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Abstract

Machine vision is used for applications such as automated inspection, process control and robot guidance, and is directly associated with increasing

of manufacturing process flexibility. The presence of noise in image data affects robustness and accuracy of machine vision, which can be an

obstacle for industrial applications. Accuracy depends on both feature detection, resulting in pixel values of the measures of interest, and vision

systems calibration, which allows transforming pixel measurements into real-world coordinates. This paper analyzes the camera calibration

process, and proposes a new method for camera calibration, based on numerical analysis of probability distributions of the calibration parameters

and removal of outliers. The method can be used to improve accuracy and robustness of the vision systems calibration process.
c© 2015 The Authors. Published by Elsevier B.V.
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1. Introduction

Machine vision is a technological field aimed at applica-

tion of computer vision for the industrial needs, including au-

tomatic inspection, process control, and robot guidance [1–4].

Because of streamlined development of industrial automation

and robotics in the recent years, research within machine vision

continues to grow. One of the advantages of vision systems as

compared to other types of sensors lies in the ability of measur-

ing a wide range of characteristics, to the big extent depending

on the capabilities of vision software. Because of this inherent

characteristic, industrial visions systems are often considered in

connection with manufacturing flexibility and reconfigurability

[5].

Any vision system starts its work by acquiring an image or

a set of images from cameras or data storage devices. After the

original images are loaded into computer memory, a vision sys-

tem exerts a certain set of operations upon the them to obtain

the final application-dependent information output in the end.

The operations typically constitute the well-known image pro-

cessing or computer vision algorithms, and their sequence re-

sembles a pipeline, starting at the image acquisition phase and

ending with obtaining the desired result.

In most of the industrial cases, one needs to obtain measure-

ments from a vision system that are expressed in real-world co-

ordinates. This requires transforming pixel measures into met-

ric values. To perform such transformation, the knowledge of

the appropriate rigid transformations and intrinsic parameters

of the cameras need to be obtained. This information is de-

termined during the system calibration process and depends on

the particular configuration of the system. Typical configura-

tions include rigidly mounted camera, camera mounted on the

robot arm, and various stereo- and multi-camera configurations.

Regardless the system configuration, the process of camera

calibration is essential for application of vision systems, and is

focused on determining a set of camera intrinsic parameters.

The latter describe pixel size, center of projection, principal

length, and distortion characteristics.

Camera intrinsic parameters are unique for a particular cam-

era, and specify the models of image formation process, namely

pinhole camera model and distortion model. Finding these pa-

rameters is possible by matching interest points in a known 3D

or planar object with their projection on the camera imager,

identified by the appropriate feature detection procedure. Thus,

because real-world coordinates of the interest points and the

respective pixel coordinates are known, one can derive the un-

known camera intrinsic parameters by closed-form solution and

numerical optimization.

Because camera calibration techniques are inherently based

on feature detection, they, as any other vision algorithms, are

subjective to noise. In order for the vision measurements to be

accurate enough, these parameters need to (1) be as close to

their true value as possible, and (2) be robust to different image

data inputs to the calibration procedure.

This paper presents a new method for calibration of machine

vision system, based on numerical analysis of probability distri-
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butions of the camera intrinsic parameters and removal of out-

liers. The method is therefore aimed at improving accuracy and

robustness of the vision systems calibration process.

This paper is organized as follows. Section 2 overviews the

problem of vision system calibration, including pinhole cam-

era model, various camera calibration techniques and methods

for assessment and improvement of accuracy. Sections 3 and

4 provide description and validation of the proposed method

respectively. Section 5 concludes the work.

2. Theory and related work

2.1. Pinhole camera model

In order to transform pixel measurements into real-world co-

ordinates, one requires a model capturing the process of image

formation. This model is ought to map 3D points in the world

to 2D points in the image. To serve this role, a pihnole camera

model is used, which describes a camera made as a chamber

with a tiny hole on the front. This hole, also denoted as a pin-

hole aperture, defines an optical center of the camera. A light

ray that passes thought the aperture, projects onto the back wall

of the chamber, which is called an image plane, resulting in an

inverted projection of the observed scene. A distance f from

the image plane to the optical center is called principal distance

or, in some literature, focal length.

A pinhole camera model uses two coordinate frames:

1. Camera coordinate frame (xcamera, ycamera, zcamera), located

in the optical center, with zcamera axis perpendicular to the

image plane;

2. Image coordinate frame (xscreen, yscreen), located in the top

left corner of the image plane with xscreen and yscreen rep-

resenting pixel rows and columns respectively.

