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This paper draws a CC~IU~~ -=ction between a recent paper of DeMeyer [2] and an 
independent paper by Roggenkamp and Scott [! !I In [Z] DeMeyer extends an ~ 

earlier result of Janusz [5] by defining an action of a group G of automorphisms 
of a commutative ring S on its Brauer group B(S). He then uses Amitzur 
cohomology to extend this action to the 6tale cohomology groups of the ring 
H”(S, G,) with coefficients in the group of units G,. In [ 1 l] Roggenkamp and 
Scott extend results of Perlis [lo] by defining a contravariant additive functor from 
the He&e category .YG to the category of abelian groups (the objects of ,~b are the 
ZG-modules LG/H-hG@& for subgroups H of G and the morphisms c>f q; 
are ZG-module homomorphisms). Their functor sends ZG/H to Pic(SH). In case 
G is finite they use Zariski derived functor cohomology to prove this. For the case 
when G is infinite they use ‘generators and relations’ for the category (.~b)“~ dual 
to .YGe Recall that for an affine scheme X = Spec S the 6tale cohomology groups 
have the following interpretation for low n: 

H’(X, G,,) = units of S-z S*, 

H1 (X, G,,l) = Picard group of S = Pit S, 

tors H2(X, G,) = Brauer group of S = S(S). 

In this paper we define a contravariant additive functor from ..#b to the category 
of abelian groups which sends ZG/H to the ?3rauer group B(SH) when S is a Gaiois 
extension of R with (finite) group G. The maps on Azumaya algebras are Cefined 
explicitly. If 0 and 1 are the only idempotents of R, then this functor extends to 
z&,(~,~) where S is the separable closure of R. We also show that [here is a contra- 
variant additive functor 

@” : ,8b -+abelian groups 

given by @“@G/H) = H”(SH, G,). In this case we use tech 6tale cohomology. 
Thus, when S/R is Galois we extend the results of Roggenkamp and Scott. Noting 
that Homc(HG, ZG)ZZG we also get DeMeyer’s action of Z’G on (9. 
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Throughout unadorned tensor products are over S. If H is a subgroup of G, then 
we write Hc G. The set of all double cosets HgK will be denoted H \ G/K for 
subgroups H,K of G. All other terminology will be as in [9]. The author wishes to 
thank F.R. DeMeyer for some helpful suggestions. 

To define an additive functor on &G one has to give its values for three types of 
maps: ‘corestriction’, ‘restriction’, and ‘conjugation’ and verify that these homo- 
morphisms satisfy several relations [ 121. Let S and N be commutative rings and 
assume that S is Galois over R with group G [4, p. 841. For any pair of subgroups 
Hs KC G and element g in G we will define three homomorphisms 

co@ : B(SH)+ B(SK) (corestriction), 

r+f: B(SK)-+B(SH) (restriction), 

tong : B(SH)--+ B(SgHg-‘) (conjugation). 

Since SK 5 SAY, res is induced by the action P,--+ C&K SH for A an Azumaya 
SK-algebra. 

Since g induces an isomorphism 

we have an induced &morphism on Brauer groups B(SH)r B(SgHg-‘). If A is an 
Azumaya SH-algebra, then cong( 1 A I) = 1 A &H SgHg-’ I. Now we define car. This is 
a generalization of the norm map given in [8]. For any S-module 1M and g in G we 
define gM to be the S-module which is isomorphic to IU as abelian groups and 
whose S-module action is given by s * m =g-‘(s)m. If 1M is an S-algebra, gM is 
equal to IU as rings and equal to gM as an S-module. Let A be an SH-module. 
Then for any x in G and y in H, y induces an isomorphism 

xs@s~A s y--‘xs@sH A 

of S-modules. To see this just check that y induces an isomorphism of left S- 
modules x S z ,,-lxS and simultaneously of right SH-modules. Then y@l is an 
isomorphism. Now let X= {x, , , . . , xk} be a full set of left coset representatives of 
H in K. Let A be an SH-algebra and B=S@QA. Let B=@JxxB=,,BQ+&B. 
If y is in K, then y induces a permutation of the set X. Also y induces a map of 
S-algebras x B -+,+B. From the above, y induces an automorphism of B. It is 
kno!Nn, [l] or [8], that if A is an Azumaya SH-algebra, then B is an Azumaya S- 
algebra, BK is an Azumaya #-algebra and B=S&K BK. To show that the cor- 
respondence A+BK induces car we have to show that the image of EndsH(P) for 
P an SH-progenerator is of the form End&P’) for P’ an SK-progenerator. Let 
P’= P&H S and P’ = gxxP’. Then P and P’ are S-progenerators. By Galois des- 
cent [7], P’= S @SK P’K. Thus P’K is an SK-progenerator [7, Lemma 3.61. Now let 
A = EndsH(P). Then R = Ends(P’) and 

K =Ends~(P’~) and we see that A+ 
=Ends(P’) [2, Lemma l(b)]. Thus 

K induces the homomorphism car. 
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Proposition 1. Let H, K, L, D be subgroups of G, g, g’ elements of G and y in 
B(SH). Then the homomorphism COT, res; con defined above satisLv the ft#o wing 
axioms. 

