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This paper draws a connection between a recent paper of DeMeyer [2] and an
independent paper by Roggenkamp and Scoit {111 In [2] DeMeyer extends an
earlier result of Janusz [5] by defining an action of a group G of aiitomorphisms
of a commutative ring S on its Brauer group B(S). He then uses Amitzur
cohomology to extend this action to the étale cohomology groups of ths ring
H"(S, G,,) with coefficients in the group of units G,,. In [11] Roggenkamp and
Scott extend results of Perlis [10] by defining a contravariant additive functor from
the Hecke category #; to the category of abelian groups (the objects of .»; are the
ZG-modules ZG/H=7G ®zy Z for subgroups H of G and the morphisms of 7
are ZG-module homomorphisms). Their functor sends ZG/H to Pic(5"). In case
G is finite they use Zariski derived functor cohomology to prove this. For the case
when G is infinite they use ‘generators and relations’ for the category (.#;)°° dual
to #g. Recall that for an affine scheme X =Spec S the étale cohomology groups
have the following interpretation for low n:

H°(X, G,,) =units of S=S~,
H'(X,G,,) =Picard group of S=Pic S,
tors H*(X, G,,) = Brauer group of S=B(S).

In this paper we define a contravariant additive functor from ¥ to the category
of abelian groups which sends ZG/H to the Brauer group B(S*") when S is a Gaiois
extension of R with (finite) group G. The maps on Azumaya algebras are cefined
explicitly. If 0 and 1 are the only idempotents of R, then this functor extends to
HGais/r) Where S is the separable closure of R. We also show that there is a contra-
variant additive functor

@": #;—abelian groups

given by @"(ZG/H)=H"(S" G,,). In this case we use Cech étale cohomology.
Thus, when S/R is Galois we extend the results of Roggenkamp and Scott. Noting
that Homg(ZG,ZG)=ZG we also get DeMeyer’s action of ZG on B(S).
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Throughout unadorned tensor products are over S. If H is a subgroup of G, then
we write H=<G. The set of all double cosets HgK will be denoted H\ G/K for
subgroups H, K of G. All other terminology will be as in [9]. The author wishes to
thank F.R. DeMeyer for some helpful suggestions.

To define an additive functor on .¥; one has to give its values for three types of
maps: ‘corestriction’, ‘restriction’, and ‘conjugation’ and verify that these homo-
morphisms satisfy several relations [12]. Let S and R be commutative rings and
assume that S is Galois over R with group G [4, p. 84]. For any pair of subgroups
H=K=<G and element g in G we will define three homomorphisms

corX: B(S")-B(SX)  (corestriction),
resy : B(S¥)—-B(SH)  (restriction),

conf: B(SH)~B(S®#¢™")  (conjugation).

Since S¥<S, res is induced by the action A— A S¥ for 4 an Azumaya
SK-algebra.
Since g induces an isomorphism

glsn: §H - seHe”

we have an induced isomorphism on Brauer groups B(SH¥)=B(S&#¢"). If A is an
Azumaya S¥-algebra, then con®(|4])=|A®g# S#¥€"'|. Now we define cor. This is
a generalization of the norm map given in [8]. For any S-module M and g in G we
define ;M to be the S-module which is isomorphic to M as abelian groups and
whose S-module action is given by s*m=g~'(s)ym. If M is an S-algebra, eM is
equal to M as rings and equal to ;M as an S-module. Let 4 be an SH_module.
Then for any x in G and y in H, y induces an isomorphism

xS ®SHA Ey--le®SHA

of S-modules. To see this just check that y induces an isomorphism of left S-
modules ,S=,-1,S and simultaneously of right SH-modules. Then y®1 is an
isomorphism. Now let X={x,, ..., x;} be a full set of left coset representatives of
H in K. Let A be an $"-algebra and B=S®s#A. Let B=®y ,B=, BR-®, B.
If yisin K, then y induces a permutation of the set X. Also y induces a map of
S-algebras ,B—,-1,B. From the above, y induces an automorphism of B. It is
known, [1] or [8], that if 4 is an Azumaya S-algebra, then B is an Azumaya S-
algebra, BX is an Azumaya S¥-algebra and B=S®g« BX. To show that the cor-
respondence A—BX induces cor we have to show that the image of Endg#(P) for
P an Sf-progenerator is of the form Endg«(P’) for P’ an SX-progenerator. Let
P'=P®s:S and P'=Xy,P’. Then P and P’ are S-progenerators. By Galois des-
cent [7], P'=S®gsx P’X. Thus P’X is an SX-progenerator [7, Lemma 3.6]. Now let
A =Endg#(P). Then B=Endg(P’) and B=Endg(P’) [2, Lemma 1(b)]. Thus
B¥ =Endg«(P’X) and we see that A—B¥ induces the homomorphism cor.
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Proposition 1. Let H,K, L, D be subgroups of G, g, g’ elements of G and y in
B(S™). Then the homomorphism cor, res, con defined above satisfv the following
axioms.

