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Abstract

Let k be an arbitrary field and" a toric set in the affine spack] given parametrically
by monomials. Using linear algebra we give necessary and sufficient conditionstéobe
an affine toric variety, and show some applications. © 2000 Elsevier Science Inc. All rights
reserved.

AMS classification: Primary 14M25; 15A36; Secondary 13F20

1. Introduction

Letk be any field and = (d;;) a fixedm x n matrix with non-negative integer
entriesd;; and with non-zero columns. Lé{xy, ..., x,] andk[r, ..., t,] be two
polynomial rings ovek, and¢ the graded homomorphism kfalgebras,

¢:R=k[x1,...,x,] = klt1, ..., 1], induced byp(x;) = 1%,

whered; = (dv, ..., dni) is theith column ofD and % = tfl" —t% Then the

polynomial rings are graded by assigning @gg= 1 and degx;) = degr%/) for all
i, j. The kernel ofp, denoted byP, is called thetoric ideal associated wittD. If
o = (a;) € N, we setx® =[]/_; xlf"" for the corresponding monomial R
Note that the map is closely related to the homomorphisim: 7" — 7™, de-
termined by the matri in the standard bases @f andZ™. Indeed, one can easily
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verify thata binomial g = x* — x# belongs toP = ker(¢) if and only ifo — S
belongs tker(yr); see [2] for a detailed study of the relation betweeandq.

The affine spaceof dimensionn overk, denoted byA?, is the Cartesian prod-
uctk™ =k x - -- x k of n-copies ofk. Given a subset C R its zero sefr variety,
denoted by (1), is the set otz € A} suchthatf(a) =0forall f € I.

Thetoric set!” determined byD is the subset of the affine spaé¢ given para-

metrically byx; = tf” - tdmi for all i, that is, one has

P () € A

1, ...,y Gk}.

We say that” is anaffine toric varietyif I' is the zero set of the toric ideBlassoci-
ated withD.

Toric ideals and their varieties occur naturally in algebra and geometry [1,9], some
of their properties have been linked to polyhedral geometry [8] and graph theory
[5,7,10]. Of particular interest for this note is the fact that toric ideals are generated
by binomials [4]; here by a binomial we mean a difference of two monomials.

Our aim is to use linear algebra to characterize when a toric sean affine toric
variety in terms of:

(a) the existence of solutions kof equations of the form* = ¢, wherec € k and
A; IS an invariant factor of the matri@;
(b) the vanishing conditionV (P, x;) c I" for all i”, that in some cases can be
checked recursively.
Some applications will be presented to illustrate the usefulness of our characteriza-
tion.

To prove the main result (see Theorem 2.3) we make use of the fact that any
integral matrix is equivalent to a diagonal matrix which is in Smith normal form [6,
Theorem 11.9], together with a description of a certain generating set of a system of
linear diophantine equations (see Proposition 2.2).

2. Affine toric varieties

First we fix some notation. Ldf be a toric set defined by am x n matrix D =
(d;j). Thenthere are unimodular integral matri€es= (u;;) andQ = (g;;) of orders
mandn, respectively, such that

L=UDQ =diag1,..., A0,...,0),

wheres is the rank ofD and Ay, ..., Ay are the invariant factors dd, that is,A;
dividesx;;1 andx; > O for alli. For the use in the following, sé&f—1 = (fij) and
0 1= (bij). In the sequed; will denote theith unit vector inZ".

For convenience we state the following version of well-known descriptions for
the solution set of a homogeneous system of linear diophantine equations, see [6,
Chapter 2].
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Lemma?z2.l. If  : 72" — 7™ is the homomorphism determined bytBenker(y)
=7qs+1 D - - ® Zq,, Whereg; corresponds to theh column of Q.

Proof. Letx e 7" and make the change of variables= 0~1x. AsL = UDQ it
follows thatDx = Oifand only if Ly = 0. Sety = (y1, ..., yn).

