Uniform properties and hyperspace topologies for \aleph-uniformities

A. Di Concilio*

Istituto di Matematica, della Facoltà di Scienze, dell' Università di Salerno, 84100 Salerno, Italy

Received 1 October 1989
Revised 3 April 1990

Abstract

Di Concilio, A., Uniform properties and hyperspace topologies for \aleph-uniformities, Topology and its Applications 44 (1992) 115-123.

Let X be a completely regular space and \aleph an infinite cardinal number. The \aleph-uniformity of X generated by all open normal coverings of X with cardinality $\leq \aleph$, is the weakest one with the following property: any continuous function from X to any metric space of weight $\leq \aleph$ is uniformly continuous. Any continuous function from a uniform space X to any metric space of weight $\leq \aleph$ is uniformly continuous iff any locally finite covering of cozero-sets of cardinality $\leq \aleph$ is uniform. With \aleph-collectionwise normality, any continuous function from X to any metric space of weight $\leq \aleph$ and uniform dimension ≤ 1 is uniformly continuous iff any discrete family of subsets of X with cardinality $\leq \aleph$ is uniformly discrete. The uniform hypertopologies induced via the Hausdorff uniformity on the hyperspace 2^X of X from the \aleph'-uniformity, generated by the family of all continuous functions from X to any metric space of density $\leq \aleph$ and uniform dimension ≤ 1 and from the \aleph-uniformity agree. Further, both agree with a Vietoris-type topology iff X is normal.

Keywords: Hausdorff uniformity, Vietoris topology, Vietoris-type topology, hyperspace, \aleph-uniformity, uniform dimension.

Introduction

In metric setting if any real-valued continuous and bounded function is uniformly continuous, then any continuous function is uniformly continuous. In uniform setting a surprising lot of interesting forms of uc-ness (some continuity is uniform), involving leader uniformities and remarkable classes of metric spaces, arise. Let (X, \mathcal{U}) be a uniform space. In [7] Nagata, for the first, characterized a form of uc-ness like a uniform separation property proving that any real-valued continuous

* Research supported by Fondi di Ricerca M.U.R.S.T.
and bounded function on X is uniformly continuous iff any two disjoint zero-sets of X can be uniformly separated. Then, in [6] Michael related uniform normality of X (any two disjoint closed subsets of X can be uniformly separated) to the Vietoris topology on the hyperspace 2^X of X (see Section 3) proving that, with normality, the uniform hypertopology induced via the Hausdorff uniformity from the Čech uniformity of X coincides with the Vietoris topology. In [1] Atsuji proved that, with normality, any real-valued continuous function on X is uniformly continuous iff any discrete sequence of subsets of X is uniformly discrete. In [3] the author proved that, with normality, the uniform hypertopology induced via the Hausdorff uniformity from the Nachbin-Hewitt uniformity of X, which is the weakest (coarsest, smallest) one satisfying the Atsuji property, coincides with a Vietoris-type hypertopology.

For any infinite cardinal number \mathfrak{N} we will show that any continuous function from X to any metric space of weight $\leq \mathfrak{N}$ is uniformly continuous iff any locally finite covering of cozero-sets of X with cardinality $\leq \mathfrak{N}$ is uniform. The \mathfrak{N}-uniformity [9] of X generated by all open normal coverings of X with cardinality $\leq \mathfrak{N}$ is the weakest uniformity compatible with X for which any continuous function from X to any metric space of weight $\leq \mathfrak{N}$ is uniformly continuous. Further, we will consider the topology on 2^X, denoted by \mathfrak{N}', generated from the base $\{G^i \cap U \mid G^i \in \mathcal{G}, U \in \mathcal{U} \}$, where G^i ranges over the open subsets of X and U ranges over the collection of all locally finite families of open subsets of X of cardinality $\leq \mathfrak{N}$ (see for notations Section 3). The Hausdorff uniform topology induced on 2^X from the \mathfrak{N}-uniformity of X is weaker than \mathfrak{N}'. With \mathfrak{N}-collectionwise normality, any continuous function from X to any metric space of density $\leq \mathfrak{N}$ and uniform dimension ≤ 1 is uniformly continuous iff any discrete family of subsets of X with cardinality $\leq \mathfrak{N}$ is uniformly discrete. When (X, τ) is a completely regular space this characterization will play a leading role in proving that the uniform hypertopologies induced on 2^X via the Hausdorff uniformity from the \mathfrak{N}'-uniformity of X, generated by the family of all continuous functions from X to any metric space of density $\leq \mathfrak{N}$ and uniform dimension ≤ 1, and from the \mathfrak{N}-uniformity of X agree. Finally, both agree with \mathfrak{N}' iff X is normal.

