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It is proposed by Cvetic et al. [1] that the product of all horizon areas for general rotating multi-
change black holes has universal expressions independent of the mass. When we consider the product 
of all horizon entropies, however, the mass will be present in some cases, while another new universal 
property [2] is preserved, which is more general and says that the sum of all horizon entropies depends 
only on the coupling constants of the theory and the topology of the black hole. The property has been 
studied in limited dimensions and the generalization in arbitrary dimensions is not straight-forward. In 
this Letter, we prove a useful formula, which makes it possible to investigate this conjectured universality 
in arbitrary dimensions for the maximally symmetric black holes in general Lovelock gravity and f (R)

gravity. We also propose an approach to compute the entropy sum of general Kerr–(anti-)de-Sitter black 
holes in arbitrary dimensions. In all these cases, we prove that the entropy sum depends only on the 
coupling constants and the topology of the black hole.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

Studying the black hole entropy has been an attracting work 
after the establishment of black hole thermodynamics, but it is 
still a challenge to explain the black hole entropy at the micro-
scopic level. Recently, the microscopic entropy of extreme rotating 
solutions has drawn some attention, as well as the detailed micro-
scopic origin of the entropy of non-extremal rotating charged black 
holes. There has been some promising progress and results [3,4]. 
The further studies of the properties of black hole entropy may 
give us a deeper understanding of black holes and to study the 
product of all horizon entropies [1] is an important aspect among 
them, which is motivated by the following consideration. When 
the black hole has only an outer horizon and an inner horizon, the 
inner event horizon plays an important role in studying the black 
hole physics [5,6]. For general 4D and 5D multi-charged rotating 
black holes, the entropies of the outer and inner horizons are

S± = 2π(
√

NL ± √
NR),
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respectively, with NL ,NR interpreted as the levels of the left-
moving and right-moving excitations of a two-dimensional CFT 
[7–9]. So the entropy product

S+S− = 4π2(NL − NR)

should be quantized and must be mass-independent, being ex-
pressed solely in terms of quantized angular momenta and other 
charges. When there are more than two horizons, however, the ac-
tual physics of the entropy product or the area product of all the 
horizons is still not obvious.

Actually, the authors of Ref. [1] have studied the product of 
all (more than two) horizon areas/entropies for a general rotating 
multi-charged black hole, both in asymptotically flat and asymp-
totically anti-de Sitter spacetimes in four and higher dimensions, 
showing that the area product of the black hole does not depend 
on its mass M , but depends only on its charges Q i and angular 
momenta J i . Recently, a new work [10] also studies the entropy 
product and another entropy relation in the Einstein–Maxwell the-
ory and f (R)(-Maxwell) gravity.

As is well-known, in the Einstein gravity (including the theo-
ries studied in Ref. [1]), the entropy and the horizon area of the 
black hole are simply related by S = A

4 , so the area product is pro-
portional to the entropy product. However, in (for example) the 
Gauss–Bonnet gravity where the horizon area and entropy do not 
satisfy the relation S = A and the entropy seems to have more 
4
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physical meaning than the horizon area, the mass will be present 
in the entropy product (see the next section). In fact, Ref. [11] has 
studied the entropy product by introducing a number of possible 
higher curvature corrections to the gravitational action, showing 
that the universality of this property fails in general.

Recently, it is found by Meng et al. [2] that the sum of all hori-
zon entropies including “virtual” horizons has a universal property 
that it depends on the coupling constants of the theory and the 
topology of the black hole, but does not depend on the mass 
and the conserved charges such as the angular momenta J i and 
charges Q i . The conjectural property has only been discussed in 
limited dimensions. It is believed that the property of entropy sum 
is more general than that of the entropy product. In this Letter, 
we prove a useful formula that makes it possible for us to in-
vestigate the universal property in all dimensions. Based on this 
formula, we discuss the entropy sum of general maximally sym-
metric black holes in the Lovelock gravity, f (R) gravity. As well, we 
propose a method to calculate the entropy sum of Kerr–(anti-)de-
Sitter (Kerr–(A)dS) black holes in the Einstein gravity. In all these 
cases, we prove that the entropy sum depends only on the cou-
pling constants of the theory and the topology of the black holes. 
Note that here we just focus on the universal properties, and the 
actual physics behind it still needs to be further investigated.