First noteg; € ker(y) fori > s + 1, becauseLQ—lqi = Le;, whereg; is theith
unit vectorinZ". On the other hand, Kis in kery), theni;y; = 0fori =1, ...,s.
Thus,x = Qy = >_/_ .1 vigi. To complete the proof observe that the column®of
are a basis for”. O

Proposition 2.2. Lety : Z" — 7™ be the linear map determined by D ang =
> i_1bijqi, whereg; corresponds to thefi column of Q. I, . . ., ¢, is the standard
basis ofZ", then{v; — ¢;}?_, is a generating set faker(y/).

Proof. SetQ~1 = (b;;). Notee; = ", b;;q; forallj, becaus® 0! = I. Hence,
one can write

S n
vi :Zbij‘Ii =ej— Z bijgi (j=1,2,....n),
i=1 i=s+1

and using Lemma 2.1 we obtain —¢; € ker(y) for j =1,...,n. Setd; = 1if
i = k and$;; = 0 otherwise. From the equality above

n n n
Y ajelej—vp=> g | Y_ bijai
j=1 j=1

i=s+1

n n
=Y ai Y abi

i=s+1 j=1
n
=D aidi
i=s+1
=4k

for k > s + 1. Hence,g, is in the subgroup oZ" generated byv; — ¢;}!_; for
k > s+ 1, asrequired. O

For the use in the following, note that every veaias 7" can be written uniquely
asv = v+ — v—, wWherev; andv_ are vectors with non-negative entries and have
disjoint support.

In the sequel we use the notation introduced above. Our main result is:

Theorem 2.3. Let k be a fieldI" the toric set determined by the matrix D and P its
toric ideal. Then” = V (P) if and only if the following two conditions are satisfied
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(a) If (a;) € V(P) anda; # 0Vi, thena{" - .. ai" has ax;-rootinkfori = 1,...,s.
(b) V(P,x;)ycI'fori =1,...,n.

Proof. («<): One invariably hag” c V(P). To prove the other contention take a
pointa = (az, ..., a,) in V(P), by condition (b) one may assume that~ O for all
i. Thus, using (a) there arg ..., ¢/ in k such that

(tl-/)k" =agl" gt =gl (i=1,...,5). 1

For convenience of notation we extend the definition/dfy puttings/ = 1 fori =
s+1,....mandt’ = (1},....1,). Set
= ()" ()™ G =1 m), 2)

whereU = (u;;). We claim thatr% = tflk . .tff,'"k =qy for k =1,...,n. Setting
Uv-l= (f;j) and comparing columns in the equallty 1L = DQ one has

Mfi=Y qid; (=12...5), ®)

j=1

where f; = (f1, ..., fmi) andd; = (dy;, ..., dj) denote thath andjth columns
of U1 andD, respectively. Next we compare columns in the equality: (U~1L)
0~ 1to get

N
de =Y Aibpf; (k=12....n), (4)
j=1

whereQ~1 = (b;;). UsingUU ! = I and Eq. (2) we rapidly conclude that

th=1 (=1...,m). (5)
From Proposition 2.2 we derivBv; = De; =d; for j =1, ..., n, where

S ) )
vi =Y bijgi = (unbe,‘,-.-,Zanbej) G=1....n. (6)
i=1 (=1 (=1

Hence,D(v;)+ = D(ej + (vj)-), that is,x W)+ — x4+~ belongs to the toric
idealP. Using thatz € V (P) yieldsaV)+ = % +®)- and thus

a® =a% =a; (j=1,...,n). @)
Therefore, putting altogether

(e B S kbifi — (7)1 ()P

® (ti)klblk o (ts/)?»shsk
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(:1) (aql)blk e (aqS)bSk — aq1b1k+"'+%bsk

(:6) a'k

)
_ak

fork =1,...,n. Thus,a € I', as required.

(=): ltis clear that (b) holds becau$& P, x;) C V(P). To prove (a) takéa;)
in V(P) with a; # 0 for all i. Then by definition ofl” there areq, ..., t, in ksuch
thata; = t4i for j = 1,...,n. Therefore, by Eq. (3), one has

t)‘ifi — tql[dl .. tqnidn — agli .. anqni .

