
Artificial Intelligence 143 (2003) 189–217

www.elsevier.com/locate/artint

Problem difficulty for tabu search in
job-shop scheduling ✩

Jean-Paul Watson a,∗,1, J. Christopher Beck b,2, Adele E. Howe a,1,
L. Darrell Whitley a,1

a Department of Computer Science, Colorado State University, Fort Collins, CO 80523-1873, USA
b Cork Constraint Computation Centre, University College Cork, Cork, Ireland

Received 12 February 2002

Abstract

Tabu search algorithms are among the most effective approaches for solving the job-shop
scheduling problem (JSP). Yet, we have little understanding of why these algorithms work so well,
and under what conditions. We develop a model of problem difficulty for tabu search in the JSP,
borrowing from similar models developed for SAT and other NP-complete problems. We show that
the mean distance between random local optima and the nearest optimal solution is highly correlated
with the cost of locating optimal solutions to typical, random JSPs. Additionally, this model accounts
for the cost of locating sub-optimal solutions, and provides an explanation for differences in the
relative difficulty of square versus rectangular JSPs. We also identify two important limitations of
our model. First, model accuracy is inversely correlated with problem difficulty, and is exceptionally
poor for rare, very high-cost problem instances. Second, the model is significantly less accurate for
structured, non-random JSPs. Our results are also likely to be useful in future research on difficulty
models of local search in SAT, as local search cost in both SAT and the JSP is largely dictated by
the same search space features. Similarly, our research represents the first attempt to quantitatively
model the cost of tabu search for any NP-complete problem, and may possibly be leveraged in an
effort to understand tabu search in problems other than job-shop scheduling.
 2002 Elsevier Science B.V. All rights reserved.

✩ This is an extended version of the paper presented at the 6th European Conference on Planning, Toledo,
Spain, 2001.

* Corresponding author.
E-mail address: watsonj@cs.colostate.edu (J.-P. Watson).

1 The authors from Colorado State University were sponsored by the Air Force Office of Scientific Research,
Air Force Materiel Command, USAF, under grant number F49620-00-1-0144. The US Government is authorized
to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon.

2 This work was performed while the second author was employed at ILOG, SA.

0004-3702/02/$ – see front matter 2002 Elsevier Science B.V. All rights reserved.
PII: S0004-3702(02) 00 36 3- 6

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82203164?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

190 J.-P. Watson et al. / Artificial Intelligence 143 (2003) 189–217

Keywords: Problem difficulty; Job-shop scheduling; Local search; Tabu search

1. Introduction

The job-shop scheduling problem (JSP) is widely acknowledged as one of the
most difficult NP-complete problems encountered in practice. Nearly all well-known
optimization and approximation techniques have been applied to the JSP, including
linear programming, Lagrangian relaxation, branch-and-bound, constraint satisfaction,
local search, and even neural networks and expert systems [19]. Most recent comparative
studies of techniques for solving the JSP conclude that local search algorithms provide
the best overall performance on the set of widely-available benchmark problems; for
example, see the recent surveys by Blażewicz et al. [6] or Jain and Meeran [19]. Within
the class of local search algorithms, the strongest performers are typically derivatives of
tabu search [6,19,34], the sole exception being the guided local search algorithm of Balas
and Vazacopoulos [2]. The power of tabu search for the JSP is perhaps best illustrated by
considering the computational effort required to locate optimal solutions to a notoriously
difficult benchmark problem, Fisher and Thompson’s infamous 10 × 10 instance [12]:
Nowicki and Smutnicki’s algorithm [22] requires only 30 seconds on a now-dated personal
computer, while Chambers and Barnes’ algorithm [9] requires less than 4 seconds on a
moderately powerful workstation. In contrast, a number of algorithms for the JSP still
have significant difficulty in finding optimal solutions to this problem instance.

Despite the relative simplicity and excellent performance of tabu search algorithms
for the JSP, very little is known about why these algorithms work so well, and under
what conditions. For example, we currently have no answers to fundamental, related
questions such as “Why is one problem instance more difficult than another?” and “What
features of the search space influence search cost?”. No published research has presented
problem difficulty models of tabu search algorithms for the JSP. Further, only one group
of researchers, Mattfeld et al. [20], have analyzed the link between problem difficulty and
local search for the JSP in general.

In contrast to the JSP, problem difficulty models do exist for several other well-known
NP-complete problems, such as the Traveling Salesman Problem (TSP) and the Boolean
Satisfiability Problem (SAT). Models of local search cost in SAT have received significant
recent attention, and are able to account for much of the variability in problem difficulty
observed for a particular class of random problem instances commonly known as Random
3-SAT [10,24,27]. The SAT models relate individual features of the search space to search
cost, and model accuracy is generally quantified as the r2 value of the corresponding linear
regression model. We refer to such models as static cost models of local search; the goal of
such models is to account for a significant proportion (ideally all) of the variability in local
search cost observed for a set of problem instances. The ‘static’ modifier derives from the
fact these models are largely independent of particular algorithm dynamics, relying instead
on static features of the search space.

Static cost models of local search in SAT are based on three search space features: the
number of optimal solutions, the backbone size, and the mean distance between random

J.-P. Watson et al. / Artificial Intelligence 143 (2003) 189–217 191

near-optimal solutions (i.e., those with only a few unsatisfied clauses) and the nearest
optimal solution. Clark et al. [10] introduced the first static cost model for SAT, and
demonstrated that the logarithm of the number of optimal (i.e., satisfying) solutions is
highly and negatively correlated with the logarithm of search cost. In SAT, the backbone
of a problem instance is the set of Boolean variables that have the same truth value in all
optimal solutions. Both Parkes [24] and Singer et al. [27] demonstrated that the size of
the problem backbone is inversely proportional to search cost. Most recently, Singer et al.
[27] demonstrated a very strong positive correlation between the logarithm of local search
cost and the mean distance between random near-optimal solutions and the nearest optimal
solution.

Static cost models for problems other than SAT have received relatively little attention,
the sole exception being the related and more general Constraint Satisfaction Problem
(CSP) [10]. However, the factors underlying the SAT models are very intuitive, suggesting
the potential for their applicability to other NP-complete problems, including the JSP;
for example, most researchers would be surprised if the number of optimal solutions did
not influence the cost of local search. However, the search spaces of the JSP and SAT
are thought to be qualitatively dissimilar, and local search algorithms for SAT differ in
many ways from tabu search algorithms for the JSP: e.g., local search algorithms for SAT
have a strong stochastic component, while tabu search algorithms for the JSP are largely
deterministic. Consequently, it is unclear a priori whether the SAT models can be leveraged
in an effort to understand problem difficulty for tabu search in the JSP.

In this paper, we develop a static cost model of tabu search in the JSP, drawing heavily
from existing static cost models of local search in SAT. The resulting model accounts for a
significant proportion of the variability in the cost of finding optimal solutions to random
JSPs with tabu search. We then use the model to provide explanations for two well-known
but poorly-understood qualitative observations regarding problem difficulty in the JSP, and
identify two important limitations of the model. More specifically, our research makes the
following contributions:

(1) We show that analogs of those search space features known to influence local search
cost in SAT, specifically the number of optimal solutions (|optsols|) and the mean
distance between random local optima and the nearest optimal solution (dlopt-opt),
also influence the cost of locating optimal solutions using tabu search in the JSP.
Further, the strength of the influence of these two features is nearly identical in both
problems. As in SAT, we find that dlopt-opt has a much stronger influence on search cost
than |optsols|, and ultimately accounts for a significant proportion of the variability
in the cost of finding optimal solutions to random JSPs. This result was somewhat
unexpected given differences in the search spaces and local search algorithms for the
JSP and SAT.