(G.1) cor(y)=y, corlcor®(y)=cort(y) if H<K=<L.
(G.2) resg(y)=y, respresy(y)=resp(y) if D=H=K.
(G.3) con®'con®(y)=coné¥(y), con”(»)=y ifhisin H.
(G.4) confcor K( ) = cor® ¢ 'con?( ),

con®resy(y) =resgy-tcon¥(y)  if H<K.
(G.5) (Mackey Formula) If H and K are subgroups of L, then

resgcort(y)= Y corfres,,, 1nxconf(y)
KgH

where g runs over a full set of representatives of the double cosets KgH in K\ L/H.
©) corfres,(y)=[K:H)ly if H<K.

Preof. The above axioms follow from Galois descent and looking at the appropriate
commutative diagrams. We will check the Mackey Formula and leave the rest to the
reader. Let H and K be subgroups of L. Let KxH be a double coset in K\ 1 /H.
Let A be an S”-module and B=S®s~#A. Let X be a full set of left coset
representatives for H in L. Then X is a disjoint union of the sets XN KxH and we
can choose X to begin with so that Y, =(XNKxH)x ' is a full set of left coset
representatives for xHx 'NK in K. Therefore we have

where the tensor product )k, is taken over SX and the other two are over S. The
image of A under ‘corestriction’ to S’ and ‘restriction’ to S¥ is (®)y B)' ®4: S*.
The image of 4 under ‘conjugation’ by x, ‘restriction’ to S** ¥ and ‘corestric-
tion’ to S¥ is (&), in v, ,xB)". It remains to show that

H L
<@ XB) Rg# Slh= ® <®yx8> . 2)

KxH \ Y,

Tensoring both sides of (2) with S over S* over S* vields (1). The result follows by
descent [7, Théoréme 5.1].

Corollary 2. Let S and R be commutative rings with 5 a Galois extension of R with
finite group G. There is a contravariant additive functor

& : #;—abelian groups where &(ZG/H) = B(S™).
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Proof. This is an immediate consequence of Proposition 2 and [12].

When Spec R is connected we can extend the above results to the infinite group
case. Let R be a ring with 0 and 1 the only idempotents of R, S the separable closure
of R and G the Galois group of S over R (see [4]). To define a contravariant additive
functor from »#; to the category of abelian groups one defines con and res as
above and cor is defined for every pair H<K such that [K: H] is finite [12]. The
three homomorphisms must satisfy axioms as in Proposition 1. Let H<K<G with
[K : H} finite. We define the corestriction map from S to SX in the following
way. First note that S is the separable closure of SX and S¥ is finite over SX. Also
SH is separable over SX because [K:H] finite implies [Gal(S/SX): H] is finite
which implies H is closed in Gal(S/SX). Thus we can imbed S¥ in its normal
closure T over SX in S. Thus T is Galois over SX. We define corX as above using
T in place of S. It is now a formality to check that the six axioms of Proposition
1 are satisfied.

Theorem 3. Let S, R be commutative rings with S a Galois extension of R with finite
group G. Then iiiere is a contravariant additive functor

D" : #;—abelian groups

given by ®"(2ZG/H)=H"(S", G,,) for each n=0.

Proof. We will prove the theorem for Cech étale cohomology. The Cech groups
agree with the derived functor groups for the sheaf of units G,, by [9, Theorem III
2.17]. The Cech cohomology groups for a scheme X are defined ic be

H"(X,G,,) =lim H"(4, G)

where the limit is taken over all étaic covers # =(U;— X). If # is a cover for X
and 7 is a refinement of #, then there is a homomorphism induced cn cohomology
groups H™( %, G,)—~H"(¥, G,,). First we show that every étale cover of Spec S has
a refinement on which G acts. Let G={x,,...,x,}. Let U be an S-algebra and
U=,U® ®,U. If S-U is étale, then S U is étale. We have seen above that
G extends to a group of automorphisms of U. If % =(Spec U,—Spec S) is an étale
cover of Spec S, then % =(Spec U;—Spec S) is a refinement of # and G acts on
¥. Now assume that S— U is étale and that every automorphism x in G extends
to an automorphism of U. Let H be a subgroup of G. Since S is Galois over S7
with group H it follows from descent theory that U= U" ®g# S and that U” is
étale over S”. Let ¥ =(Spec V;—Spec $¥) be an étale cover of S. Then 7=
(Spec V;®S —Spec S) is an étale cover of $ and 4 is a re’inement of #. Let
¥'= & " =(Spec U —Spec $*'). Then ¥ is a refinement of ¥. Let ZG/H,~ZG/H,
be a morphism in #;. For any ZG-module M we have M =Homg;(ZG/H, M).
We have homomorphisms ((I‘.H‘)**(Uiﬂz)* and these maps induce a homomor-
phism H"(#™, G,)- H"(%", G,,). Taking the limit over all covers 7 of Spec S/
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induces H"(S", G,,)—~ H"(S™, G,,). Since (U")*=(U*)" = Homg(ZG/H, U*) we
see that the functor is additive.