Because (xcamera, ycamera, zcamera) is a right-hand frame, and

image plane is inverted, xcamera and ycamera axes are directed

opposite to the respective xscreen and yscreen axes. To simplify

the calculations, the image plane is virtually positioned in front

of the pinhole plane.

Detailed derivation of the pinhole camera model based on

the abovementioned considerations is provided in [1,6]. The

final model transforming a point in real-world coordinates to

the image plane pixel coordinates can be presented as follows:

xscreen = fx
xcamera

zcamera
+ cx (1)

Principal ray

Camera
coordinate
frame

Pinhole
aperture

Projection
center

Image
coordinate
frame

Image
plane

Fig. 1. Coordinate frames in the pinhole camera model.

yscreen = fy
ycamera

zcamera
+ cy (2)

Typically, the physical position of a point is known not in

the camera coordinate frame, but in the world coordinate frame.

The latter is related to the former by the respective rigid trans-

formation Tcamera
world . Having this in mind, it is possible to express

the pinhole camera model in matrix form as follows:
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xscreen · w
yscreen · w

w
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Or, for short:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
xscreen · w
yscreen · w

w

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =MTcamera
world

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
xworld

yworld

zworld

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (4)

The goals of camera calibration, therefore, is to determine

camera intrinsic parameters (embodied in camera matrix M)

and camera extrinsic parameters (embodied in rigid transfor-

mation Tcamera
world ).

2.2. Camera calibration

The general principle of camera calibration lies in finding the

correspondence between a sufficiently large number of known

3D points and their projections in the image [1]. The known

points are provided by the calibration object containing fea-

tures that have known coordinates and are easily identifiable

by vision algorithms. A calibration object may be different de-

pending on one of the following calibration techniques: [7]

1. 3D reference-object based calibration: a precisely manu-

factured 3D object (typically, consisting of three perpen-

dicular planes) is used [8,9].

2. 2D plane-based calibration: multiple views of the same

planar object are processed [10,11].

3. 1D line-based calibration: three or more collinear points

(e.g. string of balls) are used [7].

4. Self-calibration: no calibration object is required; intrinsic

and extrinsic parameters are recovered from feature points

correspondences after moving camera in a static scene.

Because manufacturing of a custom 3D object is costly,

planar objects make calibration process more flexible. Self-

calibration is reported to be less reliable comparing to the

object-based calibration techniques [10]. 1D line-based cali-

bration is only useful in specific use cases, such as computing

relative geometry in multi-camera systems [7]. This paper will

therefore focus on 2D plane-based calibration, and more specif-

ically the method proposed by Zhang [10] and Sturm et al. [11],

and implemented in OpenCV.

In OpenCV, the abovementioned method is organized as fol-

lows. The camera takes m images of the planar calibration ob-

ject from different views. For each view i, a homography matrix

Hi is computed based on two sets of points: (1) real-world coor-

dinates of the target points in the world coordinate frame, and
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(2) their projected pixel values determined with the appropri-

ate feature detection technique. Then, a closed-form solution to

equation 5 is found.

Vb = 0 (5)

where V represents 2m×6 matrix obtained from the homog-

raphy matrices and the constraints imposed by the orthonormal-

ity of the rotation vectors, and b is a 6 × 1 vector formed from

the expressions based on the unknown camera intrinsic param-

eters.

The camera matrix M derived from b, the extrinsic parame-

ters for each view Tcamera
world are computed having Hi and M.

After the closed-form solution to (5) is found, the camera

matrix M is refined by maximum likelihood estimation mini-

mizing the projection error.

In the OpenCV implementation, distortion coefficients are

computed using the method proposed in [12], and, based on

them, the values of M are reestimated [6].

2.3. Increasing accuracy of camera calibration

”International vocabulary of metrology” defines measure-

ment accuracy as ”closeness of agreement between a measured

quantity value and a true quantity value of a measurand” [13,

p. 21]. The document also notes that accuracy is not a quantity

expressed as a numerical value but an attribute of a measure-

ment: a measurement is said to be more accurate if it results in

a smaller measurement error. Accuracy, according to [14], is a

matter of calibration, and “can be determined only by repeat-

edly measuring a standard that has a known true value” [14, p.

294].