(2) Our experiments indicate that for random JSPs with moderate to large backbones, the
correlation between backbone size and the number of optimal solutions is extremely
high. As a direct consequence, for these problems, backbone size provides no more
information than the number of optimal solutions, and vice versa: one of the two
features is necessarily redundant. Given the recent surge of interest in the link between

192 J.-P. Watson et al. / Artificial Intelligence 143 (2003) 189–217

backbone size and problem difficulty, the nearly one-to-one correspondence between
these two features was completely unanticipated.

(3) In contrast to Singer et al. [27], we find no interaction effect between the backbone size
and dlopt-opt. Further, we find that more complex static cost models based on multiple
search space features, or those that consider interaction effects between search space
features, are no more accurate than the simple model based solely on dlopt-opt.

(4) A simple extension of the dlopt-opt model accounts for most of the variability in the
cost of finding sub-optimal solutions to the JSP. This extension is the first quantitative
model of the cost of locating sub-optimal solutions to any NP-complete problem, and
provides an explanation for the existence of ‘cliffs’ in the cost of finding sub-optimal
solutions of varying quality (e.g., see [31]).

(5) For some time, researchers have observed that ‘square’ JSPs are generally more
difficult than ‘rectangular’ JSPs. We show that this phenomenon is likely due to
differences in the distribution of dlopt-opt for the two problem types. For square JSPs,
the proportion of problem instances with large values of dlopt-opt is substantial, while
most rectangular JSPs have very small values of dlopt-opt.

(6) We identify two important limitations of the dlopt-opt model. First, we show that model
accuracy is inversely proportional to problem difficulty, and is exceptionally poor for
very high-cost problem instances. Second, we demonstrate that the dlopt-opt model is
significantly less accurate when we consider more structured JSPs, specifically those
with workflow partitions of the job routing orders.

Because local search cost in both the JSP and SAT is influenced by the same search
space features, our results also identify likely deficiencies in the static cost models of
local search in SAT. Specifically, we conjecture that the following also hold in SAT: (1)
the high correlation between backbone size and the number of optimal solutions, (2) the
extreme inaccuracies of the dlopt-opt model on very high-cost problem instances, and (3)
the degradation in the accuracy of the dlopt-opt model for structured problem instances.

Although tabu search algorithms have been successfully applied to a number of NP-
complete problems, very little is known in general about which search space features
influence problem difficulty, and to what degree. Our research provides a preliminary
answer to this question for one particular problem, the JSP, and only for a relatively simple
form of tabu search. Consequently, our results may be useful to researchers developing
problem difficulty models of tabu search in NP-complete problems other than the JSP, or
for models of more advanced tabu search algorithms for the JSP.

In the following section, we briefly review prior research on models of problem
difficulty and identify the subset of models that form the basis of our analysis. In Section 3,
we define the job-shop scheduling problem and introduce the tabu search algorithm used
in our experiments; the section then concludes with a discussion of prior work on problem
difficulty for local search in the JSP. In Section 4, we develop our static cost model of tabu
search in the JSP. Section 5 details two important applications of the resulting model:
accounting for the cost of locating sub-optimal solutions to the JSP, and providing an
explanation for differences in the relative difficulty of square versus rectangular JSPs. In
Section 6, we expose two important limitations of the model, both of which suggest new

J.-P. Watson et al. / Artificial Intelligence 143 (2003) 189–217 193

directions in research on problem difficulty models. Finally, we conclude by discussing the
implications of our results in Section 7.

2. Models of problem difficulty

One key lesson from the research into models of problem difficulty is the often
‘universal’ nature of these models, in that they typically apply to a wide range of NP-
complete problems. For example, phase transitions have been observed in problems
ranging SAT to Graph K-colorability [17]. Similarly, the distribution of local optima
in many problems exhibits a ‘Big-Valley’ structure, for example in both the Traveling
Salesman and Graph Bi-Partitioning Problems [8]. Given the apparent pervasiveness of
these phenomena, the obvious first step in our research is to determine whether existing
models can be extended to the JSP. However, before investigating individual models, we
first consider the following questions:

• What type of information should our model provide?
• What existing models provide this type of information?
• What are our success criteria?

Our immediate goal is to develop an understanding of existing tabu search algorithms
for the JSP; subsequently, we intend to leverage such knowledge to improve the
performance of existing algorithms. A detailed understanding of how an algorithm interacts
with the search space is clearly required to propose enhancements in a principled manner.
Consequently, our goal is to produce quantitative models that relate search space features
to search cost. We refer to such models as static cost models; the ‘static’ modifier derives
from the fact that algorithm dynamics are not explicitly considered. An accurate static cost
model should account for a significant proportion of the variability in difficulty observed
for a set of problem instances.

Much of the research on models of problem difficulty does not share our goal of
relating search space features to search cost, and as a consequence such models generally
fail to account for much, if any, of the variability in problem difficulty. Within the AI
community, phase transitions [17] are the dominant model of problem difficulty. Phase
transition models partition the ‘universe’ of problem instances into a large number of
subclasses, and are able to account for mean differences in subclass difficulty. However, the
variability within a subclass remains unaccounted for, and is typically largest in the most
difficult subclasses (i.e., those near the transition region). For example, the cost of solving
instances in the most difficult subclass of 100-variable Random 3-SAT instances varies
over 5 orders of magnitude [10]. Outside of AI, the most widely studied problem difficulty
models are correlation length and the Big-Valley local optima distribution. A correlation
length model measures the ‘smoothness’ of a search space by analyzing the autocorrelation
of a time-series of solution quality generated by a random walk. However, the correlation
length for a large number of problems is strictly a function of the problem size (e.g.,
the number of cities in the Traveling Salesman Problem) [25]. Consequently, correlation
length models fail to account for any of the often large variance in problem difficulty

194 J.-P. Watson et al. / Artificial Intelligence 143 (2003) 189–217

observed for an ensemble of fixed-size problem instances. Similarly, Big-Valley local
optima distributions are found in both easy and hard problems; the model generally fails to
account for differences in relative difficulty for individual problem instances.

To date, researchers have only produced static cost models of local search for SAT
and the closely related Constraint Satisfaction Problem. Static cost models of local search
in SAT are based on three search space features: the number of optimal solutions, the
backbone size, and the mean distance between random near-optimal solutions and the
nearest optimal solution. In Section 4, we define each of these features, discuss the
properties of existing static cost models that are based on these features, and analyze the
applicability of these features to static cost models of tabu search in the JSP.

As we discuss in Section 4, the accuracy of a static cost model can be quantified
by the r2 value of the corresponding linear or multiple regression model. We can also
quantify worst-case model accuracy by analyzing the magnitude of the residuals under the
regression model. Ultimately, our goal is to produce a static cost model with (1) r2 � 0.8
and (2) the actual search cost varying no more than 1/2 an order of magnitude from the
predicted search cost. Although somewhat arbitrary, any static cost model satisfying these
two criteria would conclusively identify those search space features that largely dictate the
cost of tabu search in the JSP. Further, more stringent criteria are likely to leave insufficient
room for measurement and/or sampling error. Finally, as we observe in Section 4, the
task of producing static cost models satisfying the two proposed criteria is sufficiently
challenging.

3. The job-shop scheduling problem, tabu search, and problem difficulty

We now introduce the job-shop scheduling problem and detail the specific tabu search
algorithm that forms the basis of our analysis. We then briefly review prior research on
problem difficulty and job-shop scheduling.

3.1. The job-shop scheduling problem

We consider the well-known n × m static job-shop scheduling problem (JSP), in which
n jobs must be processed exactly once on each of m machines. Each job i (1 � i � n) is
routed through each of the m machines in some pre-defined order πi , where πi(j) denotes
the j th machine (1 � j � m) in the routing order. The processing of a job on a machine
is called an operation, and the processing of job i on machine πi(j) is denoted by oij . An
operation oij must be processed on machine πi(j) for an integral duration of τij > 0. Once
processing is initiated, an operation cannot be pre-empted, and concurrency is not allowed.
Finally, for 2 � j � m, oij cannot begin processing until oij−1 has completed processing.