The paper contains four sections. In Section 1 we give necessary preliminaries and essential definitions. In Section 2 we show that the \mathfrak{N}-uniformity is determined by the class of metric spaces of weight $\leq \mathfrak{N}$, characterizing the uniformities for which any continuous function to any metric space of weight $\leq \mathfrak{N}$ is uniformly continuous and proving that the \mathfrak{N}-uniformity is the weakest one. Further, with \mathfrak{N}-collectionwise normality, we prove the equivalence between the following property of uc-ness: Any continuous function to any metric space of density $\leq \mathfrak{N}$ and uniform dimension ≤ 1 is uniformly continuous and the following uniform separation property: Any discrete \mathfrak{N}-family of subsets is uniformly discrete. As a corollary an intrinsic characterization by coverings of the \mathfrak{N}'-uniformity is given. In Section 3 we introduce \mathfrak{N}' a Vietoris-type topology on the hyperspace by the means of open locally finite families of cardinality $\leq \mathfrak{N}$. In Section 4 we show that the uniform hypertopologies
induced via the Hausdorff uniformity from the \mathcal{U}-uniformity and \mathcal{U}'-uniformity agree. Then we compare \mathcal{U}' with Hausdorff uniform topologies and prove that \mathcal{U}' and the Hausdorff uniform topology deriving from the \mathcal{U}-uniformity agree iff X is normal.

1. Preliminaries

In considering uniformities we mostly follow Tukey's definition by coverings. For connections among diagonal nhbds, uniform coverings and uniform pseudometrics we refer to Engelking [4] and Isbell [5].

If X is a topological space and f is real-valued continuous function on X, we denote by $\text{supp} f = \{x \in X : f(x) \neq 0\}$. We remark that if $\{\varphi_i : i \in I\}$ is a locally finite partition of unity on X, then $\{\text{supp} \varphi_i : i \in I\}$ is a locally finite covering of cozero-sets of X and vice versa any locally finite covering of cozero-sets of X $\{\text{supp} f_i : i \in I\}$ generates a locally finite partition of unity $\{\varphi_i : i \in I\}$ on X, where $\varphi_i = f_i/\sum f_i$, for any $i \in I$.

In the following we essentially use the basic results:

Proposition 1.1 (Morita). *Any locally finite open covering of cozero-sets is normal.*

Proposition 1.2. (A.H. Stone). *If X is normal, then any open locally finite covering is normal.*

Proposition 1.3 (Tukey). *X is normal iff any binary open covering is normal.*

Proposition 1.4 (A.H. Stone). *Any open normal covering of X with cardinality \mathcal{U} can be star-refined by a locally finite open covering with cardinality \mathcal{U}.*

Proposition 1.5 (Isbell [5, IV]). *Any normal open \mathcal{U}-covering of finite order n is the first of a normal sequence of open \mathcal{U}-coverings each of order $\leq n$.*

Proposition 1.6 (Isbell [5, IV]). *A uniform covering has a uniform refinement of order n iff it has a uniform refinement which is a union of $n + 1$ uniformly discrete subcollections.*

We remind that for a metric space X the density of X, the least cardinal of a dense subset of X, is $\leq \mathcal{U}$ iff the weight of X, the least cardinal of a base of X, is $\leq \mathcal{U}$. Further, we remark that the class of metric spaces of density $\leq \mathcal{U}$ and uniform dimension ≤ 1 admits a uniformly universal metric space of density $\leq \mathcal{U}$ and uniform dimension 1 (Kulpa).