Measurement precision is defined as ”closeness of agree-

ment between indications or measured quantity values obtained

by replicate measurements on the same or similar objects un-

der specified conditions” [13, p. 22]. As [14] notes, precision

is “the ability of a measurement process to repeat its results”

[14, p. 292], i.e. the more precise the process, the less variabil-

ity around its mean it has. Typical measures of precision are

standard deviation, variance and coefficient of variation [13].

To ensure more accurate results of the calibration algorithm,

a number of requirements has to be met. The view of planar

calibration target shall not parallel in two or more calibration

images. For better estimation of the camera distortion, the cal-

ibration target shall appear in all four corners of the image and

cover as much exterior orientations as possible [1]. Also, ac-

cording to [10], the best results would be obtained providing

more than 10 calibration object views and orientation angle near

45◦.
In [15], three calibration techniques, developed by Tsai,

Heikkilä and Zhang, are evaluated with respect to factors in-

fluencing camera calibration accuracy. The methods of Tsai [8]

and Heikkilä [9] are examples of 3D reference-object based cal-

ibration, whereas Zhang’s method [10], also described above,

uses several views of a planar calibration object. Four mea-

sures of accuracy were assessed in [15] with respect to noise,

quantity of training data, and distortion model:

1. Error of distorted pixel coordinates.

2. Error of undistorted pixel coordinates.

3. Distance with respect to the optical ray.

4. Normalized calibration error.

As it is shown in [15], the plane-based calibration method is

most sensitive in terms of accuracy comparing to the 3D object-

based methods.

In [16], accuracy and robustness of Zhang’s calibration algo-

rithm was improved by removing outlier feature points in each

image used for calibration. A feature point is considered an

outlier if its projection error is unacceptably high. This may

be caused by image noise, uneven illumination, contamination

of the camera or the object surface, or performance of the fea-

ture detector implementation. The outliers are removed in two

stages: (1) threshold selection, excluding the points with the

largest reprojection error, and (2) RANSAC algorithm, finish-

ing the outliers removal.

In [17], the problem of inaccurate identification of feature

points during calibration process is tackled. Specifically, the

difficulty arises in distorted non-fronto parallel images. To re-

fine the feature points coordinates, the authors propose an it-

erative approach, in which the original images are undistorted

and unprojected onto fronto-parallel plane, and then the cam-

era parameters are recomputed. This process is repeated until

convergence.

In [18], the Zhang’s calibration method is supplemented

with additional optimization routine. The latter minimizes 3D

distance between the point of intersection of calibration plane

with optical ray and known feature point in camera coordinate

frame.

In [19], statistical and neural networks methods were applied

for increasing accuracy of distortion coefficient calibration.

3. Method

3.1. True intrinsics estimation

Different sets of images used for camera calibration lead to

different intrinsic parameters of the same camera. It is assumed

that this process has normal error distribution, and therefore, if

calibration is performed n times, it would be possible to recover

the natural mean of values of the camera intrinsic parameters.

These mean values are dubbed in this paper as true intrinsics.

Let I denote a large set of images with different calibration

object views, in all of which the features were correctly de-

tected. If the total size of I is N, then I = {im1, im2, ...imN}.
Let S denote a powerset of randomly drawn subsets of I,

each of size m. Thus, S = {s1, s2, ...sn} such that sk ∈ Im.

The maximal number of unique m-length combinations from

N objects, given m ≤ N, is computed as follows:

Cm
N =

N!

m!(N − m)!
(6)

With the increase of size N of set I, the number of possible

m-length combinations grows significantly. Therefore, if N is

sufficiently large, it is possible to generate the required number

of unique subsets from I.

As [10] notes, the most accurate calibration results are ob-

tained when m ≥ 10. Let m = 15 given the size of the large set

N = 20. In this case, Cm
N = 15504. If one takes n = 200, it is

possible to assure that each sk is unique within S .

The proposed algorithm for recovering true intrinsics is pre-

sented as follows:
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1. Acquire a set Ioriginal of original images of the calibration

pattern in different orientations.

2. In each image imk ∈ Ioriginal detect the calibration object

features. Those images where feature detection was suc-

cessful, belong to a new set I ⊆ Ioriginal having length N.

3. With given subset size m and number of unique subsets n,

check whether n ≤ Cm
N . If the latter expression holds true,

proceed. Otherwise, terminate.

4. Generate n subsets from I of size m: S = {s1, s2, ...sn}.
5. Perform camera calibration for each image set sk ∈ S .

6. Store calibration results in a data frame D, formed as a ma-

trix R
n×9 in which each row correspond to the camera in-

trinsic parameters ( fx, fy, cx, cy, k1, k2, p1, p2, k3) obtained

using sk.