A solution s to an instance of the n × m JSP specifies a processing order for
all of the jobs on each machine, and implicitly specifies an earliest start time est(x)

and earliest completion time ect(x) for each operation x [33]. Although a number
of objective functions have been defined for the JSP, most research addresses the
problem of makespan minimization [6]. The makespan Cmax(s) of a solution s is
the maximum earliest completion time of the last operation of any job: Cmax(s) =

J.-P. Watson et al. / Artificial Intelligence 143 (2003) 189–217 195

max(ect(o1,m), ect(o2,m), . . . , ect(on,m)). We denote the optimal (minimal) makespan of
a problem instance by C∗

max. The decision problem of finding a solution to the JSP with a
makespan less than or equal to some constant L is known to be NP-complete for m � 2 and
n � 3 [14]. Further, the JSP is widely regarded as one of the most difficult NP-complete
problems encountered in practice [6] [19].

As we discuss in Section 3.3, extraction and manipulation of the critical paths of a
solution s is a key component of tabu search algorithms for the makespan minimization
form of the JSP. A critical path of a solution s consists of a sequence of operations
o1, o2, . . . , ol such that (1) est(o1) = 0, (2) ect(ol) = Cmax(s), and (3) est(oi) = ect(oi−1)

for 1 � i � l, where ect(o0) = 0 by convention. The operations oi are known as critical
operations. A critical block consists of a contiguous sub-sequence of operations on a
critical path that are processed on the same machine. A solution s may possess more than
one critical path. If multiple critical paths exist, they may share common sub-sequences of
critical operations.

3.2. Generating problem instances

An instance of the n × m JSP is uniquely defined by the set of nm operation durations
τij and the n job routing orders πi (1 � i � n and 1 � j � m). Typically, the τij are
independently and uniformly sampled from a fixed-width interval, such as [1,99] (e.g.,
see Taillard [32]). Most often, the job routing orders πi are produced by generating
independent random permutations of the integers [1 . . .m]. We refer to problem instances
in which both the τij and πi are independently and uniformly sampled as general JSPs.

Well-known specializations of the JSP impose non-random structure on the job routing
orders. One common specialization organizes the job routing orders into workflow
partitions: the set of machines is divided into two equal-sized partitions containing
machines 1 through m/2 and m/2 + 1 through m, respectively, and every job must be
processed on all machines in the first partition before any machine in the second partition.
Within the partitions, the job routing orders are produced by generating independent
random permutations of the integers [1 . . .m/2] and [m/2+1 . . .m], respectively. We refer
to problem instances resulting from this process as workflow JSPs, which we analyze in
Section 6.2.

3.3. Algorithm description

The analyses presented in Sections 4–6 are based on a tabu search algorithm for the
JSP introduced by Taillard [33], which we denote TSTaillard. We note that TSTaillard is not
the best available tabu search algorithm for the JSP; the tabu search algorithms of Nowicki
and Smutnicki [22] and Barnes and Chambers [3,9] provide stronger overall performance.
Rather, we have selected TSTaillard for three reasons. First, TSTaillard provides reasonable
performance on the set of widely-used benchmark problems, and out-performs many
other local and constructive search algorithms for the JSP. Second, state-of-the-art tabu
search algorithms for the JSP are somewhat more complex than TSTaillard, complicating
analysis; the salient differences are in choice of move operator, the use of re-intensification
mechanisms around high-quality solutions, and the method for constructing the initial

196 J.-P. Watson et al. / Artificial Intelligence 143 (2003) 189–217

solution. Instead of tackling the most complex algorithms first, our goal is to develop a
static cost model for a straightforward implementation of tabu search in the JSP, and then
to systematically assess the influence of more complex algorithmic features on the static
cost model of the basic algorithm. Third, as we now discuss, certain features of TSTaillard

make it particularly amenable to analysis, especially in comparison to some of the more
advanced tabu search algorithms for the JSP.

At the core of any local search algorithm is a move operator, which defines the set
of solutions that can be reached in a single step from the current solution; elements of
this set are called neighbors of the current solution. In the JSP, neighbors are generally
produced by re-ordering the sequence of operations on a critical path; only through such
re-ordering is it possible to produce a neighbor with a makespan better than that of the
current solution. The first successful move operator for the JSP was introduced by van
Laarhoven et al. [35], and is often denoted by N1. The neighborhood of a solution s

under the N1 move operator consists of the set of solutions obtained by swapping the
order of a single pair of adjacent operations on the same critical block in s. An important
property of N1 is that it induces search spaces that are provably connected, in that it is
always possible to move from an arbitrary solution to a global optimum. Consequently, it
is possible to construct a local search algorithm based on N1 that will eventually locate
an optimal solution, given sufficiently large run-times. Hoos [18] refers to algorithms with
this property as being probabilistically approximately complete, or PAC: the probability
of the algorithm locating an optimal solution approaches 1 as the run-time approaches
∞. A primary reason we consider TSTaillard in our analysis is that it is based on the N1
operator. Further, TSTaillard is, at least empirically, PAC: in generating the results presented
in Sections 4–6, no trial of TSTaillard failed to locate an optimal solution. In contrast, some
other tabu search algorithms for the JSP employ move operators that induce disconnected
search spaces, and are consequently not PAC: e.g., Nowicki and Smutnicki’s tabu search
algorithm. Our primary goal is to model the cost of locating optimal solutions to the JSP,
and as we discuss later in this section, the measurement of this cost is straightforward only
if an algorithm is PAC.

The static cost models we develop in Section 4 are based in part on search space features
that involve distances between pairs of solutions: e.g., the average distance between
local optima or the mean distance between random local optima and the nearest optimal
solution. Ideally, the distance between two solutions is defined as the minimum number
of applications of a particular move operator that are required to transform one solution
into the other. Unfortunately, computation of this measure is generally intractable, and
operator-independent measures are typically substituted. The most widely used operator-
independent distance measure in the JSP is defined as follows [20]. Let precedesijk(s) be
a Boolean-valued function indicating whether job i is processed before job j on machine
k in a solution s. The distance D(s1, s2) between two solutions s1 and s2 to an n × m JSP
instance is then given by:

m∑

i=1

n−1∑

j=1

n∑

k=j+1

precedesijk(s1) ⊕ precedesijk(s2) (1)

J.-P. Watson et al. / Artificial Intelligence 143 (2003) 189–217 197

where the symbol ⊕ denotes the Boolean XOR operator. We denote the normalized
distance 2D(s1, s2)/mn(n−1) by �D(s1, s2); clearly, 0 � �D(s1, s2) � 1. Another important
property of the N1 operator is the fact that Eq. (1) provides a relatively tight lower bound
on the number of applications of the N1 move operator to transform solution s1 into
solution s2.

TSTaillard is a relatively ‘vanilla’ implementation of tabu search [16]. As with most tabu
search algorithms for the JSP, recently swapped pairs of jobs are prevented from being re-
established for a particular duration, called the tabu tenure. In each iteration of TSTaillard,
all N1 neighbors are generated. The neighbors are then classified as tabu (the pair of jobs
was recently swapped) or non-tabu, and the best non-tabu move is taken; ties are broken
randomly. All runs are initiated from randomly generated local optima, produced using a
standard steepest-descent algorithm initiated from a random ‘semi-active’ solution [33].
The only long-term memory mechanism is a simple aspiration criterion, which over-rides
the tabu status of any move that results in a solution that is better than any previously
encountered during the current run. As Taillard indicates [33, p. 100], long-term memory
is only necessary for problems that require a very large (> 1 million) number of iterations,
which is not the case for the test problems we consider. The only parameters of TSTaillard

involve computation of the tabu tenure, which is uniformly sampled from the interval
[6,14] every 15 iterations. Empirically, TSTaillard fails to be PAC without such a dynamic
tabu tenure, or if the tabu tenure is sampled from a smaller interval (e.g., [5,10]).