G. 1) cor"(y)=y, corLcorK(y)=corL(y) if HSKSL. 

(G.2) resK(yk.h resDresH(y) = resD( y) if L) 5 Hc K. 

G-3) Cd’COng(y) = cOng’g( y), con”(y) = y if h is in H. 

VW congcor “( y) = corgKg-‘cong( yJs 

congresH( y) = resgHg-lcong( y) if Hr K. 

(G.5) (Mackey Formula) If H and K are subgroups of L, then 

resKcor’(y) = C corKresghg lnKcong( y) 
KRH 

where g runs over a full set of representatives of the double cosets KgH in K \ L/H. 

w corKresH(y) = [K : H]y if Hc K. 

Proof. The above axioms follow from Galois descent and looking at the appropriate 
commutative diagrams. We will check the Mackey Formula and leave the rest to the 
reader. Let H and K be subgroups of L. Let KxH be a double coset in K \I Of. 
Let A be an SH-module and B= S&O. Let X be a full set of left coset 
representatives for H in L. Then X is a disjoint union of the sets X n KxH and we 
can choose X to begin with so that yV= (X n KxH)x-’ is a full set of left ~oset 
representatives for xHx %K in K. Therefore we have 

L 

&B= @ ( @ ,Bl 
X KxH \_)’ in Y, / 

(1) 

where the tensor product (j&H is taken over S” anti the other :WU are over S. Tile 
image of A under ‘corestriction’ to SL and ‘restriction’ to S” is (@Js B)L@si S’. 
The image of .A under ‘conjugation’ by x, ‘restriction’ to SsHV-‘nA’ and ‘corestric- 
tion’ to SK is (0 Y in yK _,,xB)L. It remains to show that 

Tensoring both sides of (2) with S over SL over SL . j,rields (1). The result follows by 
descent [7, Theoreme 5.11. 

Corollary 2. Let S and R be commutative rings with S a Galois extension of R with 
finite group G. There is a contravariant additive functor 

43 : *fl& -+abelian groups where @@G/H) = B(S H ). 
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Proof. This is an immediate consequence of Proposition 2 and [ 121. 

When Spec R is connected 1 we can extend the above results to the infinite group 
case. Let R be a ring with 0 and 1 the only idempotents of R, S the separable closure 
of R and G the Galois group of S over R (see [4]). To define a contravariant additive 
functor from 8G to the c;at.egory of abelian groups one defines con and res as 
above and car is defined for every pair HzM. such that [K : H] is finite [ 121. The 
three homomorphisms must satisfy axioms as in Proposition 1. Let HS ES G with 
[K: H] finite. We define the corestriction map from SH to SK in the following 
way. First note that S is the separable closure of SK and SH is finite over SK. Also 
SH is separable over SK because [K : H] finite implies [Gal(S/SK) : H] is finite 
which implies H is closed in GaI(S/SK). Thus we can imbed SH in its normal 
closure T over SK in S. Thus T is Galois over SK. We define corK as above using 
T in place of S. It is now a formality to check that the six axioms of Proposition 
! are satisfied. 

Theorem 3. Let S, R be commutative rings with S a Galois extension of R with finite 
group G. Then Acre is a contravariant additive fun&or 

@” : XG -+abelian groups 

given by @“@G/H) = Hn(SH,G,) for each n ~0. 

Procif. We will prove the theorem for Tech &ale cohomology. The Tech groups 
agree with the derived functor groups for L1- ++e sheaf of units G, by [9, Theorem III 
2.171. The Tech cohomology groups for a scheme X are defined to be 

H”(X, G,) = I@ ri”( “v, G,) 

where the limit is taken over all etaie czver~ j1/ =(Wi4X). If t44 is a cover for X 
and Y is a refinement of jl/, then there is a homomorphism indu& $2 tnhomology 
groups gn( +Y, G,)-+lj”( Y, G,). First we show that every etale cover of Spec S has 
a refinement on which G acts. Let G = {xl ? . . . , Xn} . Let U be an S-algebra and 
u= x, U@ l . . @,U. If S -+ U is &ale, then S --+ U is &ale. We have seen above that 
G extends to a group of automorphisms of U. If f@ = (Spec Q+Spec S) is an &ale 
cover of Spec S, then 4kr = (Spec Ui -+Spec S) is a refinement of da and G acts on 

. Now assume that S-+ U is &ale and that every automorphism x in G extends 
to an zutomorphism of U. Let H be a subgroup of G. Since S is Galois over SH 
with group *Fp it follows from descent theory that U= U” &HS and that UH is 
&ale over SH. Let Y = (Spec I$ +Spec SHj be an &ale cover of SH. Then %Y = 

0 S -+Spec S) is an &ale cover of S and r%r is a re’inement of 6% Let 
+Spec SH). Then Us a refinement of Y’. Let ZG/H+ZG/H, 

be a morphism in # d;. For any ZG-module A4 we have MHz Hom&ZG/H, M). 
We have homomorphisms (Ul”)*-*(Ui”z,* and these maps induce a homomor- 
phism @(@Hl 2 G, j-+lP( eH2, G,). Taking the limit over all covers Y of Spec SNi 
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induces A”(SH1 , G,,,)--dn(SHz, G,& Since 
see that the functor is additive. 