7. For each distribution of p ∈ { fx, fy, cx, cy, k1, k2, p1, p2, k3}
(corresponding column in matrix D), compute mean μp

and standard deviation σp by maximum likelihood esti-

mation of a normal distribution.

8. From data frame D remove the rows in which value of at

least one parameter p ∈ { fx, fy, cx, cy, k1, k2, p1, p2, k3} lies

outside the range [μp−3σp, μp+3σp]. The new data frame

is denoted as D∗.
9. Reestimate mean μp and standard deviation σp given D∗.

10. Repeat the previous two steps until there is no rows

to exclude from D∗ (i.e. for each row k, for p ∈
{ fx, fy, cx, cy, k1, k2, p1, p2, k3}, the following expression

holds true: (d(k)
p ≥ μp − 3σp ∧ (d(k)

p ≤ μp − 3σp)).

3.2. Accuracy assessment

As it was noted above, the typical measure of camera cal-

ibration accuracy is a reprojection error, where, given intrin-

sic parameters fx, fy, cx, cy, k1, k2, p1, p2, k3 and known extrinsic

parameter of a view imk, the known object points are projected

onto the screen. Then, the root mean square (RMS) projection

error is computed between real pixel coordinates (xi, yi) and the

projected ones (xpro j
i , ypro j

i ).

Erepro jection =

√√
1

n f eatures

n f eatures∑
i=1

[(xi − xpro j
i )2 + (yi − ypro j

i )2] (7)

RMS reprojection error is also used in Zhang’s method [10]

to optimize the intrinsic parameters. However, for a given im-

age set sk, the minimized RMS errors would be different. In this

paper, the accuracy of the proposed algorithm is assessed com-

pared to the accuracy of all other sets of intrinsic parameters

(rows of data frame D).

Let intrT I are the camera intrinsic parameters obtained as

the result of the method proposed in 3.1, and intrk are the cam-

era intrinsic parameters obtained using the standard Zhang’s

method given the calibration imageset sk. The accuracy of

points reprojection shall be evaluated for each set of intrinsic

parameters in A = intrT I ∪ {intrk |sk ∈ S }.
For each intrinsics set intrk ∈ A, an RMS reprojection error

can be computed given image im. To assess intrinsics accu-

racy with respect to image sets with varied camera orientations,

mean RMS for each image set ought to be computed.

Table 1. Overview of data frame D and the estimated true intrinsics.

Parameter Minimal value Maximal value TI value

fx 3376.742 3423.129 3399.264

fy 3375.722 3423.217 3397.573

cx 543.549 583.711 565.067

cy 302.567 404.123 350.885

k1 -0.226 -0.061 -0.146

k2 -10.652 2.731 -2.803

p1 -0.007 0.000 -0.004

p2 -0.001 0.001 0.000

k3 -58.128 277.285 66.072

3.3. Experimental setup

The calibration experiment is conducted upon a Prosilica

GC1020, a 1024 × 768 resolution CCD camera with Gigabit

Ethernet interface with the attached Pentax C1814-M 16 mm

lens.

To calibrate the camera using Zhang’s algorithm, a chess-

board having 7 × 5 corners pattern, with square size 30.0 mm

is used.

Image acquisition is performed using Scorpion vision soft-

ware. The used calibration routine: OpenCV 3.0.0.

4. Results

To perform true intrinsics estimation, a calibration image set

Ioriginal is acquired. From I ⊆ Ioriginal, n = 200 subsets of size

m = 18 are generated and used for camera calibration with the

standard OpenCV routine. The obtained distributions of intrin-

sic parameters are presented in figures 2 – 10. Having the distri-

butions, true intrinsics estimation (3.1) is performed. On figures

2 – 10, a red vertical line corresponds to the obtained value of

an intrinsic parameter, and green vertical lines specify the re-

spective 6σ range [μp − 3σp, μp − 3σp].

Table 1 presents the minimal and maximal value of each in-

trinsic parameter given the original data frame D, and the cor-

responding true intrinsic value.

To assess accuracy of the camera intrinsic parameters in A =
intrT I ∪ {intrk |sk ∈ S }, a test image set I(test)

original is used, acquired

using the same camera and the same calibration object. From

Itest ⊆ I(test)
original, n(test) = 50 subsets of size m(test) = 25 are gener-

ated, forming set S (test). Furthermore, for (intri, s j) ∈ A×S (test),

Fig. 2. fx distribution histogram.
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