The cost required to solve a given problem instance using TSTaillard, or any PAC algo-
rithm, is naturally defined as the number of iterations required to locate an optimal solution.
However, the number of iterations is stochastic (with an approximately exponential distri-
bution [33]), due to both the randomly generated initial solution and random tie-breaking
when more than one ‘best’ non-tabu move is available. Consequently, we define the local
search cost for a problem instance as the median number of iterations required to locate an
optimal solution over 5000 independent runs, which we denote costmed . With 5000 inde-
pendent trials, the estimate of costmed is relatively stable.

3.4. Prior research on problem difficulty in the JSP

A number of qualitative observations regarding the relative difficulty of various types
of JSPs have emerged over time [19]:

(1) For both general and workflow JSPs, ‘square’ (n/m ≈ 1) problems are generally more
difficult than ‘rectangular’ (n/m � 1) problems.

(2) Given fixed n and m, workflow JSPs are generally more difficult than general JSPs.
(3) The relative difficulty of particular problem instances is largely algorithm independent.

Clearly, any model of problem difficulty for the JSP needs at least to be consistent with,
and should ultimately provide explanations for, each of these three observations.

Large differences in the difficulty of square versus rectangular JSPs are easily illustrated
by considering the status of the problem instances in Taillard’s JSP benchmark suite,
which is available from the OR-Library [4]. Specifically, the optimal makespans of all
the relatively small 20 ×20 and 30 ×20 instances are currently unknown, while optimality

198 J.-P. Watson et al. / Artificial Intelligence 143 (2003) 189–217

has been established for all but two of the larger 50×20 and 100×20 instances, despite the
astronomical difference in the sizes of the search spaces. Taillard [33] studied the impact
of changes in the ratio of n/m on search cost for TSTaillard. His experiments demonstrated
that for n/m � 6, the growth in the cost of locating optimal solutions grows polynomially
with increases in n and m, despite an exponential growth in the size of the search
spaces. In contrast, for problems with n/m ≈ 1, the search cost grows exponentially with
increases in n and m, as expected given the proportionate growth in the size of the search
space. Although intuitive explanations have been proposed for why the growth in problem
difficulty changes with increases in n/m, a complete understanding of this phenomenon
remains elusive. No research has analyzed the changes in search space features as n/m is
varied, which is of particular interest when developing static cost models of local search.

The second observation stems in part from computational experiments on two sets
of 50 × 10 general and workflow JSPs introduced by Storer et al. [30]: for a number
of algorithms, it is significantly more difficult to find high-quality solutions to the
workflow instances. Further, the optimal makespans of all the general instances are known,
while optimality has only been established for one of the workflow instances. The sole
quantitative study of problem difficulty in the JSP is due to Mattfeld et al. [20], and is
largely devoted to providing an explanation for the differences in relative difficulty of
general and workflow JSPs. Mattfeld et al.’s study also provides a possible explanation
for why genetic algorithms generally perform poorly on the JSP. Mattfeld et al. identified
significant differences between the search spaces of Storer et al.’s general and workflow
instances, specifically by demonstrating that the extension of the search space (as measured
by the average distance between random local optima) is larger in workflow JSPs than in
general JSPs. These differences suggest a cause for the relative differences in problem
difficulty. Similar differences were observed for two other quantitative search space
measures: entropy and correlation length.

Finally, the third observation results from the fact that easy (difficult) benchmark
problem instances are generally easy (difficult) for all search algorithms, including those
based on branch-and-bound, constraint programming, and local search. A causal basis for
this phenomenon is lacking, although we hypothesize an explanation for the class of local
search algorithms in Section 4.5.

4. Modeling the cost of locating optimal solutions

We now introduce and analyze several static models of the cost required by TSTaillard

to find optimal solutions to general JSPs. Each model is based on an individual feature of
the search space: the number of optimal solutions, the backbone size, the average distance
between local optima, or the mean distance between random local optima and the nearest
optimal solution. Similar static cost models have been developed for other NP-complete
problems, primarily SAT, and we analyze the applicability of these models to tabu search
in the JSP. We then consider models based on aggregations of these features, specifically
analyzing the impact of additive and interaction effects.

For a number of reasons, the extension of static cost models of local search in SAT to
tabu search in the JSP is unclear a priori. For example, the SAT search space is dominated

J.-P. Watson et al. / Artificial Intelligence 143 (2003) 189–217 199

by plateaus of equally-fit ‘quasi-solutions’, each containing an identical, small number
of unsatisfied clauses. The main challenge for local search is to either find an exit from
a plateau to an improving quasi-solution, or to escape the plateau by accepting a short
sequence of dis-improving moves [13]. In contrast, the JSP search space is dominated
by local optima with variable-sized and variable-depth attractor basins, which local search
algorithms must either escape or avoid. Further, local search algorithms for SAT are largely
stochastic, while tabu search algorithms such as TSTaillard are largely deterministic. On the
other hand, the features underlying the SAT models are very intuitive, and would appear to
influence the difficulty of local search in a wide range of NP-complete problems.

In this section, we demonstrate that despite significant differences in both search space
topologies and local search algorithms, a straightforward adaptation of a static cost model
for SAT yields a surprisingly accurate model of the cost required by TST aillard to locate
optimal solutions to general JSPs. Specifically, we show that (1) the mean distance between
random local optima and the nearest optimal solution accounts for a substantial proportion
of the variability in local search cost, (2) backbone size, the number of optimal solutions,
and the average distance between local optima account for far less of the variability in
search cost, (3) simultaneous consideration of multiple search space features, through
the inclusion of either additive or interaction terms, does not result in substantially more
accurate models, and (4) the correlation between the number of optimal solutions and the
backbone size is extremely high, with one feature providing no more information than the
other.

The material presented in this section is a significant extension of an analysis we
previously reported [36]. In our prior work, we directly replicated the methodology
introduced by Singer et al. [27], and demonstrated that the static cost models for SAT
also apply to TSTaillard for the general JSP. In this section, instead of controlling for various
search space features a priori, we adopt a different methodology. Instead, we explicitly
focus on model accuracy for ‘typical’ instances of the general JSP. The new methodology
also enables our new insights concerning the existence of interactions between the various
search space features.

Finally, as discussed in Section 2, we quantify the accuracy of each static cost model
using linear or multiple regression techniques. Unless otherwise noted, the assumptions
concerning model errors (e.g., the errors are normally distributed and homogeneous)
are approximately satisfied, and the F -statistics are significant at p < 0.0001. When
the regression assumptions are not satisfied, we additionally report the non-parametric
Spearman’s rank correlation coefficient.

4.1. Test problems

For a number of reasons, problem difficulty models are typically generated by analyzing
relatively small problem instances. We develop our static cost models using 6×4 and 6×6
general JSPs; we selected these two groups because they represent rectangular and square
JSPs, respectively (see Section 3.4). For both groups, we generated 1000 instances using
the procedures discussed in Section 3.2. Three of the four static cost models we analyze
require computation of all optimal solutions to a problem instance, which can number in
the tens of millions even for 6×4 and 6×6 general JSPs. Further, costmed for each problem

200 J.-P. Watson et al. / Artificial Intelligence 143 (2003) 189–217

instance is defined as the median search cost over 5000 independent runs of TSTaillard,
which requires considerable CPU time for even small JSPs. Consequently, extensive
analysis of static cost models for larger general JSPs (e.g., 10×10) is currently impractical.
For each of the 2000 problem instances, we used an independent implementation of Beck
and Fox’s [5] constraint-directed scheduling algorithm to compute the optimal makespan
and to enumerate the set of optimal solutions. Finally, we note that the distribution of
log10(costmed) is approximately normal for both problem groups, with any deviation due
to the presence of a few very high-cost problem instances.

