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Abstract

Let k be an arbitrary field andC a toric set in the affine spaceAn
k

given parametrically
by monomials. Using linear algebra we give necessary and sufficient conditions forC to be
an affine toric variety, and show some applications. © 2000 Elsevier Science Inc. All rights
reserved.

AMS classification: Primary 14M25; 15A36; Secondary 13F20

1. Introduction

Let k be any field andD = (dij ) a fixedm× n matrix with non-negative integer
entriesdij and with non-zero columns. Letk[x1, . . . , xn] andk[t1, . . . , tm] be two
polynomial rings overk, andφ the graded homomorphism ofk-algebras,

φ : R = k[x1, . . . , xn] → k[t1, . . . , tm], induced byφ(xi) = tdi ,

wheredi = (d1i, . . . , dmi) is the ith column ofD and tdi = td1i
1 · · · tdmim . Then the

polynomial rings are graded by assigning deg(ti) = 1 and deg(xj ) = deg(tdj ) for all
i, j . The kernel ofφ, denoted byP, is called thetoric ideal associated withD. If
α = (αi) ∈ Nn, we setxα = ∏n

i=1 x
αi
i for the corresponding monomial inR.

Note that the mapφ is closely related to the homomorphismψ : Zn → Zm, de-
termined by the matrixD in the standard bases ofZn andZm. Indeed, one can easily
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verify that a binomial g = xα − xβ belongs toP = ker(φ) if and only if α − β

belongs toker(ψ); see [2] for a detailed study of the relation betweenφ andψ.
The affine spaceof dimensionn over k, denoted byAn

k , is the Cartesian prod-
uct kn = k × · · · × k of n-copies ofk. Given a subsetI ⊂ R its zero setor variety,
denoted byV (I), is the set ofa ∈ An

k such thatf (a) = 0 for all f ∈ I .
The toric setC determined byD is the subset of the affine spaceAn

k given para-

metrically byxi = t
d1i
1 · · · tdmim for all i, that is, one has

C =
{(
t
d11
1 · · · tdm1

m , . . . , t
d1n
1 · · · tdmnm

)
∈ An

k

∣∣∣ t1, . . . , tm ∈ k
}
.

We say thatC is anaffine toric varietyif C is the zero set of the toric idealP associ-
ated withD.

Toric ideals and their varieties occur naturally in algebra and geometry [1,9], some
of their properties have been linked to polyhedral geometry [8] and graph theory
[5,7,10]. Of particular interest for this note is the fact that toric ideals are generated
by binomials [4]; here by a binomial we mean a difference of two monomials.

Our aim is to use linear algebra to characterize when a toric setC is an affine toric
variety in terms of:

(a) the existence of solutions ink of equations of the formzλi = c, wherec ∈ k and
λi is an invariant factor of the matrixD;

(b) the vanishing condition “V (P, xi) ⊂ C for all i ”, that in some cases can be
checked recursively.

Some applications will be presented to illustrate the usefulness of our characteriza-
tion.

To prove the main result (see Theorem 2.3) we make use of the fact that any
integral matrix is equivalent to a diagonal matrix which is in Smith normal form [6,
Theorem II.9], together with a description of a certain generating set of a system of
linear diophantine equations (see Proposition 2.2).

2. Affine toric varieties

First we fix some notation. LetC be a toric set defined by anm× n matrixD =
(dij ). Then there are unimodular integral matricesU = (uij ) andQ = (qij ) of orders
mandn, respectively, such that

L = UDQ = diag(λ1, . . . , λs,0, . . . ,0),

wheres is the rank ofD andλ1, . . . , λs are the invariant factors ofD, that is,λi
dividesλi+1 andλi > 0 for all i. For the use in the following, setU−1 = (fij ) and
Q−1 = (bij ). In the sequelei will denote theith unit vector inZn.

For convenience we state the following version of well-known descriptions for
the solution set of a homogeneous system of linear diophantine equations, see [6,
Chapter 2].
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Lemma 2.1. If ψ : Zn → Zm is the homomorphism determined by D, thenker(ψ)
= Zqs+1 ⊕ · · · ⊕ Zqn, whereqi corresponds to the ith column of Q.

Proof. Let x ∈ Zn and make the change of variablesy = Q−1x. AsL = UDQ it
follows thatDx = 0 if and only ifLy = 0. Sety = (y1, . . . , yn).