Let $\{A_\lambda : \lambda \in \Lambda\}$ and $\{B_\lambda : \lambda \in \Lambda\}$ be both discrete collections of subsets of X. We say that $\{A_\lambda\}$ is discretely normally separated from $\{B_\lambda\}$ iff for each $\lambda \in \Lambda$ there exists a continuous function $f_\lambda : X \to [0, 1]$ such that $f_\lambda(A_\lambda) = 1$ and $f_\lambda(X - B_\lambda) = 0$. If X is a uniform space we say that (A_λ) is uniformly separated from $\{B_\lambda\}$ iff there exists a diagonal nhbd V such that $V[A_\lambda] \subset B_\lambda$ for each λ.

We list the known relations between uc-ness and uniform separation properties.
Theorem 1.7 (Nagata). Any real-valued continuous and bounded function on X is uniformly continuous if for any pair of disjoint zero-sets A, B of X there exists a diagonal nbhd V such that $V[A] \cap B = \emptyset$.

Theorem 1.8 (Atsuji). Any real-valued continuous function on X is uniformly continuous if any sequence $\{A_n\}$ of subsets of X discretely normally separated from $\{B_n\}$ is uniformly separated from $\{B_n\}$.

2. Uc-ness and uniform separation properties

Let X be a completely regular space and \aleph_0 an infinite cardinal number. We recall that the family of all open normal coverings of X with cardinality $\leq \aleph_0$ generates a uniformity compatible with X, which is called the \aleph_0-uniformity of X [9]. The \aleph_0-uniformity is the Tukey-Shirota uniformity.

Proposition 2.1. The \aleph_0-uniformity is generated by all open locally finite coverings of X with cardinality $\leq \aleph_0$ if X is normal.

Proof. Any open normal covering of X with cardinality \aleph_0 can be star-refined by an open locally finite covering of X with cardinality \aleph_0 (Proposition 1.4). But, if X is normal, any open locally finite covering of X is normal. Conversely, since any binary open covering is uniform and then normal, X is normal. \qed

As the \aleph_0-uniformity is generated by the class of separable metric spaces, so any \aleph_0-uniformity is determined by the class of metric spaces of weight $\leq \aleph_0$.

Theorem 2.2. For any uniform covering U of the \aleph_0-uniformity of X there is a uniformly continuous function from X to a metric space of weight $\leq \aleph_0$ for which U is refined from the preimage of a uniform covering.

Proof. Choose a normal sequence $\{U_n: n \in \mathbb{N}\}$ of open coverings of the \aleph_0-uniformity whose first element refines U and a pseudometric ρ on X such that for each $n \in \mathbb{N}$ the covering of open spheres $\{S_\rho(x, 1/2^n): x \in X\}$ is refined from U_n and refines U_{n-1}. The space X/ρ has weight $\leq \aleph_0$. For suppose $U_n = \{A^*_\lambda: \lambda \in \Lambda_n\}, \text{card} (\Lambda_n) \leq \aleph_0$. For each $n \in \mathbb{N}$ and each $\lambda \in \Lambda_n$ pick x^*_n in A^*_λ. The set $\{x^*_n\}$ which has cardinality $\leq \aleph_0$ is dense in (X, ρ). Observe that diam$(A^*_\lambda) < 1/2^{n-2}$ for each n and each λ and for each integer n and each point $x \in X$, $S_\rho(x, 1/2^{n+3}) \subseteq A^*_{\lambda+2}$ for some $\lambda \in \Lambda_{n+2}$. Thus $x^*_{n+2} \in S_\rho(x, 1/2^n)$. Finally, since the immersion of X in X/ρ is uniformly continuous then U is refined from the uniform covering $\{S_\rho(x, 1): x \in X\}$. \qed

Theorem 2.3. The gage of the \aleph_0-uniformity is generated from all continuous pseudometrics ρ of X for which X/ρ has weight $\leq \aleph_0$.