Thus,(t/)* = ad¥ ...l as required. O
Corollary 2.4. If kis algebraically closegdthenV (P) C I'U V(x1- - xy).

Proof. Leta = (a;) € V(P) suchthat; # 0foralli. Sincekis algebraically closed
condition (a) above holds. Therefore, one may proceed as in the first part of the proof
of Theorem2.3togeie I'. [

Corollary 2.5. Ifkis algebraically closeghenl” = V (P) ifand only if V (P, x;) C
I foralli.

Proof. If kis algebraically closed, then (a) is satisfied. Thuss a toric variety if
andonly ifV(P,x;) c I foralli. O

Remark 2.6. The last two corollaries are valid if we assume condition (a), instead
of assumingk algebraically closed.

As a more concrete application we now show thiatonese toric setare affine
toric varieties.

Proposition 2.7. Let d be a positive integer and
A= {(al,...,am) € Nm|a1+---+am :d}.
If k is an algebraically closed field and D the matrix whose columns are the vectors
in A, then the toric sel” determined by D is an affine toric variety.
Proof. Let

B={t"|ae A} ={f1..... fu: fus1. .- fihs
where

d+m-—1
s = .
m-—1
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One can order th¢; so thatf; = t,.d fori =1,...,mand|supdf;)| > 2fori > m,
where supp®) = {t; |a; > 0}.

Fix an integer 1< i < s, it suffices to proveV (P, x;) C I', whereP is the
toric ideal associated witD. We use induction om. Takea € V (P, x;). If i >
m and ¢(x;) = f; =#;*---1,", note that the binomiak? — x{*---x," belongs
to P, and hencex € V(P, x;) for some 1< j < m. Therefore, one may harm-
lessly assume X i <m and ¢(x;) = tid; for simplicity of notation we assume
i = 1. Observe that for every; =*---1," with r1 > 0 one hasa; = 0; in-
deed sincex;? — xil ---x," belongs toP anda € V(P, x1) one hasa; = 0. Let
D’ be the submatrix oD obtained by removing the first row and all the col-
umns with non-zero first entry (from top to bottom), aRtithe toric ideal ofD’.
The vectora’ = (a; | t1 ¢ SUPAf;)) is in V(P'), becauseP’ C P. SinceV (P’) C
I'UV(x2---x5), Wwherel” is the toric set associated with’, by induction one
readily obtaina e I'. [

Next we present another consequence that can be used to prove that monomial
curves over arbitrary fields are affine toric varieties.

Corollary 2.8. If the columns of D generaté” as Z-module thenI’ = V(P) if
and only ifV(P, x;) c I for all .

Proof. SinceZdi + ---+ Zd, = 7", one has\; = 1 for all i, and thus condition
(a) holds. Thereford, is an affine toric variety if and only if (b) holds.OO

Atoric setI” in the affine spacé\] is called anonomial curvéf its corresponding
matrix D has only one row, namely) = (ds, ..., dy,), andds, ..., d, are relatively
prime positive integers.

Proposition 2.9[2]. Let k be an arbitrary field and” a monomial curve. Thef =
V(P).

Proof. AsZ = Zdy + --- + Zd,, by Corollary 2.8, it suffices to show (P, x;) C

I'.Leta € V(P, x;). Since all the binomialsid-’ - x}i" vanish oma, one obtaing =
OQanda eI'. O

Remark 2.10. If k is algebraically closed, from Corollary 2.5, it follows that the
conclusion of Proposition 2.9 remains valid even without the assumptiqagcd. ,
dy) = 1.

Remark 2.11. If I' is a toric set over an infinite field andI' = V(1) for some
I C R, thenI is equal toV (P), see [3, Chapter 1]. Thus, ifis infinite andl" is a
variety, thenl” must be an affine toric variety.
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In the light of this remark, a natural question is whethexan be a variety but not
a toric variety; to clarify consider:

Example 2.12. Letk = ZzandD = (2, 4). Then
I'={0,0}U{( 1} = V(x1—x2, x% —x2).
On the other hand® = (x1 — x3) and(1, 2) € V(P). Thus,I" # V(P).
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