This Letter is organized as follows. In the next section, we will 
discuss the Gauss–Bonnet case, and then we will express the for-
mula and give a brief proof. In Sections 4 and 5, we will use the 
formula to calculate the entropy sum of (A)dS black holes in the 
Einstein–Maxwell theory and the Lovelock gravity in all dimen-
sions. In Section 6, we will study rotating black holes to calculate 
the entropy sum of Kerr–(A)dS metrics in arbitrary dimensions. In 
Section 7, we will discuss the f (R) gravity where the universal 
property also holds. At last, we give the conclusion and brief dis-
cussion.

2. (A)dS black holes in the Gauss–Bonnet gravity

The action of the Einstein–Gauss–Bonnet–Maxwell in d dimen-
sions is

I = 1

16πG

∫
ddx

√−g
[

R − 2Λ

+ α
(

RμνκλRμνκλ − 4Rμν Rμν + R2) − Fμν F μν
]

(1)

Here G is the Newton constant in d dimensions, α is the Gauss–
Bonnet coupling constant, and Λ = ± (d−1)(d−2)

2l2
is the cosmological 

constant. Varying this action with respect to the metric tensor 
gives equations of motion, which admits the d-dimensional static 
charged Gauss–Bonnet–(A)dS black hole solution [12–15,24]

ds2 = −V (r)dt2 + dr2

V (r)
+ r2dΩ2

d−2 (2)

where dΩ2
d−2 represents the line element of a (d − 2)-dimensional 

maximal symmetric Einstein space with constant curvature (d −
2)(d − 3)k, and k = −1, 0 and 1, corresponding to the hyperbolic, 
planar and spherical topology of the black hole horizon, respec-
tively. The function V (r) in the metric (2) is given by

V (r) = k + r2

2α̃

(
1 −

[
1 + 64πα̃M

(d − 2)rd−1
− 2α̃Q 2

(d − 2)(d − 3)r2d−4

+ 8α̃Λ

(d − 1)(d − 2)

]1/2)
, (3)

where α̃ = (d − 3)(d − 4)α, M and Q are the black hole mass and 
black hole charge respectively. Horizons of the black holes are lo-
cated at the roots of V (r) = 0. The entropy is
S = Ωd−2rd−2

4

(
1 + 2(d − 2)kα̃

(d − 4)r2

)
, (4)

where Ωd−2 = 2π(d−1)/2/Γ ( d−1
2 ). The area of the horizon is

A = Ωd−2rd−2

4
. (5)

When we consider the five dimensional charged black hole, 
according to the function (3), the equation that determines the 
horizons is

2Λr6 − 12kr4 + (
64π M − 12k2α̃

)
r2 − Q 2 = 0. (6)

Then, we can calculate the product of the areas by using Vieta’s 
theorem and (6)

6∏
i=1

Ai =
(

Ω3

4

)6 6∏
i=1

r3
i =

(
Ω3

4

)6(−Q 2

2Λ

)3

. (7)

The result does not include the mass M , preserving the property 
revealed in Ref. [1].

As we have mentioned in the Introduction, the entropy seems 
to have more physical meaning than the horizon area in the case 
that the horizon area and entropy are not proportional to each 
other. In five dimensions, the entropy product has been calculated 
when Λ = 0 [11]. Here we will give the explicit result with a non-
vanishing cosmological constant Λ. The product of the entropies 
is

6∏
i=1

Si =
(

Ω3

4

)6 6∏
i=1

(
r3

i + kα̃ri
)

= −
(

Ω3

4

)6 Q 2

4Λ2

[
Q 2 + (

64π M − 12k2α̃
)
kα̃

+ 12k3α̃2 + 2Λk3α̃3] (8)

and the result depends on the mass.
However, it seems that the sum of all entropies including non-

physical entropies proposed by [2] has a better performance, which 
depends only on the coupling constants of the theory and the 
topology of the black holes. We find that the Gauss–Bonnet case, 
which is included in the Lovelock gravity, obeys the property in all 
dimensions, and we will give the proof later.

3. A useful formula

In this section, we will prove a formula, which is useful in the 
following sections. With regard to the polynomial as follows:

amrm + am−1rm−1 + · · · + a0r0 = 0,

we denote the roots as ri, i = 1, 2, · · · , m, and denote sn = ∑m
i=1 rn

i , 
then we have

sn = −1

am

m−1∑
i=0

sn−m+iai, (9)

with sn−m+i = 0 for n −m + i < 0 and sn−m+i = n for n −m + i = 0.
The proof is briefly described as follows:

−1

am
(am−1sn−1 + am−2sn−2)

= (
rn

1 + · · · + rn
m

) −
m∑[

rn−2
i

( ∑
r j1 r j2

)]
,

i=1 0< j1< j2<m+1, j1, j2 �=i



252 Y.-Q. Du, Y. Tian / Physics Letters B 739 (2014) 250–255
−1

am
(am−1sn−1 + am−2sn−2 + am−3sn−3)

= (
rn

1 + · · · + rn
m

)
+

m∑
i=1

[
rn−3

i

( ∑
0< j1< j2< j3<m+1, j1, j2, j3 �=i

r j1 r j2 r j3

)]
.

