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Abstract

We introduce a generalized gravitational conformal invariance in the context of non-compactified 5D Kaluza–Klein theory. It
is done by assuming the 4D metric to be dependent on the extra non-compactified dimension. It is then shown that the conformal
invariance in 5D is broken by taking an absolute cosmological scale R0 over which the 4D metric is assumed to be dependent
weakly on the 5th dimension. This is equivalent to Deser’s model for the breakdown of the conformal invariance in 4D by taking
a constant cosmological mass term µ2 ∼ R−2

0 in the theory. We set the scalar field to its background cosmological value leading
to Einstein equation with the gravitational constant GN and a small cosmological constant. A dual Einstein equation is also
introduced in which the matter is coupled to the higher-dimensional geometry by the coupling G−1

N . Relevant interpretations of
the results are also discussed.
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1. Introduction

The theory of conformal invariance has been play-
ing a particularly important role in the investigation
of gravitational models since Weyl, who introduced
the notion of conformal rescaling of the metric ten-
sor. Afterwards, it was promoted to the conformal
transformations in scalar–tensor theories, in which an-
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other transformation on the scalar field was required
to represent the conformal invariance in modern grav-
itational models. There is an open possibility that the
gravitational coupling of matter may have its origin
in an invariance breaking effect of this conformal in-
variance. In fact, since the ordinary coupling of mat-
ter to gravity is a dimensional coupling (mediated by
the gravitational constant), the local conformal trans-
formations which could change the strength of this di-
mensional coupling, by affecting the local standards
of length and time, are expected to play a key role. In
a system which includes matter, conformal invariance
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requires the vanishing of the trace of the stress tensor
in the absence of dimensional parameters. However,
in the presence of dimensional parameters, the confor-
mal invariance can be also established for a large class
of theories [1] if the dimensional parameters are con-
formally transformed according to their dimensions.
One general feature of conformally invariant theories
is, therefore, the presence of varying dimensional cou-
pling constants. In particular, one can say that the in-
troduction of a constant dimensional parameter into a
conformally-invariant theory breaks the conformal in-
variance in the sense that a preferred conformal frame
is singled out, namely that in which the dimensional
parameters have the assumed (constant) configuration.
The determination of the corresponding preferred con-
formal frame depends on the nature of the problem at
hand. In a conformally-invariant gravitational model,
the symmetry breaking may be considered as a cos-
mological effect. This means that one breaks the con-
formal symmetry by defining a preferred conformal
frame in terms of the large-scale characteristics of cos-
mic matter distributed in a universe with finite scale
factor R0. In this way, the breakdown of conformal
symmetry becomes a framework in which one can
look for the origin of the gravitational coupling of mat-
ter, both classical [2] and quantum [3], at large cosmo-
logical scales.

The purpose of this Letter is to show that one may
look for the origins of both conformal invariance and
its breakdown, leading to gravitational couplings, in a
5-dimensional Kaluza–Klein type gravity theory [4].
In this popular non-compactified approach to Kaluza–
Klein gravity, known as “Space–Time-Matter” theory
(STM), the gravitational field is unified with its source
through a new type of 5D manifold in which space and
time are augmented by an extra non-compactified di-
mension which induces 4D matter. Unlike the usual
Kaluza–Klein theory in which a cyclic symmetry as-
sociated with the extra dimension is assumed, the new
approach removes the cyclic condition and derivatives
of the metric with respect to the extra coordinate are
retained. This induces non-trivial matter on the hy-
persurface of l = constant. This theory basically in-
volves writing the Einstein field equations with matter
as a subset of the Kaluza–Klein field equations with-
out matter [4], a procedure which is guaranteed by an
old theorem of differential geometry due to Campbell
[8].