Proof. Since any pseudometric ρ in the gage of the \aleph_0-uniformity is relative to a normal sequence of open coverings of cardinality $\leq \aleph_0$ the result follows from
Theorem 2.2. Conversely, suppose ρ is a continuous pseudometric of X for which X/ρ has a dense subset $\{x_\lambda : \lambda \in \Lambda\}$, $\text{card}(\Lambda) \leq \aleph_0$. For each $\lambda \in \Lambda$ pick y_λ in x_λ. Then any covering of open spheres $\{S_\rho(x, r) : x \in X\}$ is refined from $\{S_\rho(y_\lambda, r) : \lambda \in \Lambda\}$ which is a normal covering of cardinality $\leq \aleph_0$. \qed

Let (X, \mathcal{U}) be a uniform space.

Theorem 2.4. Any continuous function from X to any metric space of weight $\leq \aleph_0$ is uniformly continuous iff any locally finite covering of cozero-sets of X with cardinality $\leq \aleph_0$ is uniform.

Proof. "If" follows from Proposition 1.1 and the proof of Theorem 2.2. Conversely, let f be a continuous function from X to a metric space (Y, ρ) of density $\leq \aleph_0$. For each $\varepsilon > 0$, consider the covering of open spheres $\{S_\rho(z, \varepsilon/2) : z \in Y\}$ which admits a subordinate locally finite partition of unity $\{f_\lambda : \lambda \in \Lambda\}$, $\text{card}(\Lambda) \leq \aleph_0$. But then the locally finite covering of cozero-sets of X $\{\text{supp}(f_\lambda \circ f) : \lambda \in \Lambda\}$ is uniform. Now, if x, y both belong to $\text{supp}(f_\lambda \circ f)$ for some λ, then $f(x), f(y)$ both belong to $S_\rho(z, \varepsilon/2)$ for some $z \in Y$ and $\rho(f(x), f(y)) < \varepsilon$. \qed

Theorem 2.5. The \aleph_0-uniformity of X is the weakest uniformity compatible with X for which any continuous function from X to any metric space of weight $\leq \aleph_0$ is uniformly continuous.

Proof. Let \mathcal{U} be a uniformity for which any continuous function from X to any metric space of weight $\leq \aleph_0$ is uniformly continuous. For each covering V in the \aleph_0-uniformity, there exists a continuous pseudometric ρ such that X/ρ has weight $\leq \aleph_0$ and $\{S_\rho(x, 1) : x \in X\}$ refines V. But the immersion of X in X/ρ, which is continuous, is uniformly continuous w.r.t. \mathcal{U}. So $\{S_\rho(x, 1) : x \in X\}$ is uniform. Then V is uniform. \qed

Theorem 2.6. The following properties are equivalent:
(a) Any continuous function from X to any metric space of density $\leq \aleph_0$ and uniform dimension ≤ 1 is uniformly continuous.
(b) Any locally finite covering of cozero-sets with cardinality $\leq \aleph_0$ and order ≤ 2 is uniform.
(c) If $\{A_\lambda : \lambda \in \Lambda\}$ is discretely normally separated from $\{B_\lambda : \lambda \in \Lambda\}$ and $|\Lambda| \leq \aleph_0$, then $\{A_\lambda\}$ is uniformly separated from $\{B_\lambda\}$.

Proof. (a) \Rightarrow (b) Any locally finite covering V of cozero-sets of order ≤ 2 and cardinality $\leq \aleph_0$ is the first of a normal sequence $\{V_n\}$ of open coverings each of cardinality $\leq \aleph_0$ and order ≤ 2. Let ρ be a continuous pseudometric with the following
property: \(V_{n+1} \) refines \(\{ S(x, 1/2^n) : x \in X \} \), which refines \(V_n \). The metric space \(X/\rho \) has density \(\leq \aleph_0 \) (Theorem 2.2) and uniform dimension \(\leq 1 \) (Proposition 1.5). But then the immersion \(i: X \to X/\rho \) is uniformly continuous. So \(V \) is refined by \(i^{-1}\{ S(x, 1) : x \in X \} \) which is uniform.