Continue the process, if m ≥ n,

−1

am
(am−1sn−1 + am−2sn−2 + · · · + am−n+1s1)

= (
rn

1 + · · · + rn
m

) + (−1)nn
∑

0< j1<···< jn<m+1

r j1 · · · r jn ,

so if we set s0 = n, then

−1

am
(am−1sn−1 + am−2sn−2 + · · · + am−n+1s1 + am−ns0)

= rn
1 + · · · + rn

m.

If m < n, we continue the process until am−l = a0, with 1 ≤
l ≤ m, one can also find that

−1

am

m−1∑
i=0

sn−m+iai = rn
1 + · · · + rn

m.

4. (A)dS black holes in the Einstein–Maxwell theory

The Einstein–Maxwell action in d dimensions is

I = 1

16πG

∫
ddx

√−g
[

R − Fμν F μν − 2Λ
]
. (10)

In the maximally symmetric case, solving the equation of mo-
tion from the above action gives the RN–(A)dS solution, which is of 
the form (2). The horizons are located at the roots of the function 
V (r) [16–19]

V (r) = k − 2M

rd−3
+ Q 2

r2(d−3)
− 2Λ

(d − 1)(d − 2)
r2. (11)

The entropy of horizon is given by

Si = Ai

4
= π(d−1)/2

2Γ (d−1
2 )

rd−2
i . (12)

In odd dimensions, just as [2] has showed, the radial metric 
function is a function of r2 and the entropy Si is a function of ri
with odd power. The pairs of roots ri and −ri vanish the entropy 
sum, i.e. 

∑
i Si = 0.

In even dimensions, according to Eqs. (9) and (11), we have

sd−2 =
2(d−2)∑

i=1

rd−2
i = −a2d−6

a2d−4
sd−4 = · · · =

(−a2d−6

a2d−4

) d−4
2

s2

= 2

(−a2d−6

a2d−4

) d−2
2

= 2

(
(d − 1)(d − 2)k

2Λ

)(d−2)/2

.

Then we get

∑
i

Si =
∑

i

Ai

4
= π(d−1)/2

Γ (d−1
2 )

(
(d − 1)(d − 2)k

2Λ

)(d−2)/2

(13)

which depends only on the cosmological constant Λ and the hori-
zon topology k.

To summarize briefly, considering all the horizons including the 
un-physical “virtual” horizons, we find out the general expression 
of the entropy sum, which depends only on the cosmological con-
stant and the topology of the horizon.
5. Black holes in the Lovelock gravity

In this section, we will discuss the case of Lovelock gravity. The 
action of general Lovelock gravity can be written as [20,21]

I =
∫

ddx

( √−g

16πG

m∑
k=0

αk Lk +Lmatt

)
(14)

with αk the coupling constants and

Lk = 2−kδ
a1b1···akbk
c1d1···ckdk

Rc1d1
a1b1

· · · Rckdk
akbk

, (15)

where δab···cd
ef ···gh is the generalized delta symbol which is totally an-

tisymmetric in both sets of indices. If only keeping α0 = −2Λ and 
α1 = 1 nonvanishing, we obtain the Einstein gravity, while keeping 
α2 nonvanishing as well, we get the Gauss–Bonnet gravity.

Varying the above action with respect to the metric tensor and 
then solving the resultant equation of motion [12,22–28] by as-
suming that the metric has the form (2), one can find that the 
function V (r) is determined by

d − 2

16π
Ωd−2rd−1

N∑
k=0

α̃k

(
1 − V (r)

r2

)k

− M + Q 2(d − 2)Ωd−2

16πrd−3

= 0, (16)

where

N =
[

d

2

]
, α̃0 = α0

(d − 1)(d − 2)
,

α̃1 = α1, α̃k>1 = αk

2k∏
j=3

(d − j).