First noteqi ∈ ker(ψ) for i > s + 1, becauseLQ−1qi = Lei , whereei is theith
unit vector inZn. On the other hand, ifx is in ker(ψ), thenλiyi = 0 for i = 1, . . . , s.
Thus,x = Qy = ∑n

i=s+1 yiqi . To complete the proof observe that the columns ofQ
are a basis forZn. �

Proposition 2.2. Let ψ : Zn → Zm be the linear map determined by D andvj =∑s
i=1 bij qi,whereqi corresponds to the ith column of Q. Ife1, . . . , en is the standard

basis ofZn, then{vi − ei}ni=1 is a generating set forker(ψ).

Proof. SetQ−1 = (bij ). Noteej = ∑n
i=1 bij qi for all j, becauseQQ−1 = I . Hence,

one can write

vj =
s∑
i=1

bij qi = ej −
n∑

i=s+1

bij qi (j = 1,2, . . . , n),

and using Lemma 2.1 we obtainvj − ej ∈ ker(ψ) for j = 1, . . . , n. Setδik = 1 if
i = k andδik = 0 otherwise. From the equality above

n∑
j=1

qjk(ej − vj )=
n∑
j=1

qjk


 n∑
i=s+1

bij qi




=
n∑

i=s+1

qi


 n∑
j=1

qjkbij




=
n∑

i=s+1

qiδik

=qk
for k > s + 1. Hence,qk is in the subgroup ofZn generated by{vi − ei}ni=1 for
k > s + 1, as required. �

For the use in the following, note that every vectorv ∈ Zn can be written uniquely
asv = v+ − v−, wherev+ andv− are vectors with non-negative entries and have
disjoint support.

In the sequel we use the notation introduced above. Our main result is:

Theorem 2.3. Let k be a field, C the toric set determined by the matrix D and P its
toric ideal. ThenC = V (P) if and only if the following two conditions are satisfied:
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(a) If (ai)∈V (P) andai /= 0∀i, thenaq1i
1 · · · aqnin has aλi -root in k fori = 1, . . . , s.

(b) V (P, xi) ⊂ C for i = 1, . . . , n.

Proof. (⇐): One invariably hasC ⊂ V (P). To prove the other contention take a
pointa = (a1, . . . , an) in V (P), by condition (b) one may assume thatai /= 0 for all
i. Thus, using (a) there aret ′1, . . . , t ′s in k such that

(
t ′i
)λi = a

q1i
1 · · · aqnin = aqi (i = 1, . . . , s). (1)

For convenience of notation we extend the definition oft ′i by puttingt ′i = 1 for i =
s + 1, . . . ,m andt ′ = (t ′1, . . . , t ′m). Set

tj = (
t ′1
)u1j · · · (t ′m)umj (j = 1, . . . ,m), (2)

whereU = (uij ). We claim thattdk = t
d1k
1 · · · tdmkm = ak for k = 1, . . . , n. Setting

U−1 = (fij ) and comparing columns in the equalityU−1L = DQ one has

λifi =
n∑
j=1

qjidj (i = 1,2, . . . , s), (3)

wherefi = (f1i , . . . , fmi) anddj = (d1j , . . . , dmj ) denote theith andjth columns
of U−1 andD, respectively. Next we compare columns in the equalityD = (U−1L)

Q−1 to get

dk =
s∑
j=1

λjbjkfj (k = 1,2, . . . , n), (4)

whereQ−1 = (bij ). UsingUU−1 = I and Eq. (2) we rapidly conclude that

tfk = t ′k (k = 1, . . . ,m). (5)

From Proposition 2.2 we deriveDvj = Dej = dj for j = 1, . . . , n, where

vj =
s∑
i=1

bij qi =
(

s∑
`=1

q1`b j̀ , . . . ,

s∑
`=1

qn`b j̀

)
(j = 1, . . . , n). (6)

Hence,D(vj )+ = D(ej + (vj )−), that is,x(vj )+ − xej+(vj )− belongs to the toric
idealP. Using thata ∈ V (P) yieldsa(vj )+ = aej+(vj )− , and thus

avj = aej = aj (j = 1, . . . , n). (7)

Therefore, putting altogether

tdk
(4)= t

∑s
j=1 λj bjkfj = (

tf1
)λ1b1k · · · (tfs )λsbsk

(5)= (
t ′1
)λ1b1k · · · (t ′s)λsbsk
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(1)= (
aq1
)b1k · · · (aqs )bsk = aq1b1k+···+qsbsk

(6)= avk

(7)= ak

for k = 1, . . . , n. Thus,a ∈ C, as required.
(⇒): It is clear that (b) holds becauseV (P, xi) ⊂ V (P). To prove (a) take(ai)

in V (P) with ai /= 0 for all i. Then by definition ofC there aret1, . . . , tm in k such
thataj = tdj for j = 1, . . . , n. Therefore, by Eq. (3), one has

tλifi = tq1id1 · · · tqnidn = a
q1i
1 · · · aqnin .

