles [81,82] and this can improve the dynamic
nee joint stability of ACL-deficient patients. Apart from
ehabilitation, BW is used for injury prevention and training
83]. This is because many sports such as soccer, football,
asketball and tennis incorporate backward locomotion dur-
ng competition.

We investigated if ACL deficiency affects gait variability
uring BW by comparing a group of ACL-deficient patients
o a matched control group of healthy individuals. Both
nees of the ACL-deficient patients showed a more rigid
alking pattern as compared to healthy controls. The con-

ralateral intact knee of ACL-deficient patients showed even
ore rigid walking pattern as compared to the ACL-deficient

nee. These data could imply diminished functional respon-
iveness to the environmental demands for both knees of
CL-deficient patients, which may result in knees more sus-
eptible to injury.

The results for variability in ACL-deficient patients walk-
ng backward seem to be similar to the results presented
or walking forward [69]. Therefore, the ‘‘rigidity’’ that
as noticed both during forward and backward walking can
e related to the ACL deficiency and indicates that these
atients have less capability to respond to different pertur-
ations and to adapt to the changing environment.

euromuscular control after ACL injury and
econstruction

uscle strength after ACL injury and
econstruction
ne of the most important adaptations after ACL injury is
he thigh muscle strength deficit [84,85]. One of the most
ommon used tools for a highly reliable single-joint eval-
ation is the isokinetic dynamometry [86—88]. The most
ommon parameters that have been used in isokinetic eval-
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ation are work per unit, isokinetic curves and mainly the
eak torque value [88—90].

In a study of our lab it has been noticed that after ACL
upture quadriceps and hamstring strength deficits exist
nd there are numerous factors that are responsible for
his [91]. After ACL rupture quadriceps muscle strength is
ecreased due to the loss of afferent reaction from the
CL to gamma motor neurons [92]. The ACL rupture can
esult in ‘‘quadriceps avoidance’’ gait patterns, which has
een explained like a compensator mechanism for prevent-
ng anterior sublaxation [93,94]. Hamstring muscle firing
attern changes, in an attempt to counteract these ante-
ior shear forces. Specifically, it has been shown that after
CL rupture physiological modifications are developed with
he intention to activate hamstrings for diminishing shear
orces during knee loading [95]. Strength deficits after ACL
upture are time-dependent and quadriceps deficit persists
onger than hamstrings’ [91].

Imbalance of the knee muscle strength, between dif-
erent muscle groups, has also been identified after ACL
econstruction. Failure to prevent or to effectively treat
his imbalance may alter the patient’s functional recov-
ry [96] and predispose patients to re-rupture. Different
trength deficits have been reported after different graft
ypes [88,97], which complicate the decision-making in
erms of either the type of graft to use or the focus of
ppropriate rehabilitation [98].

The achievement of muscle strength balance of lower
xtremities may be one of the most important factors for
eturning to pre-injury activity levels [96]. Except from
he surgery itself, the muscular recovery after an ACL
econstruction may be affected by numerous factors. The
reoperative muscle strength [99], the time between injury
nd reconstruction [100] and the pre- and post-surgery reha-
ilitation [101] are some of them.

Quadriceps strength weakness has been noticed after
arvesting the BPTB autograft and hamstring muscle weak-
ess after harvesting the HST autograft [97]. Muscle function
ay also be modified due to the attenuation of the gamma

oop function caused from the ACL injury, which is not
estored after the ACL reconstruction. It is documented that
CL mechanoreceptors play an important role in enhancing
he activity of gamma motor neurons contributing to a nor-
al muscle function [92]. It is of crucial importance that,
efore returning to sport activities after ACL reconstruction,
uscle strength deficits have to be diminished. For that rea-

on, rehabilitation after ACL reconstruction must focus on
uscle strength recovery in conjunction with a plethora of

riteria [96].