This is a polynomial equation for V (r) with arbitrary degree N , so 
generically there is no explicit form of solutions. However, assum-
ing V (r) = 0 in the above equation, we can also find that horizons 
of the black holes are located at the roots of the following equation

d − 2

16π
Ωd−2r2d−4

N∑
k=0

α̃k

(
1

r2

)k

− Mrd−3 + Q 2(d − 2)Ωd−2

16π

= 0. (17)

The entropy of horizon is given by

S = d − 2

4
Ωd−2rd−2

N∑
k=1

α̃kk

d − 2k

(
1

r2

)k−1

. (18)

In odd dimensions, 
∑

i Si = 0 with the same reason as before.
For the even dimensions, according to (9) and (17), when we 

calculate 
∑2d−4

j=1 rd−2
j ,

sd−2 =
2d−4∑
j=1

rd−2
j = −a2d−5

a2d−4
sd−3 + · · · + −ad−2

a2d−4
s0,

we only use the coefficient of r whose power is not smaller than 
d −2, so the mass M and the charge Q will not be present for they 
belong to the coefficients ad−3 and a0 respectively. When we calcu-
late the sum of the entropy (18), the sum of the highest power of 
roots is 

∑2d−4
j=1 rd−2

j , so the mass M and the charge Q will be dis-
appear in the sum of the other power of roots according to (9). It 
is suggested that the sum of the entropies is independent of mass 
and charge, just depends on the coupling constants of the theory 
and the topology constants of the horizon.
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6. Kerr–(anti-)de-Sitter black holes

Thus far we have only considered the maximally symmetric 
black holes. It is of great interest to investigate the entropy sum 
of rotating black holes, albeit in the Einstein gravity. In this sec-
tion, we will discuss the sum of the entropies in Kerr–de Sitter 
metrics of all dimensions [29–33]. It is necessary to deal with the 
case of odd dimensions and that of even dimensions separately.

6.1. Odd dimensions

In odd spacetime dimensions, d = 2n + 1, the equation that de-
termines the horizons can be written as

1

r2

(
1 − Λr2) n∏

i=1

(
r2 + a2

i

) − 2M = 0 (19)

where Λ is the cosmological constant. The area of the horizon is 
given by

A j = A2n−1

r j

n∏
i=1

r2
j + a2

i

1 + Λa2
i

(20)

where

Am = 2π(m+1)/2

Γ [(m + 1)/2] . (21)

The entropy is Si = Ai
4 . The sum of the area (20) can be divided 

into two parts:

2n+2∑
j=1

[
A j − A2n−1

r j

n∏
i=1

a2
i

1 + Λa2
i

]
and

2n+2∑
j=1

[
A2n−1

r j

n∏
i=1

a2
i

1 + Λa2
i

]
.

The first part is a function of r with odd power. The horizon 
function (19) is a function of r2, which results in roots ri and −ri
in pair and vanishes the first part. In the second part,

2n+2∑
j=1

[
A2n−1

r j

n∏
i=1

a2
i

1 + Λa2
i

]

= A2n−1

n∏
i=1

a2
i

1 + Λa2
i

∑
0<i1<i2<···<i2n+1<2n+3 ri1 ri2 . . . ri2n+1

r1r2 . . . r2n+2
,

so it also vanishes because we can find 
∑

0<i1<i2<···<i2n+1<2n+3 ri1 ×
ri2 . . . ri2n+1 vanishes from (19) according to Vieta’s theorem. There-
fore, the sum of entropies vanishes, i.e. 

∑
i Si = 0.

6.2. Even dimensions

In even dimensions, d = 2n, the equation that determines the 
horizons can be written as

1

r

(
1 − Λr2) n−1∏

i=1

(
r2 + a2

i

) − 2M = 0. (22)

The area of the horizon is given by

A j = A2n−2

n−1∏ r2
j + a2

i

1 + Λa2
. (23)
i=1 i
The sum of all the areas (23) is difficult to calculate directly. How-
ever, we can calculate it by the following trick. By using (22), the 
sum can be recast as

2n∑
j=1

A j = A2n−2∏n−1
i=1 (1 + Λa2

i )

2n∑
j=1

2Mr j

1 − Λr2
j

= A2n−2M√
Λ

∏n−1
i=1 (1 + Λa2

i )

×
2n∑
j=1

[
1

1 − √
Λr j

− 1

1 + √
Λr j

]
. (24)

Firstly, we focus our attention on the

2n∑
j=1

1

1 − √
Λr j

term in the right hand side of (24). Let 1 − √
Λr =: r̃. Then, by 

substituting r̃ for r, (22) develops into

(
2r̃ − r̃2) 1

Λn−1

n−1∏
i=1

(
r̃2 − 2r̃ + 1 + a2

i Λ
) + 2Mr̃√

Λ
− 2M√

Λ
= 0. (25)

The coefficient of r̃ in the above equation is

a1 = 2

Λn−1

n−1∏
i=1

(
1 + a2

i Λ
) + 2M√

Λ
,

and the constant term of the equation is

a0 = −2M√
Λ

.