(r/y = (u*)H = HOQ @G/N, U*) we 

One can check that the maps defined in Theorem 3 on H2 restrict to the maps 
of Corollary 2 on Brauer groups. The restriction and conjugation maps clearly 
agree. The corestriction map also agrees. Details for the corestriction maps are in 

[8, 6.21. Most of the results of Roggenkamp and Scott extend to our context. We 
restate a few particularly useful propositions in terms of Brauer group.;. If R is a 
commutative ring then the category &, is defined by taking permutaticn modules 
RG.:H= R@ZG/H as objects and RG-module homomorphisms as maps. It turns 
out that any contravariant additive functor 

@ : XG -+abelian groups 

induces a contravariant R-linear functor 

QR : .FRG -+R-modules 

with @,(RG/H) = R@ @@G/H). By yRG we denote the category of finite direct 
sums of objects in XRc. 

Proposition 4 [l 1, 4.2.11. Let G be a group, R a commutative ring and suppose that 
we are given a contravariant additive functor 

@ : .-u/;; -+abelian groups. 

Extend Qi in the obvious way to the category J?& Then for any objects .A, B irn pT-1 
if R@AsRBB, then R@@(A)aR@@(B). 

If A4 is a Z-module and p a prime then we denote by Ztp, the local ring at (p) 
and Mfp, = MOE Z&. 

Proposition 5 [ 11, 4.7.41. Let R be a commutative ring and G a finite group qf 
automorphisms of R such that R is Galois over RG with group G. If H is a 
subgroup of G and p a prime which does not divide [G : H], then the nlc;rl~ 

B(RG)(,, -+ B(R H )( Pl is injective. 

Proposition 6 [ 11, 4.7.3;. Let R and G be as above. Let (HI) be a famik o.f 
subgroups of G with GCD;{[G:Hi]}=l. Then the natural map 
B(R” ) -+ pi &R H’ ) is injcctive. 

For example, if R is a subring of !R[x, y], which contains R, then s - R$i: :‘ 
is Galois over R with group U(2). Proposition 5 implies that B(S’R) = 
Ker{ R(R)+ B(S)} is a Zgroup since the Brauer group is torsion. If moreover K 
is a finitely generated W-module, then it is shown in [3] that B(S) = 0. In this case 
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we see that B(R) is a 2-group. If R is the subring of iR[x, y] fixed by a group H of 
Kautomorphisms such that H is generated by elements of finite order then the 
following proposition implies that B(R) = B(IR). 

The proof of the next proposition does not use the properties of the Hecke 
category. 

Proposition 7, Let K/k be a Galois extension offields with finite group G. Let H 
be a group of k-automorphism of k[xl , . . . , x,1 which is generated by elements of 
finite order. Let R be the subring of k[xl ; . . . , x, 1 fixed by H and S = K& R. Then 
B(S/R) z B(K/k). 

Proof. Since K/k is Galois with group G it follows that S/R is Galois with group 
G. We have the following spectral sequence [4] relating iV2(G, S*) and B(S/R): 

O+H’(G, S*)*Pic R+(Pic S) o +H2(G, S*)+B(S/R)-+H2(G, Pit S). 

Since H is a group of k-automorphisms, H extends to a group of K-automorphisms 
of K[x,, . . . , x,] and S = K[x,, . . . , x,JH. It is shown in [d] that Pit S= 0. Therefore 
H2(G, S*) = B(S/R). But S” - - K*, so B(S/R) z H2(G, K*) z B(K/k). 

As a final example we show that if G is abelian the p-torsion subgroup of B(S) 
can be calculated in terms of G, the p-torsion subgroup of B(R) and the p-torsion 
subgroups of the Brauer groups of subrings of S with Galois group the direct pro- 
duct of a p-group with a cyclic group (see [ 11,2.4]). Suppose G contains a subgroup 
H of order q2 and exponent q for some q#p. Let HI, . . . , Hq+ i denote the 
subgroups of H of order q. Then we have an isomorphism of CH modules 

Since p does not divide 1 HI, standard results in representation theory allow us to 
replace C in the displayed isomorphism with Zp, the ring of p-adic integers. Tensor 
both sides with &,G over ZpH. We obtain the following isomorphism $&: 

~~G/lO(~~G/H)“s~~G/H*O**~O~~G/H,,,. 

Proposition 4 now yields 

Since the Brauer group of a ring is a torsion group Z&)&/l) =B(A), is the 
subgroup of B(A) consisting of elements of order a power of p for any ring A. If 
we assume that G is abelian, G contains a subgroup H as above unless G is a direct 
sum of a p-group with a cyclic group. 
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