This view is also inherent in the membrane theory
which is mathematically equivalent, since the canoni-
cal metric in STM theory [4] is basically the warp met-
ric of Randall–Sundrum [5]. In this membrane theory
the large non-compactified dimension are not in con-
flict with observation if the Standard Model fields are
confined to a 3-brane in the extra dimensions [6]. In
fact, the only reason to compactify the extra dimen-
sion is to reproduce 4D Newtonian gravity at long
distances, and if gravity is somehow trapped into the
3-brane then 4D gravity can be reproduced even if
the extra dimensions are infinitely large [6]. Gener-
ically, physical phenomena in the non-compact sce-
narios have to show higher-dimensional character. So,
one can test them by detecting the departures from the
four-dimensional physics, such as the appearance of
the extra force [10]. Even, if these theories with large
extra dimensions cannot correctly describe our present
universe their potential for describing the early uni-
verse is obvious since there is strong evidence that the
early universe underwent a phase where it was five-
dimensional [11].

We show that in the context of STM theory,
i.e. R̂AB = 0 in 5D, one may find a generalized
conformally-invariant gravitational model. The well-
known conformally-invariant model of Deser [2] in
4D is shown to be a special case when we drop the
dependence of the 4D metric on the extra dimension.
Moreover, we show that the breakdown of conformal
invariance which was introduced in [2] by an ad
hoc non-conformal invariant term inserted into the
action naturally emerges here by (i) assuming a weak
(cosmological) dependence of the 4D metric on the 5th
dimension1 and (ii) approximating the scalar field with
its cosmological background value using the well-
known cosmological coincidence usually referred to
Mach or Wheeler.

This geometric approach to the subject of con-
formal invariance and its breakdown in gravitational
models accounts properly for coupling of the gravita-
tional field with its source in 5D gravity. It also gives
an explanation for the origin of a small cosmologi-
cal constant emerging from non-compactified extra di-

1 This assumption is reasonable since 4D general relativity is
known to be in a very good agreement with present observations.
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mension. This subject is the most recent interest in the-
ories with large extra dimensions [6].

The Letter is organized as follows: in Section 2,
we briefly review the conformal invariant gravitational
model and its breakdown in 4 dimensions due to
Deser [2]. In Section 3, we introduce a generalized
conformal invariant gravitational model in 5 dimen-
sions. In Section 4, we study the breakdown of confor-
mal invariance in 5 dimensions and discuss on some
relevant interpretations. The Letter ends with a con-
clusion.

2. Breakdown of conformal invariance in 4D

In this section we briefly revisit the standard work
in 4D conformal invariance due to Deser [2]. Consider
the action functional

(1)S[φ] = 1
2

∫
d4x

√−g

(
gαβ∂αφ∂βφ + 1

6
Rφ2

)
,

which describes a system consisting of a real scalar
field φ non-minimally coupled to gravity through the
scalar curvature R. Variations with respect to φ and
gαβ lead to the equations

(2)
(

✷ − 1
6
R

)
φ = 0,

(3)Gαβ = 6φ−2ταβ(φ),

where Gαβ = Rαβ − 1
2gαβR is the Einstein tensor and

ταβ(φ)= −
[
∇αφ∇βφ − 1

2
gαβ∇γ φ∇γ φ

]

(4)− 1
6
(gαβ✷ − ∇α∇β)φ

2,

with ∇α denoting the covariant derivative. Taking the
trace of (3) gives

(5)
(

✷ − 1
6
R

)
φ = 0,

which is consistent with Eq. (2). This is a consequence
of the conformal symmetry of action (1) under the
conformal transformations

(6)
φ → φ̃ = Ω−1(x)φ, gαβ → g̃αβ = Ω2(x)gαβ,

where the conformal factor Ω(x) is an arbitrary,
positive and smooth function of space–time. Adding

a matter source Sm independent of φ to the action (1)
in the form

(7)S = S[φ] + Sm,

yields the field equations

(8)
(

✷ − 1
6
R

)
φ = 0,

(9)Gαβ = 6φ−2[ταβ(φ)+ Tαβ
]
,

where Tαβ is the matter energy–momentum tensor.
The following algebraic requirement

(10)T = 0,

then emerges as a consequence of comparing the trace
of (9) with (8) which implies that only traceless matter
can couple consistently to such gravity models.