4.2. The number of optimal solutions

The first static cost model we consider is based on the number of optimal solutions
to a problem instance, which we denote |optsols|. Intuitively, a decrease in the number of
optimal solutions should yield an increase in local search cost. This observation formed the
basis of the first static cost model of local search in both SAT and the CSP, first introduced
by Clark et al. [10] (and later refined by Singer et al. [27]). Clark et al. demonstrated a
relatively strong negative log10–log10 correlation between the number of optimal solutions
and search cost for three local search algorithms, with r-values ranging anywhere from
−0.77 to −0.91. However, the model failed to account for the large cost variance observed
for problems with small numbers of optimal solutions, where model residuals varied over
three or more orders of magnitude. We have also observed very similar behavior for
TSTaillard in the general JSP [36].

We show scatter-plots of log10(|optsols|) versus log10(costmed) for 6 × 4 and 6 × 6
general JSPs in Fig. 1. The r2 values for the corresponding regression models are 0.5365
and 0.2223, respectively. Although the model residuals are clearly heterogeneous [10,36],
the results are consistent with the computed rank correlation coefficients (−0.7277 and
−0.4661, respectively). In comparing the results for the 6 × 4 and 6 × 6 general JSPs,
it is important to note the large difference in size of the search spaces: 260 versus 290,
respectively. Consequently, although the range of log10(|optsols|) is nearly identical in

Fig. 1. Scatter-plots of log10(|optsols|) versus log10(costmed) for 6×4 (left figure) and 6×6 (right figure) general
JSPs; the least-squares fit lines are super-imposed. The r2 values for the corresponding regression models are
0.5307 and 0.2231, respectively.

J.-P. Watson et al. / Artificial Intelligence 143 (2003) 189–217 201

both cases, the relative number of optimal solutions is, on average, much smaller for the
6 × 6 general JSP. Given that the accuracy of the |optsols| model is poor for instances with
small numbers of optimal solutions, the discrepancy between the r2 values of the 6 × 4
and 6 × 6 general JSPs can be explained by noting that the frequency of instances with
relatively small numbers of optimal solutions is larger in square general JSPs [36].

The results presented in Fig. 1 indicate that for typical general JSPs, a static cost model
based on |optsols| is relatively inaccurate, accounting for roughly 50% of the variance in
search cost in the best case. In the general JSP, as n/m → ∞, the frequency of problem
instances with a large number of optimal solutions increases. By extrapolation, we would
then expect the accuracy of the |optsols| model to increase as n/m → ∞. In contrast, the
accuracy of the model appears worst for the most difficult class of general JSP (i.e., those
with n/m ≈ 1.0), with model residuals varying over 2 to 3 orders of magnitude.

4.3. Backbone size

Recently, researchers have introduced several problem difficulty models based on the
concept of a backbone. Informally, the backbone of a problem instance is the set of solution
attributes that have identical values in all optimal solutions to the instance. For example, in
SAT the backbone is the set of Boolean variables whose value is identical in all satisfying
assignments; in the TSP, the backbone consists of the set of edges common to all optimal
tours. The recent interest in backbones stems largely from the discovery that backbone
size (as measured by the fraction of solution attributes appearing in the backbone) is
correlated with search cost in SAT (e.g., see Monasson et al. [21]). Specifically, Parkes
[24] showed that large-backboned SAT instances begin to appear in large quantities in
the critical region of the phase transition (for a more detailed investigation into the
relationship between backbone size and the SAT phase transition, see Singer et al. [27]
or Singer [26]). Similarly, Achlioptas et al. [1] demonstrated a rapid transition from
small to large-backboned instances in the phase transition region. While researchers have
demonstrated a correlation between backbone size and problem difficulty in SAT, the
degree to which backbone size accounts for the variability in problem difficulty remains
largely unknown.

Only Slaney and Walsh [28] have studied the influence of backbone size on search cost
in problems other than SAT. Focusing on constructive search algorithms, they analyzed
the cost of both finding optimal solutions and proving optimality for a number of NP-
complete problems, including the TSP and the number partitioning problem. For these
two problems, Slaney and Walsh report a weak-to-moderate correlation between backbone
size and the cost of finding an optimal solution (0.138 to 0.388). No studies to date have
directly quantified the correlation between backbone size and problem difficulty for local
search algorithms.

The definition of a backbone clearly depends on how solutions are represented.
The most common solution encoding employed by local search algorithms for the JSP,
including TSTaillard, is the disjunctive graph [7]. In the disjunctive graph representation,
there are

(
n
2

)
Boolean ‘order’ variables for each of the m machines, where the variables

represent precedence relations between distinct pairs of jobs on the same machine.
Consequently, we define the backbone of a JSP as the set of Boolean ordering variables

202 J.-P. Watson et al. / Artificial Intelligence 143 (2003) 189–217

Fig. 2. Scatter-plots of |backbone|2 versus log10(costmed) for 6 × 4 (left figure) and 6 × 6 (right figure) general
JSPs; the least-squares fit lines are super-imposed. The r2 values for the corresponding regression models are
0.5307 and 0.2231, respectively.

that have the same value in all optimal solutions. We define the backbone size in the JSP
as the fraction of the possible m

(
n
2

)
order variables that are fixed to the same value in all

optimal solutions; we denote the resulting value by |backbone|.
Following Slaney and Walsh, our initial analysis considered the influence of

|backbone| on log10(costmed). We observed a significant quadratic component in the rela-
tionship, and the linear term in the quadratic regression model is statistically insignificant.
We show scatter-plots of |backbone|2 versus log10(costmed) for 6×4 and 6×6 general JSPs
in Fig. 2. The r2 values for the corresponding regression models are 0.5307 and 0.2331,
respectively. As with the |optsols|, the model errors are heterogeneous, although the results
are consistent with the computed rank correlation coefficients (0.7275 and 0.4701, respec-
tively). In both instances, the r-values (0.7285 and 0.4828, respectively) are significantly
larger than that reported by Slaney and Walsh for constructive search algorithms. Further,
we found absolutely no evidence that the most difficult instances possess medium-sized
backbones, as conjectured by Achlioptas et al. [1] for SAT.

Of more interest is the exceptional similarity between the r2 values of the |backbone|
and |optsols| models: the absolute differences for the 6 × 4 and 6 × 6 general JSPs are
only 0.0058 and 0.0108, respectively. Upon closer examination, this phenomenon is due
to an extremely high correlation between |backbone|2 and log10(|optsols|): −0.9337 and
−0.9103 for 6 × 4 and 6 × 6 problems, respectively. Within each problem group, the
correlation is near-perfect for instances with large backbones, and gradually decays as
|backbone| → 0.0. Our results indicate that, quite unexpectedly, for problem instances with
moderate-to-large backbones, the backbone size is essentially a proxy for the number of
optimal solutions, and vice-versa. From the standpoint of static cost models for reasonably
difficult general JSPs (i.e., those with moderate-to-large backbones), the two features are
largely redundant. In retrospect, this observation is not surprising given what is implied
by a large backbone—as more order variables are fixed, fewer solutions can satisfy the
constraints of the backbone. We conjecture that a similar phenomenon can be observed in
SAT.

J.-P. Watson et al. / Artificial Intelligence 143 (2003) 189–217 203

4.4. The average distance between random local optima

Search in algorithms with a strong bias toward local optima, such as tabu search, iterated
local search, and certain hybridized genetic algorithms, is largely constrained to the sub-
space of local optima. Consequently, we would expect search cost in these algorithms to
be at least somewhat correlated with the size of this sub-space. A similar observation led
Mattfeld et al. [20] to consider whether differences in the size of the local optima sub-
space could account for relative differences in the difficulty of general and workflow JSPs.
Using Eq. (1) (presented in Section 3.3), Mattfeld et al. define the size of the local optima
sub-space as the average normalized distance �D(s1, s2) between distinct pairs of random
local optima s1 and s2; we denote this measure by loptdist. Although Mattfeld et al. did
find mean differences in loptdist between general and workflow JSPs, they did not analyze
the ability of loptdist to account for the variability in problem difficulty observed within a
given set of general or workflow JSP instances.