(b) \(\Rightarrow \) (c) Suppose \(\{ A_\lambda : \lambda \in \Lambda \} \) is discretely normally separated from \(\{ B_\lambda : \lambda \in \Lambda \} \) and \(|\Lambda| \leq \aleph_0 \). Then we can find for any \(\lambda \in \Lambda \) a continuous function \(f\lambda \) from \(X \) to \([0, 1] \) such that \(A_\lambda \subset f\lambda^{-1}(1) \) and \(X - f\lambda^{-1}(0) \subset B_\lambda \). If we put \(f = \sum f\lambda \) we have that \(\bigcup f\lambda^{-1}(1) = f^{-1}(1) \). So we can consider the \(\aleph_0 \)-covering of cozero-sets \(\{ X - f\lambda^{-1}(1), X - f\lambda^{-1}(0) : \lambda \in \Lambda \} \) which is uniform. Let \(V \) be the diagonal nhbd related to it. It is easy to show that \(V[X - f\lambda^{-1}(0)] \cap X - f\lambda^{-1}(0) = \emptyset, \forall \lambda \neq \mu \) and \(V[A_\lambda] \cap X - f\lambda^{-1}(0) = B_\lambda, \forall \lambda \in \Lambda \).

(c) \(\Rightarrow \) (a) Suppose \((Y, d) \) is a metric space of density \(\aleph_0 \) and uniform dimension \(\leq 1 \). Let \(\{ x_\lambda : \lambda \in \Lambda \}, |\Lambda| \leq \aleph_0 \), be a dense subset of \(Y \). For each integer \(k \) consider the uniform covering \(\{ S(x_\lambda, 1/2k) : \lambda \in \Lambda \} \). It can be refined by a uniform covering which is the union of two uniformly discrete collections both of cardinality \(\leq \aleph_0 \), \(\{ A_\lambda \}, \{ B_\lambda \} \). Choose \(V_\lambda \) in such a way that \(V_\lambda[A_\lambda] \cap A_\lambda = \emptyset, \forall \lambda \neq \kappa \) and \(V_\lambda \) in such a way that \(V_\lambda[B_\lambda] \cap B_\lambda = \emptyset, \forall \rho \neq \sigma \). Put \(V = V_\lambda \cap V_\nu \). Suppose \(\{ S(x_\lambda, \varepsilon) : \lambda \in \Lambda \} \) refines \(V \). Let \(m = \min(\varepsilon/3, 1/2k) \) and \(W = \{ S(x_\lambda, m) : \lambda \in \Lambda \} \). Then \(W[A_\lambda] \cap W[B_\lambda] = \emptyset, \forall \lambda \neq \mu, W[B_\lambda] \cap W[B_\mu] = \emptyset, \forall \rho \neq \sigma \), and \(\{ W[A_\lambda], W[B_\lambda] : \lambda, \mu \} \) is a refinement of \(\{ S(x_\lambda, 1/k) : \lambda \in \Lambda \} \). Because of the Dowker Lemma [4, 5.1.17], since \(\{ A_\lambda \} \) \(\{ B_\lambda \} \) is separated from \(\{ W[A_\lambda] \} \{ W[B_\lambda] \} \) which is a family of disjoint open sets it is separated from a discrete family \(\{ C_\lambda \} \) \(\{ D_\mu \} \) of open sets with \(A_\lambda \subset C_\lambda \) \(B_\mu \subset D_\mu \). Let \(f \) be a continuous function from \(X \) to \(Y \). Since \(\{ f^{-1}(A_\lambda) \}, \{ f^{-1}(B_\lambda) \} \) are discretely normally separated from \(\{ f^{-1}(C_\lambda) \}, \{ f^{-1}(D_\mu) \} \) respectively, then they are uniformly separated by the means of two diagonal nhbds of \(X, U_1, U_2 \). Put \(U = U_1 \cap U_2 \). Thus, if \((x, y) \in U \) and \(f(x) \in A_\lambda \) or \(f(x) \in B_\mu \), then \(f(y) \in C_\lambda \) or \(f(y) \in D_\mu \). So \(f(x), f(y) \) both belong to \(C_\lambda \) for some \(\lambda \) or both belong to \(D_\mu \) for some \(\mu \). In any case \(d(f(x), f(y)) < 2/k \).