We may break the conformal symmetry by adding
a dimensional mass term − 1

2
∫
d4x

√−gµ2φ2, with
µ being a constant mass parameter, to the action (7).
This leads to the field equations

(11)
(

✷ − 1
6
R +µ2

)
φ = 0,

(12)Gαβ + 3µ2gαβ = 6φ−2[ταβ(φ)+ Tαβ
]

and we obtain as a result of comparing the trace of (12)
with (11)

(13)µ2φ2 = T .

Now, the basic input is to consider the invariance
breaking as a cosmological effect. This would mean
that one may take µ−1 as the length scale character-
izing the typical size of the universe R0 and T as the
average density of the large scale distribution of mat-
ter �T ∼ MR−3

0 , where M is the mass of the universe.
This leads, as a consequence of (13) to the estimation
of the constant background value of φ

(14)φ̄−2 ∼ R−2
0

(
M/R3

0
)−1 ∼ R0/M ∼ GN,

where the well-known empirical cosmological relation
GNM/R0 ∼ 1 (due to Mach or Wheeler) has been
used. In order to well-justify the results we will ap-
proximate the correspondence φ̄−2 ∼ GN with φ̄−2 ≈
8π
6 GN . This estimation for the constant background

value of the scalar field is usually considered in Brans–
Dicke type scalar–tensor gravity theories. Inserting
this background value of φ into the field Eq. (11) leads



4 F. Darabi, P.S. Wesson / Physics Letters B 527 (2002) 1–8

to the following set of Einstein equations

(15)Gαβ + 3µ2gαβ = 6φ̄−2Tαβ ≈ 8πGNTαβ,

with a correct coupling constant 8πGN , and a term
3µ2 which is interpreted as the cosmological con-
stant Λ of the order of R−2

0 . The field Eq. (11) for
φ̄ contains no new information. This is because it is
not an independent equation, namely it is the trace of
Einstein equations (15). One may easily check that us-
ing ✷φ̄ = 0 and �T = µ2φ̄2, Eq. (11) and the trace of
Eq. (15) result in the same equation as − 1

6R+µ2 = 0.

3. 5D gravity and generalized conformal
invariance

Consider the 5D metric given by

(16)dS2 = ĝAB dxA dxB = Gφ2gαβ dxα dxβ + dl2

where the 5D line interval is written as the sum of a
4D part relevant to scalar–tensor theory and an extra
part due to the 5th dimension. The capital Latin indices
A,B, . . . run over 0, 1, 2, 3, 4, Greek indices α,β, . . .

run over 0, 1, 2, 3, and five-dimensional quantities are
denoted by hats. A constant G is also introduced to
leave Gφ2 dimensionless. We proceed keeping gαβ =
gαβ(x

α, l) and φ = φ(xα) as in modern Kaluza–Klein
theory [4]. The metric is general, since we have only
used 4 of the available 5 coordinate degree of freedom
to set the electromagnetic potentials, g4α to zero. Once
we use the 5th coordinate degree of freedom, we
may choose a background value for the field φ. Then
the metric will be generally in the form of Randall–
Sundrum warp metric [5], or the canonical metric in
STM theory [4].

The corresponding Christoffel symbols are ob-
tained

Γ̂ α
βγ = Γ α

βγ + φ−1(δαγ ∇βφ + δαβ∇γ φ − gβγ ∇αφ
)
,

Γ̂ α
βα = Γ α

βα + 4φ−1∇βφ,

Γ̂ 4
βγ = −1

2
∂4ĝβγ ,

Γ̂ α
4α = 1

2
ĝαβ∂4ĝαβ,

Γ̂ α
β4 = 1

2
ĝαδ∂4ĝδβ ,

(17)Γ̂ 4
α4 = Γ̂ α

44 = Γ̂ 4
44 = 0,

where ĝαβ = Gφ2gαβ . The 5D Ricci tensor can be
written in terms of the 4D one plus other terms

R̂αβ =Rαβ − 2φ−1∇α∇βφ + 4φ−2∇αφ∇βφ

− φ−2[φ✷φ + ∇αφ∇αφ
]
gαβ

(18)

+ 1
2
Gφ2

[
gγ δ∂4gδα∂4gβγ − 1

2
gλδ∂4gαβ∂4gλδ

− ∂2
4gαβ

]
.