So we obtain

2n∑
j=1

1

1 − √
Λr j

=
2n∑
j=1

1

r̃ j
= −a1

a0

=
√

Λ

MΛn−1

n−1∏
i=1

(
1 + a2

i Λ
) + 1. (26)

Similarly, we can get

2n∑
j=1

1

1 + √
Λr j

= −
√

Λ

MΛn−1

n−1∏
i=1

(
1 + a2

i Λ
) + 1. (27)

Therefore the sum of entropies is

2n∑
j=1

S j = 1

4

2n∑
j=1

A j = A2n−2

2Λn−1
,

which depends only on Λ. The result is independent of the signa-
ture of Λ.

7. (A)dS black holes in the f (R) gravity

In this section, we consider the action of R + f (R) gravity cou-
pled to a Maxwell field in d-dimensional spacetime [34–36]

I =
∫

ddx
√−g

[
R + f (R) − (

Fμν F μν
)p]

(28)

where f (R) is an arbitrary function of scalar curvature R . Solving 
the corresponding equation of motion in the maximally symmetric 
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case again gives a solution of the form (2), where the function V (r)
is given by

V (r) = k − 2M

rd−3
+ Q 2

rd−2

(−2Q 2)(d−4)/4

1 + f ′(R0)
− 2Λ f

(d − 1)(d − 2)
r2 (29)

with f ′(R0) = ∂ f (R)
∂ R |R=R0 , R0 = 2d

d−2 Λ f , Λ f is the cosmological 
constant. V (r) = 0 gives the horizons of the black holes.

The entropy of horizon is given by

Si = Ai

4

(
1 + f ′(R0)

)
, (30)

and the area of the horizon is given by

Ai = 2π(d−1)/2

Γ (d−1
2 )

rd−2
i . (31)

According to Eqs. (9) and (29), in odd dimensions, considering 
s1 = ∑d

i=1 ri = 0, we obtain

sd−2 =
d∑

i=1

rd−2
i = −ad−2

ad
sd−4 = · · · =

(−ad−2

ad

) d−3
2

s1 = 0 (32)

So the sum of entropies vanishes, i.e. 
∑

i Si = 0.
In even dimensions,

sd−2 =
d∑

i=1

rd−2
i = −ad−2

ad
sd−4 = · · · =

(−ad−2

ad

) d−2
2

s0

= 2

(
(d − 1)(d − 2)k

2Λ f

) d−2
2

. (33)

So the entropy sum is

∑
i

Si = π(d−1)/2

Γ (d−1
2 )

(
1 + f ′(R0)

)( (d − 1)(d − 2)k

2Λ f

)(d−2)/2

, (34)

which does not depend on the mass M and the conserved 
charge Q .

8. Conclusion and discussion

In order to investigate the property of entropy sum in all di-
mensions, we find that the formula (9) is very useful for the 
calculation. By studying the maximally symmetric black holes in 
Lovelock gravity and f (R) gravity and Kerr–(anti)de-Sitter black 
holes in Einstein gravity, we prove that the sum of all horizons 
indeed only depends on the coupling constants of the theory and 
the topology of the black hole, and does not depend on the con-
served charges like J i , Q i and mass M , therefore we can believe 
that it is a real universal property in all dimensions. Especially, we 
have developed a method for calculating the entropy sum in the 
(even-dimensional) Kerr–(anti)de-Sitter case, which can be used 
to calculate more complicated symmetric rational expressions and 
may be useful for further study of universal entropy relations.

In this Letter, we have just discussed some special black hole 
solutions in several gravitational theories. It is important to ver-
ify this universal property in more general settings, i.e. black 
holes with less symmetry in more general gravitational theories 
with various matter contents. The rotating black holes in the 
Gauss–Bonnet (or even Lovelock) gravity are of special interest, 
whose exact analytical form for general parameters is not yet 
known. However, some approximate forms (e.g. in the slowly ro-
tating case [37]) are known, which can be used to investigate 
the universal property of the entropy sum. The actual physics 
behind the universal properties that we have proved still needs 
more investigation. We wish to explore these aspects in future 
works.
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