Thus,(tfi )λi = a
q1i
1 · · · aqnin , as required. �

Corollary 2.4. If k is algebraically closed, thenV (P) ⊂ C ∪ V (x1 · · · xn).

Proof. Leta = (ai) ∈ V (P) such thatai /= 0 for all i. Sincek is algebraically closed
condition (a) above holds. Therefore, one may proceed as in the first part of the proof
of Theorem 2.3 to geta ∈ C. �

Corollary 2.5. If k is algebraically closed, thenC = V (P) if and only ifV (P, xi) ⊂
C for all i.

Proof. If k is algebraically closed, then (a) is satisfied. Thus,C is a toric variety if
and only ifV (P, xi) ⊂ C for all i. �

Remark 2.6. The last two corollaries are valid if we assume condition (a), instead
of assumingk algebraically closed.

As a more concrete application we now show thatVeronese toric setsare affine
toric varieties.

Proposition 2.7. Let d be a positive integer and

A = {
(a1, . . . , am) ∈ Nm

∣∣ a1 + · · · + am = d
}
.

If k is an algebraically closed field and D the matrix whose columns are the vectors
in A, then the toric setC determined by D is an affine toric variety.

Proof. Let

B = {
ta
∣∣ a ∈ A} = {f1, . . . , fm, fm+1, . . . , fs },

where

s =
(
d +m− 1

m− 1

)
.
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One can order thefi so thatfi = tdi for i = 1, . . . ,m and|supp(fi)| > 2 for i > m,
where supp(ta) = {ti | ai > 0}.

Fix an integer 16 i 6 s, it suffices to proveV (P, xi) ⊂ C, where P is the
toric ideal associated withD. We use induction onm. Takea ∈ V (P, xi). If i >
m and φ(xi) = fi = t

r1
1 · · · trmm , note that the binomialxdi − x

r1
1 · · · xrmm belongs

to P, and hencea ∈ V (P, xj ) for some 16 j 6 m. Therefore, one may harm-
lessly assume 16 i 6 m and φ(xi) = tdi ; for simplicity of notation we assume
i = 1. Observe that for everyfj = t

r1
1 · · · trmm with r1 > 0 one hasaj = 0; in-

deed sincexdj − x
r1
1 · · · xrmm belongs toP and a ∈ V (P, x1) one hasaj = 0. Let

D′ be the submatrix ofD obtained by removing the first row and all the col-
umns with non-zero first entry (from top to bottom), andP ′ the toric ideal ofD′.
The vectora′ = (ai | t1 /∈ supp(fi)) is in V (P ′), becauseP ′ ⊂ P . SinceV (P ′) ⊂
C′ ∪ V (x2 · · · xs), whereC′ is the toric set associated withD′, by induction one
readily obtaina ∈ C. �

Next we present another consequence that can be used to prove that monomial
curves over arbitrary fields are affine toric varieties.

Corollary 2.8. If the columns of D generateZm as Z-module, thenC = V (P) if
and only ifV (P, xi) ⊂ C for all i.

Proof. SinceZd1 + · · · + Zdn = Zm, one hasλi = 1 for all i, and thus condition
(a) holds. Therefore,C is an affine toric variety if and only if (b) holds.�

A toric setC in the affine spaceAn
k is called amonomial curveif its corresponding

matrixD has only one row, namely,D = (d1, . . . , dn), andd1, . . . , dn are relatively
prime positive integers.

Proposition 2.9[2]. Let k be an arbitrary field andC a monomial curve. ThenC =
V (P).

Proof. As Z = Zd1 + · · · + Zdn, by Corollary 2.8, it suffices to showV (P, xi) ⊂
C. Let a ∈ V (P, xi). Since all the binomialsx

dj
i − x

di
j vanish ona, one obtainsa =

0 anda ∈ C. �

Remark 2.10. If k is algebraically closed, from Corollary 2.5, it follows that the
conclusion of Proposition 2.9 remains valid even without the assumption gcd(d1, . . . ,

dn) = 1.

Remark 2.11. If C is a toric set over an infinite fieldk andC = V (I) for some
I ⊂ R, thenC is equal toV (P), see [3, Chapter 1]. Thus, ifk is infinite andC is a
variety, thenC must be an affine toric variety.
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In the light of this remark, a natural question is whetherC can be a variety but not
a toric variety; to clarify consider:

Example 2.12. Let k = Z3 andD = (2,4). Then

C = {(0,0)} ∪ {(1,1)} = V
(
x1 − x2, x

2
2 − x2

)
.

On the other handP = (x1 − x2
2) and(1,2) ∈ V (P). Thus,C 6= V (P).
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