Now, consider \(\aleph_1 \) the weak uniformity generated by all continuous functions from \(X \) to any metric space of density \(\aleph_0 \) and uniform dimension \(\leq 1 \). It can easily be shown that:

Theorem 2.7. The uniformity \(\aleph_1 \) admits as a base the family of diagonal nhbds of the type:

\[
V = \left(X - \bigcup \lambda A_\lambda \times X - \bigcup \lambda A_\lambda \right) \cup \left(\bigcup \lambda B_\lambda \times B_\lambda \right)
\]

where \(\{ A_\lambda : \lambda \in \Lambda \} \) is discretely normally separated from \(\{ B_\lambda : \lambda \in \Lambda \} \) and \(|\Lambda| \leq \aleph_0 \).

Theorem 2.8. If \(X \) is \(\aleph_0 \)-collectionwise normal, then any continuous function from \(X \) to any metric space of density \(\leq \aleph_0 \) and uniform dimension \(\leq 1 \) is uniformly continuous if any discrete family of subsets of \(X \) with cardinality \(\leq \aleph_0 \) is uniformly discrete.
3. A Vietoris-type topology on 2^X:

Let (X, τ) be a T_1-space and 2^X the hyperspace of X, the set of all closed nonempty subsets of X. For each subset G of X denote by $G^+ = \{ E \in 2^X : E \subseteq G \}$. For each family $U = \{ U_i : i \in I \}$ of subsets of X denote by

$$U^- = \{ U_i : i \in I \}^- = \{ E \in 2^X : E \cap U_i \neq \emptyset, \forall i \in I \}$$

and

$$\langle U_i : i \in I \rangle = \{ E \in 2^X : E \subseteq \bigcup U_i \text{ and } E \cap U_i \neq \emptyset, \forall i \in I \}. $$

The family $\{ G^+ \cap U^- \}$, where G ranges over all open subsets of X and U ranges over all finite families of open subsets of X is a base for the finite or Vietoris topology 2^* on 2^X [6].

The family $\{ G^+ \cap U^- \}$, where G ranges over all open subsets of X and U ranges over all (countable) locally finite families of open subsets of X is a base for the (countable) locally finite topology e^* [8] (e^* [3]) on 2^X.

Beer and others proved in [2] that for a metrizable space X the locally finite topology on 2^X coincides with the sup of all Hausdorff metric topologies induced from all equivalent metrics of X. Also results contained in [8] and [3] emphasize the interest of Vietoris-type topologies deriving from open locally finite families. The choice of locally finite families, which are closure-preserving, has been revealed right because of the following properties:

Lemma 3.1. Let $\{ V_i : i \in I \}$ and $\{ W_j : j \in J \}$ be both locally finite families of subsets of X. Then $\langle V_i : i \in I \rangle \subseteq \langle W_j : j \in J \rangle$ iff (a) $\bigcup V_i \subseteq \bigcup W_j$ and (b) for each $j \in J$ there exists $i \in I$ such that $V_i \subseteq W_j$.

Lemma 3.2. Let X be a T_1-space and $\{ U_i : i \in I \}$ a locally finite family of open subsets of X. If for each $i \in I$ we pick x_i in U_i, we can find a discrete family $\{ V_i : i \in I \}$ of open subsets of X such that $x_i \in V_i \subseteq U_i$ for each $i \in I$.

We introduce now a Vietoris-type topology by the means of open locally finite families of cardinality $\leq \aleph_0$.

Proposition 3.3. The family $\{ G^+ \cap U^- \}$, where G ranges over all open subsets of X and U ranges over all locally finite families of open subsets of X with cardinality $\leq \aleph_0$ is a base for a topology on 2^X, which we will denote by \aleph^*.