One can check that the maps defined in Theorem 3 on H? restrict to the maps
of Corollary 2 on Brauer groups. The restriction and conjugation maps clearly
agree. The corestriction map also agrees. Details for the corestriction maps are in
[8, €.2]. Most of the results of Roggenkamp and Scott extend to our context. We
restate a few particularly useful propositions in terms of Brauer groups. If R is a
commutative ring then the category .#%; is defined by taking permutaticn modules
RG/H=R®ZG/H as objects and RG-module homomorphisms as maps. It turns
out that any contravariant additive functor

@ . ¥ —abelian groups
induces a contravariant R-linear functor

¢R : '}{)RG _’R-mOdUIeS

with ®4x(RG/H)=RQ P(ZG/H). By #»; we denote the category of finite direct
sums of objects in #xg.

Proposition 4 [11, 4.2.1]. Let G be a group, R a commutative ring and suppose that
we are given a contravariant additive functor

& : #g5—abelian groups.

Extend @ in the obvious way to the category Jf"G. Then for any objects A, B in »:
if ROA=RPB, then R P(A)=RK D(B).

If M is a Z-module and p a prime then we denote by Z,, the local ring at (p)
and M(p) =M®Z Z(p).

Proposition 5 [11, 4.7.4]. Let R be a commutative ring and G a finite group of
automorphisms of R such that R is Galois over R with group G. If H is a
subgroup of G and p a prime which does not divide |G:H]), then the map
B(R),)~B(R")p, is injective.

Proposition 6 [11, 4.7.3]. Let R and G be as above. Let {H;} be a family of
subgroups of G with GCD/{[G:H]l}=1. Then the natural map
B(R")~@; B{R™) is injective.

For example, if R is a subring of R[x, y], which contains R, then §- RX: U
is Galois over R with group Z/{2). Proposition 5 implies that B(S§/R)=
Ker{B(R)— B(S)} is a 2-group since the Brauer group is torsion. If moreover X{x, v}
is a finitely generated R-module, then it is shown in [3] that B(S)=0. In this case
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we see that B(R) is a 2-group. If R is the subring of R[x, y] fixed by a group H of
R-automorphisms such that H is generated by elements of finite order then the
following proposition implies that B(R) = B(RR).

The proof of the next proposition does not use the properties of the Hecke
category.

Proposition 7. Let K/k be a Galois extension of fields with finite group G. Let H
be a group of k-automorphisms of kix,, ..., x,} which is generated by elements of
finite order. Let R be the subring of k|x,; ..., x,) fixed by H and S=K @, R. Then
B(S/R)= B(K/k).

Proof. Since K/k is Galois with group G it follows that §/R is Galois with group
G. We have the following spectral sequence [4] relating H*(G, S$*) and B(S/R):

0—H'(G, $*)-Pic R—(Pic §)° - H*(G, $*)— B(S/R)~>H*(G, Pic S).

Since H is a group of k-automorphisms, extends to a group of K-automorphisms
of K[xy, ..., x,] and S=K]x,, ..., x,]7. It is shown in [6] that Pic S=0. Therefore
H*(G, S*)=B(S/R). But S*=K*, so B(S/R)=H*(G,K *)= B(K/k).

As a final example we show that if G is abelian the p-torsion subgroup of B(S)
can be calculated in terms of G, the p-torsion subgroup of B(R) and the p-torsion
subgroups of the Brauer groups of subrings of S with Galois group the direct pro-
duct of a p-group with a cyclic group (see [11, 2.4]). Suppose G contains a subgroup
H of order g> and exponent ¢ for some g#p. Let H,,..., H,,; denote the
subgroups of H of order g. Then we have an isomorphism of CH modules

CH®C=CH/H\®---®CH/H, .

Since p does not divide |H |, standard results in representation theory zllow us to
replace C in the displayed isomorphism with Z,, the ring of p-adic integers. Tensor
both sides with Z,G over Z,H. We obtain the following isomorphism JprG:

z,G/1®(Z,G/H)'=2,G/H,®---®Z,G/H,,
Proposition 4 now yields
B(S),®B(R)]=B(S"),® - ®B(S1),,.

Since the Brauer group of a ring is a torsion group Z,®B(A)=B(A), is the
subgroup of B(A) consisting of elements of order a power of p for any ring 4. If
we assume that G is abelian, G contains a subgroup H as above unless G is a direct
sum of a p-group with a cyclic group.
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