For each of our general JSPs, we computed loptdist using a set of 5000 random local
optima produced using the steepest-descent procedure documented in Section 3.3. Scatter-
plots of loptdist versus log10(costmed) for 6 × 4 and 6 × 6 general JSPs are shown in
Fig. 3. The r2 values for the corresponding regression models are 0.2415 and 0.2744,
respectively. These results confirm the intuition that the size of the local optima sub-space
is correlated with the cost of finding optimal solutions under TSTaillard, albeit more weakly
than either |optsols| or |backbone| in 6×4 general JSPs (r2 values of 0.2415 versus 0.5365
and 0.5307, respectively). The strength of the correlation is roughly identical to that of
|optsols| and |backbone| for 6 × 6 general JSPs (r2 values of 0.2744 versus 0.2223 and
0.2331, respectively). Finally, in contrast to both |optsols| and |backbone|, the strength of
the loptdist model appears largely insensitive to relatively small changes in the problem
dimensions.

To summarize, the static cost model based on loptdist fails to account for a significant
proportion of the variability in the cost required by TSTaillard to locate optimal solutions
to general JSPs. Further, the |optsols| and |backbone| models are at least as accurate as

Fig. 3. Scatter-plots of log10(loptdist) versus costmed for 6 × 4 (left figure) and 6 × 6 (right figure) general JSPs;
the least-squares fit lines are super-imposed. The r2 values for the corresponding regression models are 0.2415
and 0.2744, respectively.

204 J.-P. Watson et al. / Artificial Intelligence 143 (2003) 189–217

the loptdist model. Later in Section 6.2, we re-visit and ultimately refute Mattfeld et al.’s
original claim regarding the ability of differences in loptdist to account for differences in
the difficulty of general and workflow JSPs.

4.5. The distance between random local optima and the nearest optimal solution

In both the JSP and SAT, the accuracy of the |optsols| model decreases as the number
of optimal solutions approaches 0. Analogously, the |backbone| model is more accurate on
problem instances with small backbones. Singer et al. [27] recently introduced a static cost
model for SAT that largely corrects for these deficiencies. Local search algorithms for SAT,
such as GSAT or Walk-SAT [18], quickly locate sub-optimal ‘quasi-solutions’, in which
relatively few clauses are unsatisfied. These quasi-solutions form a sub-space that contains
all optimal solutions, and is largely interconnected; once a solution in this sub-space is
identified, local search is typically restricted to this sub-space. This observation led Singer
et al. to hypothesize that the distance between the first quasi-solution encountered and the
nearest optimal solution, which we denote dquasi-opt, largely dictates the cost of local search
in SAT.

An obvious analog of the quasi-solutions in SAT are local optima in the JSP. For each
of our general JSPs, we generated 5000 random local optima using the steepest-descent
procedure documented in Section 3.3. We then computed the mean normalized distance
between the resulting local optima and the nearest optimal solution using Eq. (1); we
denote the result by dlopt-opt. The distances are normalized to enable comparisons between
6 × 4 and 6 × 6 general JSPs; Singer et al. did not perform normalization because the
problem size is held constant in their experiments. An initial regression model of dlopt-opt

versus log10(costmed) indicated a slight curvature in the residual plots for small values
of dlopt-opt, which is corrected via substitution by the term

√
dlopt-opt. Scatter-plots of√

dlopt-opt versus log10(costmed) for 6 × 4 and 6 × 6 general JSPs are shown in Fig. 4.
The r2 values for the corresponding regression models are 0.826 and 0.6541. As we
discuss in detail below and in Section 6.1, the model errors are heterogeneous; however, the
results are consistent with the computed rank correlation coefficients (0.9162 and 0.8072,
respectively).

Clearly, the dlopt-opt model is significantly more accurate than any of the |optsols|,
|backbone|, or loptdist models. In both 6 × 4 and 6 × 6 general JSPs, there is strong
evidence that the model residuals are heterogeneous, generally growing larger with
increases in

√
dlopt-opt. Consequently, the dlopt-opt model is on average less accurate for

problem instances with large dlopt-opt, or equivalently, with large costmed . Singer et al.
report a similar phenomenon holds for the analogous static cost model of local search in
SAT, and these results are consistent with our prior research on local search cost in the
general JSP [36].

The discrepancy between the r2 values for the 6 × 4 and 6 × 6 general JSPs is
due to two factors. First, there are more very high-cost 6 × 6 instances (i.e., those
with log10(costmed) > 3.5), and large model residuals are typically associated with such
instances. Second, although the range of dlopt-opt is nearly identical in 6 × 4 and 6 × 6
general JSPs, the relative frequency of instances for which

√
dlopt-opt � 0.3 is much larger

in 6 × 4 general JSPs (161 versus 67). We further analyze the relationship between the

J.-P. Watson et al. / Artificial Intelligence 143 (2003) 189–217 205

Fig. 4. Scatter-plots of
√

dlopt-opt versus log10(costmed) for 6 × 4 (left figure) and 6 × 6 (right figure) general

JSPs; the least-squares fit lines are super-imposed. The r2 values for the corresponding regression models are
0.826 and 0.6541, respectively.

dlopt-opt model and very high-cost general JSPs in Section 6.1, and consider the influence
of the ratio of jobs to machines (n/m) on the accuracy of the dlopt-opt model in Section 5.2.

To summarize, the static cost model based on dlopt-opt accounts for a substantial
proportion of the variance in the cost required by TSTaillard to locate optimal solutions
to ‘typical’ general JSPs. With few exceptions, the model residuals vary over roughly 1 to
1.5 orders of magnitude in the 6 × 4 and 6 × 6 problems, respectively; the improvement
is substantial in comparison to the residuals for the models based on either |optsols|,
|backbone|, or loptdist. Finally, we observe that the dlopt-opt model is also consistent with
the observation that hard (easy) problem instances tend to be hard (easy) for all local search
algorithms, as discussed in Section 3.4. Intuitively, if the distance between random local
optima and the nearest optimal solution for a particular problem instance is very large, we
would expect the instance to be difficult for any algorithm based on local search, as search
in such algorithms clearly progresses in small increments.

4.6. Models based on multiple search space features

We now consider whether we can improve the accuracy of the dlopt-opt model by
simultaneously considering dlopt-opt in conjunction with the three other search space
features considered earlier in this section. We proceed via well-known multiple regression
methods. Ideally, the independent variables in a multiple regression model are highly
correlated with the dependent variable, but not with each other; if the independent
variables are highly correlated, they are said to be collinear. Collinearity is known to
cause difficulties for multiple regression model selection techniques, in part because the
regression coefficients are not unique, making interpretation very difficult [23]. In Table 1,
we show the pair-wise correlation (for 6 × 4 general JSPs) between the four search space
features that serve as the independent variables in our multiple regression model. Similar
correlations hold for 6 × 6 general JSPs, indicating a high degree of collinearity exists
among the four search space features we have considered. Finally, we note that when the
sample size is large, terms may be statistically significant due to high power, but in reality

206 J.-P. Watson et al. / Artificial Intelligence 143 (2003) 189–217

Table 1
The correlation (Pearson’s) between search space features for 6 × 4 general JSPs

log10(|optsols|) |backbone| loptdist dlopt-opt

log10(|optsols|) 1.0 −0.921 −0.039 −0.751
|backbone| −0.921 1.0 0.006 0.722
loptdist −0.039 0.006 1.0 0.571
dlopt-opt −0.751 0.722 0.571 1.0

may have very small practical effect: i.e., dropping these terms yields a negligible reduction
in the model r2.