Theorem 3.4. If X is T_1, then \aleph^* has as subbase the collection $\{ G^+ \cap U^- \}$, where G ranges over all open subsets of X and U ranges over all discrete families of open subsets of X with cardinality $\leq \aleph_0$.

From previous lemmas it follows that:

Proposition 3.5. If \(\{V_i : i \in I\} \) is a locally finite family of open subsets of \(X \), then the \(\mathcal{N}^* \)-closure of \(\langle V_i : i \in I \rangle \) and \(\langle V_i^- : i \in I \rangle \), where \(- \) denotes closure, coincide.

Proposition 3.6. If \((\mathcal{X}, \mathcal{N}) \) is regular, then \((X, \tau) \) is normal.

Proof. Let \(A, B \in \mathcal{X} \) and \(A \cap B = \emptyset \). By regularity there exists an open locally finite family \(\{V_i : i \in I\} \) of cardinality \(\leq \aleph_0 \) such that

\[
A \subseteq \bigcup \{V_i : i \in I\} \subseteq \bigcup \{V_i^- : i \in I\} \subseteq X - B.
\]

By Lemma 3.1 and Proposition 3.5, \(A \subseteq \bigcup V_i \subseteq \bigcup V_i^- \subseteq X - B \). \(\square \)

4. Comparison with uniform topologies

Now let \((X, \mathcal{U}) \) be a uniform space. For each \(U \in \mathcal{U} \) put

\[
U = \{(A, B) \in \mathcal{X} \times \mathcal{X} : A \subseteq U[B] \text{ and } B \subseteq U[A]\}.
\]

Then \(\{U : U \in \mathcal{U}\} \) is a base for a uniformity on \(\mathcal{X} \) which is called the **Hausdorff uniformity** induced from \(\mathcal{U} \). Its underlying topology \(|\mathcal{U}| \) is called the **Hausdorff uniform topology** induced from \(\mathcal{U} \). We remark that from distinct but equivalent uniformities on \(X \) may arise distinct uniform topologies on \(\mathcal{X} \).

Let \(X \) be a completely regular space.

Theorem 4.1. The Hausdorff uniform topology \(|\mathcal{U}| \) induced from \(\mathcal{U} \) is weaker than \(\mathcal{N}^* \) iff \(\mathcal{U} \) is generated from a base of \(\aleph_0 \)-coverings.

Proof. Let \(A \in \mathcal{X} \) and \(U \in \mathcal{U} \). Choose a symmetric open basic nhbd \(V = \cup \{U_A \times U_x : \lambda \in \Lambda\} \), card(\(\Lambda \)) \(\leq \aleph_0 \), such that \(V \subseteq U \). Let \(E \) be a subset of \(A \) maximal w.r.t. the property \(x, y \in E \) implies \((x, y) \notin V^2 \). For each \(x \in E \) pick an index \(\lambda(x) \) such that \(x \in U_{\lambda(x)} \). Then the family \(\{U_{\lambda(x)} : x \in X\} \) is a discrete open family of cardinality \(\leq \aleph_0 \) such that \(A \subseteq \langle U_{\lambda(x)} : x \in X\rangle^- \subseteq U[A] \). Conversely, let \(\{U[x] : x \in X\} \) be a uniform covering and \(W \) a symmetric open diagonal nhbd such that \(W^2 \subseteq U \). Then \(W[X] \) must contain an \(\aleph_0 \)-nhbd of \(X \), \(\langle U_\lambda : \lambda \in \Lambda\rangle \), card(\(\Lambda \)) \(\leq \aleph_0 \). But \(W[X] = \langle W[x] : x \in X\rangle \). For each \(\lambda \in \Lambda \) pick \(x_\lambda \) in \(U_\lambda \). From Lemma 3.1 any \(W[x] \) contains some \(U_\lambda \) and then \(x_\lambda \). So it is contained in \(W^2[x_\lambda] \). Thus \(\{W^2[x_\lambda] : \lambda \in \Lambda\} \) is an open normal refinement of \(\{U[x] : x \in X\} \) with cardinality \(\leq \aleph_0 \). \(\square \)

Theorem 4.2. The uniform topologies induced on \(\mathcal{X} \) via the Hausdorff uniformity from the \(\aleph_0 \)-uniformity and from the \(\mathcal{N}^* \)-uniformity of \(X \) agree, i.e., \(|\mathcal{N}| = |\mathcal{N}^*| \).