The field equations R̂AB = 0 then give

Rαβ = 2φ−1∇α∇βφ − 4φ−2∇αφ∇βφ

+ φ−2[φ✷φ + ∇αφ∇αφ
]
gαβ

(19)

− 1
2
Gφ2

[
gγ δġδαġβγ − 1

2
gλδġαβ ġλδ − g̈αβ

]
,

R̂4α = ∇α

(
kαβ − δαβk

) = 0

(20)with kαβ = 1
2
ĝαδ ˙̂gδβ = 1

2
gαδġδβ ,

(21)R̂44 = 2
(
k̇ − 4kαβk

β
α

) = 0,

where an overdot denotes differentiation with respect
to 5th coordinate l (see [7]). Eq. (19) may lead to
a set of 10 Einstein equations. Eq. (20) which have
the form of conservation law may also lead to a
set of 4 Gauss–Codazzi equations for the extrinsic
curvature kαβ of a 4D hypersurface Σl foliating in 5th
dimension. Finally, Eq. (21) is one equation for the
scalar combinations of the extrinsic curvature. The
Ricci scalar for the space–time part is obtained by
contracting Eq. (19) with the metric gαβ

R = 6φ−1✷φ − 1
2
Gφ2

(22)

×
[
gαβgγ δġδαġβγ − 1

2
gαβgλδġαβ ġλδ

− gαβ g̈αβ

]
.

Combining Eqs. (19) and (22) we obtain the Einstein-
like equations with Einstein tensor Gαβ in the left-
hand side and some terms of scalar field together with
4D metric and their covariant derivatives in the right-
hand side as follows

(23)Gαβ = 6φ−2ταβ(φ)+ 1
2
Gφ2

[
Tαβ − 1

2
T gαβ

]
,
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where

ταβ(φ)= −2
3
∇αφ∇βφ + 1

6
gαβ∇γ φ∇γ φ

(24)− 1
3
φ✷φgαβ + 1

3
φ∇α∇βφ

and

(25)Tαβ = gγ δġδαġβγ − 1
2
gλδġαβ ġλδ − g̈αβ .

It is easy to show that the tensor ταβ in Eq. (24) is
exactly the same one in Eq. (4). The field equation
for the scalar field may be obtained by contracting
Eq. (23) with gαβ or ĝαβ as

(26)
(

✷ − 1
6
R + 1

12
Gφ2T

)
φ = 0.

We notice that Eq. (26) has a dynamical mass term
1

12Gφ2T with the dimension of (mass)2. In the pres-
ence of dimensional parameters, the conformal invari-
ance can be established for a large class of theories [1]
if the dimensional parameters are conformally trans-
formed according to their dimensions. In this regard,
Eq. (26), although modified by the mass term com-
pared to (5), but is still invariant under the generalized
conformal transformations

φ → φ̃ = Ω−1(x, l)φ,

(27)gαβ → g̃αβ = Ω2(x, l)gαβ.