We first consider multiple regression models with only additive terms. In both 6 ×4 and
6×6 general JSPs, the models resulting from forward selection, backward elimination, and
step-wise model selection methods [11,23] are very different, as expected given collinear
independent variables and a large sample size. However, the dlopt-opt term was present in
all of the resulting models, and was consistently the most statistically significant term. For
6 × 4 and 6 × 6 general JSPs, the best multiple regression models we obtained yielded r2

values of 0.8296 and 0.6589, respectively; further, the r2 values for all models were very
similar. Given that the corresponding r2 values for the basic dlopt-opt model are 0.8260 and
0.6541, we conclude that the addition of the loptdist, |optsols|, and |backbone| features
fails to enhance the accuracy of the dlopt-opt model. Similarly, we found no statistically
significant interaction terms. Further, the r2 values for any models with interaction terms
were no larger than those obtained by models without interaction terms.

Interestingly, although Singer et al. control for backbone size in their experiments, they
do not explicitly indicate whether an interaction effect between the backbone size and the
mean distance between random quasi-solutions and the nearest optimal solution (dquasi-opt)
was observed. However, their results do suggest a lack of interaction effect, in that the
regression slopes observed for their dquasi-opt model are largely homogeneous across a
wide range of backbone sizes and clause-to-variable ratios (e.g., see Singer et al. (2000),
Table 2, p. 249); the intercepts are slightly more variable, which is likely due in part to the
presence of high-residual problem instances.

4.7. A note on backbone robustness

In addition to introducing the dquasi-opt static cost model for SAT, Singer et al. also
posited a causal model to account for the variability in dquasi-opt observed for different
problem instances. Their model is based on the notion of backbone robustness. A SAT
instance is said to have a robust backbone if a substantial number of clauses can be deleted
before the backbone size is reduced by at least half. Conversely, an instance is said to
have a fragile backbone if the deletion of just a few clauses reduces the backbone size
by half or more. Singer et al. argue that “backbone fragility approximately corresponds to
how extensive the quasi-solution area is” [27, p. 251], by noting that a fragile backbone
allows for large dquasi-opt because of the sudden drop in backbone size, while dquasi-opt is
necessarily small in problem instances with robust backbones.

As evidence of this hypothesis, Singer et al. measured a moderate (≈ −0.5) negative
correlation between backbone robustness and the log of local search cost for large-

J.-P. Watson et al. / Artificial Intelligence 143 (2003) 189–217 207

backboned SAT instances. Surprisingly, this correlation degraded as the backbone size was
decreased, leading to the conjecture that “finding the backbone is less of an issue and so
backbone fragility, which hinders this, has less of an effect” [27, p. 254]; this conjecture
was never explicitly tested. We have previously reported very similar results for general
JSPs [36]. As indicated in Section 4.5 and more fully in Section 6, we have since discovered
relatively serious deficiencies in the dlopt-opt model (and by analogy, likely deficiencies in
the dquasi-opt), and feel it is somewhat premature to posit causal hypotheses before the
source of these deficiencies is completely understood. As a consequence, we have not
pursued further analyses of backbone robustness in the JSP.

5. Applications of the dlopt-opt model

The analyses presented in Section 4 demonstrate that the dlopt-opt static cost model
accounts for a substantial proportion of the variance in the cost of finding optimal solutions
to typical general JSPs using TSTaillard. Further, more complex models that consider
dlopt-opt in conjunction with backbone size, the number of optimal solutions, and the size
of the local optima sub-space fail to yield even marginal improvements in accuracy. In this
section, we additionally show that the dlopt-opt model accounts for both (1) a substantial
proportion of the variance in the cost of finding sub-optimal solutions to typical general
JSPs using TSTaillard and (2) differences in the relative difficulty of general JSPs with
different job-to-machine ratios.

5.1. Modeling the cost of locating sub-optimal solutions

Because they are incomplete, local search algorithms are only used to find solutions
to satisfiable SAT instances, where the evaluation of the global optima is known, and is
equal to the total number of clauses m. Such a priori knowledge leads to the obvious
termination criterion: keep searching until a global optimum is located. Consequently,
analyses of problem difficulty for local search in SAT only consider the cost required to
locate globally optimal solutions. For most NP-complete problems, however, the evaluation
of the global optimum is not known a priori. Armed only with the knowledge that larger
run-times generally lead to higher-quality solutions, local search practitioners generally
use the following termination criterion: allocate as much CPU time as possible, and return
the best solution found.

Although larger run-times generally yield higher-quality solutions, the relationship is
typically discontinuous, non-linear, or both. Often, small or moderate increases in run-time
fail, on average, to improve solution quality; for example, Stützle [31, p. 47], notes that in
the Traveling Salesman Problem “. . . instances appear to have ‘hard cliffs’ for the local
search algorithm, corresponding to deep local minima, which are difficult to pass”. Similar
observations have been reported for a variety of NP-complete problems, including the
JSP. Another manifestation of this phenomenon has been observed by several researchers,
including ourselves. Here, multiple independent trials of a particular local search algorithm
typically yield sub-optimal solutions that can be partitioned into a very small number of
subsets (often 1), with each subset containing solutions with identical evaluations.

208 J.-P. Watson et al. / Artificial Intelligence 143 (2003) 189–217

Fig. 5. The offset x from the optimal makespan C∗
max, 0 � x � 25, versus the cost costmed(x) required to locate

a solution with Cmax � C∗
max + x for two 6 × 6 general JSPs. The numeric annotations indicate either dlopt-T (x)

for a specific x, or the range of dlopt-T (x) over a contiguous sub-interval of x.

One simple way to visualize this phenomenon is to plot the cost required to achieve a
solution with an evaluation of at least C∗

max + x over a wide range of x � 0. In Fig. 5, we
provide examples of such plots for two moderately difficult 6 × 6 general JSPs. In both
plots, the offset from the optimal makespan x is varied from 0 to 25, and the median cost
(over 5000 independent runs of TSTaillard) required to find a solution with an evaluation of
at least C∗

max +x is computed for each x , which we denote by costmed(x). In the left side of
Fig. 5, we see a typical example of a problem instance with discrete jumps in search cost at
specific sub-optimal makespans, with plateaus in search cost in between the jump points.
In the right side of Fig. 5, we show a problem instance for which the decay in search cost
is generally more gradual; a large, discontinuous jump in search cost occurs only between
x = 0 and x = 1.

As shown in Section 4, the dlopt-opt static cost model accounts for a significant
proportion of the variance in the cost of finding optimal solutions to general JSPs using
TSTaillard. Intuitively, this cost is large if TSTaillard is, on average, initiated from solutions
that are very distant from the nearest optimal solution. We conjecture that this intuition
extends to any subset of solutions, including sub-optimal solutions; we would expect
local search cost to be proportional to the distance between the initial solutions and the
nearest target solution. As evidence of this conjecture, we consider a set T (x) containing
all solutions with a makespan between C∗

max and C∗
max + x , x � 0, and denote the mean

distance between random local optima and the nearest solution in the set T (x) by dlopt-T (x);
as with the computation of dlopt-opt, the statistics are taken over 5000 independent samples.
We have annotated the plots in Fig. 5 with the computed dlopt-T (x), 0 � x � 25. In both
instances, (1) large jumps in search cost clearly coincide with large jumps in dlopt-T (x),
(2) intervals of roughly constant search cost correspond to contiguous sub-intervals of x

with nearly identical values of dlopt-T (x), and (3) gradual drops in search cost coincide
with gradual drops in dlopt-T (x). Consequently, we hypothesize that dlopt-T (x) accounts for
a significant proportion of the variance in the cost of finding both optimal and sub-optimal
solutions to typical general JSPs using TSTaillard.