Proof. We have to show that \(|\mathcal{N}| = |\mathcal{N}^*| \). Let \(A \in \mathcal{X} \), \(U \) belong to the \(\aleph_0 \)-uniformity and \(\{U_\lambda\} \) be a discrete open family of cardinality \(\leq \aleph_0 \) such that \(A \subseteq \langle U_\lambda \rangle^- \subseteq U[A] \).
Choose for each λ a point $x_\lambda \in A \cap U_\lambda$. Then there exists a symmetric diagonal nhbd W belonging to the \mathcal{N}-uniformity such that $W[x_\lambda] \subset U_\lambda$, $\forall \lambda \in \Lambda$. If $B \in W[A]$, then $A \subset W[B]$. So for each $\lambda \in \Lambda$ we can find $b_\lambda \in B$ and $b_\lambda \in W[x_\lambda] \subset U_\lambda$. It follows that $W[A]$ which is an $|2^{|X|}|$-nhbd of A is contained in $U[A]$. □

Theorem 4.3. Let X be normal and \mathcal{U} finer than the \mathcal{N}-uniformity. Then \mathcal{N} is weaker than the Hausdorff uniform topology $|2^{|X|}|$.

Proof. Let $A \in 2^X$, $(V_\lambda : \lambda \in \Lambda)$ be an \mathcal{N}-nhbd of A. Since X is normal, then there is a continuous function $f : X \to [0, 1]$ such that $f(A) = 1$, $f(X - \bigcup V_\lambda) = 0$. Put $W = \{(x, y) \in X \times X : |f(x) - f(y)| < 1\}$. Then W belongs to \mathcal{U} and $W[A] \subset \bigcup \{V_\lambda : \lambda \in \Lambda\}$. Now, for each $\lambda \in \Lambda$ pick $x_\lambda \in A \cap V_\lambda$ and choose a discrete open family $\{W_\lambda : \lambda \in \Lambda\}$, where $W_\lambda \subset V_\lambda$. For each $\lambda \in \Lambda$ consider a continuous function $f_\lambda : X \to [0, 1]$ such that $f_\lambda(x_\lambda) = 1$ and $f_\lambda(X - W_\lambda) = 0$. Observe that $\bigcup f_\lambda^{-1}(1) = f^{-1}(1)$, where $f = \sum f_\lambda$, and $X - f_\lambda^{-1}(0)$ is contained in W_λ. The collection $\{X - \bigcup f_\lambda^{-1}(1), X - f_\lambda^{-1}(0) : \lambda \in \Lambda\}$ is a locally finite covering of cozero-sets of order 2. Thus it belongs to \mathcal{U}. Let V be its associated diagonal nhbd and $U = W \cap V$. $U[A]$ is a $|2^{|X|}|$-nhbd of A contained in $\langle V_\lambda : \lambda \in \Lambda \rangle$. Suppose $B \in U[A]$, then $B \subset U[A] \subset \bigcup V_\lambda$. Since $A \subset U[B]$, then for each $\lambda \in \Lambda$ there exists $b_\lambda \in B$ such that $(x_\lambda, b_\lambda) \in U$. But $f_\lambda(x_\lambda) = 1$ and x_λ doesn’t belong to any $X - f_\mu^{-1}(0)$ when $x_\mu \neq x_\lambda$. So $b_\lambda \in X - f_\mu^{-1}(0) \subset U_\lambda$. □

Theorem 4.4. The Hausdorff uniform topology deriving on 2^X from the \mathcal{N}-uniformity of X and \mathcal{N} agree iff X is normal.

Proof. It follows from Theorems 4.1-4.3 □

Corollary 4.5. $(2^X, \mathcal{N})$ is completely regular iff (X, τ) is normal.

References