This is simply because the 5D metric (16) is invari-
ant under the above conformal transformations. Obvi-
ously, the following combination

Ĝαβ ≡ R̂αβ − 1
2
ĝγ λR̂γ λĝαβ = R̂αβ − 1

2
gγλR̂γ λgαβ

is invariant under (27) due to the invariance of the
metric ĝαβ . Therefore, Eq. (23) which arises as a
result of Ĝαβ = R̂αβ − 1

2g
γλR̂γ λgαβ = 0 is invari-

ant under (27). And Eq. (26) as a consequence of
ĝαβĜαβ = 0 or gαβĜαβ = 0 is invariant under (27)
as well, regardless of which metric is used to con-
traction since the right-hand side is zero. Note that al-
though the initial l-independent scalar field φ trans-
forms to an l-dependent one φ̃, but the l-dependent
function Ω−1(x, l) will not appear in the transformed
scalar field equation because the metric also trans-
forms in such a way that the function Ω−1(x, l) is
factored out throughout the transformed equation ren-
dering the initial scalar field equation. Therefore, by

pure 5D approach we are able to introduce a general-
ized conformal invariant gravitational model defined
by Eqs. (23), (26) and (27) subject to the subsidiary
Eqs. (20) and (21).

4. Breakdown of conformal invariance in 5D

Now, we are in a position to compare Eqs. (26),
(23) with the corresponding Eqs. (11), (12). By this
comparison it turns out that we are able to revisit the
breakdown of conformal invariance in 4D by a 5D
approach since we have derived the field Eqs. (26),
(23) which can be identified with (11), (12) in the
broken phase of the conformal invariance in 4D.

To this end, we take a dimensional analysis. The
dimension of Tαβ or T will no doubt be (length)−2.
Now, we assume the cosmological effect ġαβ ∼ 1

R0
which fixes a very slow variation of gαβ over the
absolute cosmological scale R0. This assumption leads
to the breakdown of the conformal invariance since it
means that we have fixed our standard of length by
the scale of the universe and that (comparing Eq. (26)
with (11) and using Gφ2 ∼ 1) T may be identified
with 12µ2 which is a constant mass term breaking
the conformal invariance. Now, we put the above
identification into the Einstein-like equation (23). We
then have

(28)Gαβ + 3µ2gαβ = 6φ−2
[
ταβ(φ)+ 1

12
φ2Tαβ

]
,

which, comparing with Eq. (13), leads to the identifi-
cation

(29)Tαβ = 1
12

φ2Tαβ,

which is the desired result in the context of induced
matter theory since the matter energy–momentum
tensor Tαβ is dynamically induced by the scalar field
φ and higher dimension, namely Tαβ . Taking the trace
of (29) we find

(30)T = 1
12

φ2T ,

and by taking T = 12µ2 we obtain the Eq. (13).
Now, according to (30) we may discuss on the back-
ground value φ̄ corresponding to the absolute cosmo-
logical scale R0. We have already fixed T (or µ2) by
cosmological considerations, namely T ∼ R−2

0 . This
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was achieved by the 5th coordinate degree of free-
dom through ġαβ ∼ R−1

0 . The 5th coordinate degree
of freedom accounts for the scalar field in the general
metric (16). Thus, (see Eq. (14) and the following dis-
cussion) we may take a background value φ̄, using this
coordinate degree of freedom, as

(31)φ̄−2 ≈ 8π
6

GN,

which identifies G with 8π
6 GN such that Gφ̄2 ≈ 1.

This condition reduces the general metric (16) to
the one which is mathematically equivalent to the
warp metric of Randall–Sundrum [5], or the canonical
metric of STM theory [4]. If we now insert this
constant background value φ̄−2 into Eq. (28) and
use (29) we find

(32)Gαβ + 3µ2gαβ ≈ 8πGNTαβ,

in which

(33)Tαβ = 1
16π

G−1
N Tαβ.

Eq. (32) is the well-known Einstein equation in the
broken phase of the conformal invariance with a
cosmological constant Λ = 3µ2 and a coupling of
matter to gravity, GN . The scalar field Eq. (26) is
the trace of Einstein equations, so its information
is already included in them (see the discussion in
Section 2).

Now, the relevance of 5D approach manifests. It re-
lates the current upper bound value of the cosmologi-
cal constant Λ ∼ R−2

0 to a geometric phenomenon in
which the cosmological constant is generated by the
very slow variation of 4D metric with respect to 5th
dimension.2 Moreover, it unifies the origins of the mat-
ter and the cosmological constant in that they appear
as “two manifestations of higher-dimensional geome-
try”.