euromuscular control in terms of
lectromechanical delay (EMD) in ACL
econstructed patients

owever, some researchers have suggested that the actual
ffectiveness of the muscles to provide mechanical response

nd protection under real-life situations can be revealed
nly with the measurement of the time delay between the
nset of muscle stimulation by the alpha motoneuron to
he development of torque at a given joint [102,103]. This
s referred as electromechanical delay (EMD) [102]. Few
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tudies exist in the literature that documents the effect of
CL reconstruction with BPTB or hamstrings, on the donor-
ite muscle’s EMD. In our first study, we evaluated 17 ACLR
atients with a BPTB autograft, 2 years after the reconstruc-
ion [104] under maximally explosive isometric contractions.
e recorded the surface electromyographic (EMG) activity
f rectus femoris (RF) and vastus medialis (VM). We found
hat harvesting the medial third of the patellar tendon did
ot significantly alter the EMD of the knee extensor muscles.
n our second study [105], we evaluated 12 ACLR patients
ith an ST/G autograft and 12 healthy controls, using the

ame methodology and recording the ST and the biceps
emoris (BF) muscles. Our statistical comparisons revealed
ignificant increases of the EMD of the ACLR knee for both
nvestigated muscles.

The EMD measurement is of great functional impor-
ance, because regardless of the contractile ability of the
uscles, alterations in the EMD of the quadriceps or ham-

trings muscle-tendon unit could compromise knee integrity
r impair performance by modifying the transfer time of
uscle tension to the bones. Our results suggested an

mpairment of neuromuscular control at the knee flexors
fter ACL surgery. However, further longitudinal investiga-
ion is required to identify how the EMD is tolerated by the
entral nervous system and if the increased hamstrings EMD
an influence patients’ optimal sports performance exposing
hem to increased possibility of knee re-injury.

he influence of metabolic fatigue on
euromuscular function in ACL reconstructed
thletes

CL rupture is associated with altered neuromuscular
unction as revealed by diminished EMG activity of the
uadriceps and increased or earlier EMG activity of the
iceps femoris during walking and running [106,107]. It has
een demonstrated that ACL reconstruction re-establishes
MG activation levels of the operated leg towards norma-
ive values during low demand activity such as walking and
ogging [108,109]. However the effect of metabolic fatigue
n EMG activation levels has not been tested. This is impor-
ant because fatigue is considered to have a cumulative
egative effect, resulting in hazardous movement strategies
nd that knee injuries tend to occur at the later stages of
game where there is accumulation of metabolic fatigue

110].
Our first study examined the effect of metabolic fatigue

n EMG activation levels in ACL reconstructed amateur soc-
er players with a BPTB autograft and demonstrated that
etabolic fatigue had a negative effect on EMG activa-

ion levels of VL muscle of the operated leg [111] (Fig. 5).
atigue was verified with measurements of blood lactate and
etabolic data [111] simulating conditions that are present

n sporting events. Our subsequent study demonstrated that
igh intensity activities are required to reveal deficits of the
perated leg since during low demand activities there are no

ifferences in EMG activation levels between the operated,
ontralateral intact and control leg [112]. This study fur-
her demonstrated that similar levels of metabolic fatigue
esulted in increased EMG activity for the control and intact
eg but not for the operated leg [112]. An impaired response
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rmine
re c
etab
Figure 5 a: athlete performing a test on a treadmill to dete
transmitter was placed behind the athletes back. EMG traces we
athlete running on treadmill, with simultaneous collection of m

of the operate leg under accumulation of metabolic fatigue
has been hypothesized [111].

Endurance training following ACL reconstruction and
prior return to high intensity sports may enhance the
response of the operated leg as may delay the occurrence
of fatigue but this hypothesis remains to be tested [111].
Furthermore, conditions simulating metabolic fatigue under
‘‘field’’ settings may be necessary to reveal deficits in neu-
romuscular function of ACL reconstructed athletes.

Conclusion

Clinical knee joint biomechanics are impaired after ACL
injury, in terms of kinematics and neuromuscular control.
Current ACL reconstruction techniques do not seem to
fully restore normal physiology of the movement. Excessive
tibial rotation is still present in high-demanding activi-
ties and impairment of neuromuscular control may persist
even though muscle strength is reinstated. These abnor-
mal biomechanical patterns may lead to loading of cartilage
areas which are not commonly loaded in the healthy
knee and longitudinally can lead to osteoarthritis. Mus-
cle imbalance can also influence patients’ optimal sports
performance, exposing them to increased possibility of
knee re-injury. In this review, our recommendations point
towards further experimental work, in order to assist in
the development of new surgical procedures (like DB ACL
reconstruction) that could possibly replicate more closely
the natural ACL anatomy and prevent future knee pathol-
ogy.
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