2 In a recent work of Arkani-Hamed et al. [6], a small effective
cosmological constant is emerged from a large extra dimension in a
non-compactified approach to 5D Kaluza–Klein gravity. Also, in a
compactified model of Kaluza–Klein cosmology [12], smallness of
the cosmological constant is related to smallness of the compactified
dimension. Therefore, it seems that the subject of cosmological
constant in higher-dimensional (at least in 5D) models is inevitably
involved with extra dimension.

The traditional Einstein equation (32) may alterna-
tively be written in its pure geometric form

(34)Gαβ + 3µ2gαβ ≈ 1
2
Tαβ,

in which the coupling constant GN is removed from
theory. To say, although the Einstein tensor Gαβ

couples to the matter Tαβ by GN but the matter
itself couples by G−1

N to the geometry Tαβ (33) and
so the coupling GN is removed. In this level, the
appearance of GN in the traditional Einstein equation
seems to be a mathematical tool only for dimensional
consistency. However, in the physical level Eqs. (32)
and (33) exhibit an interesting phenomenon, with
varying GN , in that if GN decreases with time
leading to a weakly coupling of gravity Gαβ to the
matter Tαβ (32), the matter itself will then be coupled
strongly to the hidden geometry Tαβ (33). Regarding
the present small value of GN we find an strong
coupling of matter Tαβ to the higher-dimensional
geometry Tαβ . This strong coupling may account
for non-observability of the 5th dimension. In other
words, the effects of the 5th dimension may be hidden
behind this strong coupling and what we observe
as the matter may be the manifestation of a weak
effect of 5th dimension which is strengthened by a
strong coupling G−1

N . This means that going back
in time in GN varying scenarios we will encounter
with an era GN ∼ 1 in which Tαβ may decouple from
Tαβ leading to a naked geometry of 5th dimension
without the concept of matter, as indicated in Eq. (34).
In conclusion it may be said that two Eqs. (32)
and (33) define dual weak-strong regimes, in 5D
approach to coupling constants, and that Eq. (33)
defines a dual-Einstein equation coupling matter to
higher dimension.

It is worth noting that the conformal invariance
in 4D may be easily recovered in this 5D approach
by restricting the 4D metric gαβ to be independent
of 5th dimension (simply by assuming Kaluza–Klein
compactification condition for higher dimension). The
relevant field equations in this choice are

Rαβ = 2φ−1∇α∇βφ − 4φ−2∇αφ∇βφ

(35)+ φ−2[φ✷φ + ∇αφ∇αφ
]
gαβ,

where by taking the trace of (35) and combining it
with (35) we obtain the conformal invariant Eqs. (2)
and (3). The origin of this conformal invariance in 4D
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turns out to be the invariance of the 4D part of 5D
metric

(36)ĝAB

(
xA

) =
(
Gφ2(xα)gαβ(x

α) 0
0 1

)
,

under the conformal transformations (6).

Conclusion

A key feature of any fundamental theory consis-
tent with a given symmetry is that its breakdown
would lead to effects which can have various man-
ifestations of physical importance. Therefore, in the
case of conformal symmetry in gravitational models,
one would expect that the corresponding cosmologi-
cal invariance breaking would have important effects
generating the gravitational coupling and the cosmo-
logical constant. In this Letter we have introduced a
generalized conformally-invariant gravitational model
of 5D gravity theory R̂AB = 0, with 4D part that is de-
pendent on the extra dimension. The conformal invari-
ance in 4D then becomes a special case when we take
the 4D metric to be independent of the extra dimen-
sion. Moreover, we have shown that the cosmological
breakdown of conformal symmetry in a conformally-
invariant gravitational model in 4D may be naturally
derived in this context if we assume a weak (cosmo-
logical) dependence of the 4D metric on the higher di-
mension and use the cosmological coincidence due to
Mach or Wheeler [9] to approximate the scalar field by
its cosmological background value. This approach to
the issue of couplings and parameters in gravity leads
to a geometric interpretation for the small cosmologi-
cal constant Λ. Moreover, a dual coupling G−1

N is in-
troduced by which the matter couples strongly to the
geometric effects of higher dimension through a dual
Einstein equation, and non-observability of higher di-
mension is then justified.

We also mention to the generality of the 5D
conformal invariance. In Deser’s model the conformal
symmetry is broken once a constant mass term is
introduced. However, in 5D approach a dynamical
mass term is appeared without breaking the conformal
symmetry. This generalized symmetry is broken when
we take a preferred conformal frame by introducing
an absolute length scale R0 through ġαβ ∼ R−1

0 . In
other words, what we call the conformal invariance

in Deser’s model is not really a conformal invariance;
it is just scale invariance which is a special case of
conformal invariance. This is because the dimensional
constant mass term could not transform conformally.3

Some remarks should be reminded about the choice
of the metric (16), its stability and (possible) con-
flict with observation. We have taken (16) because
we would expect to obtain a 5D metric of Randall–
Sundrum or canonical type which seems to be able to
describe the universe after the breakdown of confor-
mal invariance. Referring to a previous Letter [13] in
which a conformally related metric to (16) was taken
and stabilized, quantum mechanically, close to l = 0
constant hypersurface, we may consider a same stabi-
lization procedure with the metric (16). This is because
the key features in [13] to stabilize the non-compact
dimension, close to l = 0, namely “a weak dependence
of gαβ(xα, l) on l” and “l-independence of the scalar
field” are admitted in the present paper. In this regard,
we may live in a 5D universe but very close to the 4D
reference hypersurface l = 0, so that the evolution of
the scalar field φ (varying GN ) or the slowly varying
metric ġαβ ∼ R−1

0 , does not affect practically this sta-
bilized hypersurface.

As we have mentioned in the introduction, referring
to many papers in membrane theory, the large non-
compactified dimension are not in conflict with obser-
vations. The same applies for STM theory if we con-
fine our universe very close to the l = 0 reference hy-
persurface in which case the size of 5th dimension has
no observable effect. In particular, we have argued in
this Letter that the strong coupling G−1

N may account
for the non-observability of the 5th large dimension,
so that the effects of this dimension may be hidden be-
hind this strong coupling.

There is a natural question in the context of induced
matter theory about its possible connection to quan-
tum theory. This is because we can induce the mat-
ter geometrically from the 5th dimension whereas we
know the matter has a underlying quantum structure.
Therefore, it deserves to pay attention to this issue.
First, it is well-known that the existence of a dimen-

3 The conformal invariance is more general than scale invariance
which is used in Deser’s model. If scale invariance is characterized
by vanishing of the trace of the energy–momentum tensor, confor-
mal invariance implies scale invariance in the absence of dimen-
sional parameters in the theory.
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sional gravitational constant GN is the main source
of non-renormalizability of quantum gravity. On the
other hand, the quantum theory approach to the tradi-
tional Einstein equation suffers from the problem that
the left-hand side is geometry and the right-hand side
is the matter. Eq. (34), however, as a pure geometric
Einstein equation is free of GN . Moreover, both sides
of this equation has the geometric structure. Perhaps, it
is helpful to study the 4D quantum gravity in this pure
geometric 5D approach. Second, in a study of 4D con-
formal invariance in QFT in [3], the following equa-
tion like our scalar field Eq. (26) is obtained(

✷ − 1
6

+ φ−2Sα
α {ω}

)
φ = 0

in which Sα
α {ω} is the trace of the tensor Sαβ{ω}

describing the distribution of matter due to local
quantum effects. It is therefore very appealing to think
about how the higher-dimensional effects in 5D may
play the role of quantum effects in 4D.
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