To test this hypothesis, we computed costmed(x) and dlopt-T (x) for both our 6 × 4 and
6 × 6 general JSPs, varying x from 1 to 25. Finding solutions to 6 × 4 and 6 × 6 general

J.-P. Watson et al. / Artificial Intelligence 143 (2003) 189–217 209

Fig. 6. Scatter-plots of
√

dlopt-opt versus log10(costmed) for the sub-optimal 6 × 4 (left figure) and 6 × 6 (right

figure) general JSP problem groups; the regression lines are super-imposed. The r2 values for the corresponding
regression models are 0.8866 and 0.8252, respectively.

JSPs with Cmax > C∗
max + 25 is generally quite easy for TSTaillard, with costmed(25) � 100

in all but a few cases. Under this methodology, we are effectively creating 25 derivatives of
each problem instance (one for each value of x), which results in new ‘sub-optimal’ 6 × 4
and 6×6 problem groups, each with 25 000 instances. For many of the derivative instances,
especially those produced using large x , costmed(x) = 0, or equivalently dlopt-T (x) ≈ 0.0.
We observed 1293 6 × 4 zero-cost instances, and 60 6 × 6 zero-cost instances; in both
cases, the zero-cost instances are excluded in the following analysis.

In Fig. 6, we show scatter-plots of
√

dlopt-opt versus log10(costmed) for the sub-optimal
6 × 4 and 6 × 6 problem groups; the r2 values for the corresponding regression models
are 0.8866 and 0.8252, respectively. Clearly, the dlopt-opt model accounts for most of the
variance in the cost of finding sub-optimal solutions to typical general JSPs using TSTaillard.
We observed larger r2 values in the sub-optimal 6×4 and 6×6 problem groups than for the
corresponding problem groups analyzed in Section 4.5: 0.8866 versus 0.8260 for the 6 × 4
problems and 0.8252 versus 0.6541 for the 6×6 problems. We explain the greater accuracy
of the dlopt-opt model on the sub-optimal problem groups by noting that the proportion of
instances with small values of dlopt-opt is larger in the sub-optimal problem groups, which
corresponds to the region where the dlopt-opt model is most accurate.

We conclude by noting that the dlopt-opt model provides the first quantitative explanation
for ‘cliffs’ in local search cost observed at particular sub-optimal evaluations: abrupt
changes in local search cost occur where there are abrupt changes in dlopt-opt. Similarly,
the plateaus observed in Fig. 5 occur because solutions on the plateau are equi-distant
from random local optima; TSTaillard is equally likely to encounter any of the solutions on
the plateau, given a fixed run-time. Similarly, gradual increases in search cost occur when
slightly better solutions are only marginally farther from random local optima.

5.2. Explaining differences in the relative difficulty of square versus rectangular JSPs

Given the accuracy of the dlopt-opt model for both 6 × 4 and 6 × 6 general JSPs, it is
natural to consider whether or not differences in the distribution of dlopt-opt for problems

210 J.-P. Watson et al. / Artificial Intelligence 143 (2003) 189–217

Fig. 7. Histograms of dlopt-opt for 10 000 4 × 3 (left figure) and 7 × 3 (right figure) general JSPs.

with different ratios of n/m can account for the empirical observation that square JSPs are
generally more difficult than rectangular JSPs.

Fixing m = 3, we generated 10 000 general JSPs for n = 4 through n = 7; although we
initially considered larger values of n, the huge number of optimal solutions (> 1 billion
in many cases) prevented us from efficiently computing dlopt-opt. We show histograms of
dlopt-opt for 4×3 and 7×3 general JSPs in Fig. 7. In 4×3 general JSPs, the right-tail mass
of the distribution is substantial (e.g., for dlopt-opt � 0.3), especially in comparison to the
distribution for 7 × 3 general JSPs, where instances with dlopt-opt � 0.3 are relatively rare.
We have also generated histograms for general JSPs with n/m < 1, observing a continued
shift of the distribution mass toward 0.5.

Although not entirely conclusive, our results provide strong evidence that the right-
tail mass of the dlopt-opt distribution vanishes as n/m → ∞, suggesting a cause for the
empirical observation that square JSPs are generally more difficult than rectangular JSPs.
Further, we hypothesize that the shift from exponential to polynomial growth in search
cost at n/m ≈ 6 [33] is due to the disappearance of any significant mass in the right tail of
the dlopt-opt distribution. However, due to the huge number of optimal solutions in problem
instances with n/m � 4, we are currently unable to empirically test this hypothesis. Finally,
we note that the accuracy of the dlopt-opt model should further improve as n/m → ∞, due
to the increasing frequency of instances with small values of dlopt-opt. Consequently, from
the standpoint of static cost models, only general JSPs with n/m ≈ 1.0 warrant significant
attention in the future.

In a previous paper [36], we argued that a shift in the distribution of |backbone|, and
not dlopt-opt, was responsible for differences in the relative difficulty of square versus
rectangular JSPs. While our original observation still holds (i.e., the proportion of instances
with small backbones grows as n/m → ∞), we have chosen to re-cast our original results
in terms of the more accurate static cost model based on dlopt-opt.

6. Limitations of the dlopt-opt model

Although the dlopt-opt static cost model largely accounts for the cost of finding both
optimal and sub-optimal solutions to typical general JSPs using TSTaillard, and provides

J.-P. Watson et al. / Artificial Intelligence 143 (2003) 189–217 211

an explanation for the differences in the relative difficulty of general JSPs with different
job-to-machine ratios, the model is by no means perfect. As discussed in Section 4.5, the
dlopt-opt model is less accurate for problem instances with large values of dlopt-opt (or,
equivalently, large costmed), and consequently fails to account for roughly 35% of the cost
variance in our 6 × 6 general JSPs.

In this section, we identify two additional limitations of the dlopt-opt model. First, we
conclusively demonstrate that the accuracy of the dlopt-opt model is exceptionally poor for
very high-cost general JSPs (we provided some preliminary evidence for this conclusion in
Section 4.5). Second, we show that the dlopt-opt model is unable to account for a significant
proportion of the variance in the cost of finding optimal solutions to more structured JSPs:
e.g., workflow JSPs. Although both of the results presented in this section are clearly
‘negative’, we feel it is important to identify and report such deficiencies, as research into
why the dlopt-opt model fails in these circumstances is likely to lead to more general and
accurate static cost models in the future.

6.1. Modeling search cost in exceptionally hard general JSPs

In Section 4.5, we provided evidence that the dlopt-opt model is less accurate for problem
instances with large values of dlopt-opt, or equivalently, large costmed. Of particular concern
are the rare, very high-cost (costmed � 10000) instances appearing in both sides of Fig. 4;
in all but one case, these instances possess the largest residuals under the corresponding
regression model. To determine whether large model residuals are typically associated with
very high-cost general JSPs, we created groups of 6 × 4 and 6 × 6 general JSPs with equal
proportions of problem instances over the range of costmed . Specifically, we sub-divided
the range of possible costmed values into the following four contiguous intervals: [1,49],
[50,499], [500,4999], and [5000,∞]. These intervals qualitatively correspond to easy,
moderate, difficult, and very difficult problem instances, respectively. For both 6 × 4 and
6 × 6 general JSPs, we then produced 500 instances belonging to each interval using a
generate-and-test procedure.

We provide scatter-plots of
√

dlopt-opt versus log10(costmed) for the two resulting
problem groups in Fig. 8. The r2 values for the corresponding regression model are
0.7742 and 0.6820, respectively. First, we note that because the high-cost and very high-
cost instances reside in the right-tail of the log10(costmed) distribution, the large relative
frequencies of problem instances with costmed near the lower bounds of the corresponding
intervals was expected. In both problem groups, we observe a substantial reduction in the
accuracy of the dlopt-opt model for high-cost (500 � costmed � 4999) instances. For very
high-cost instances (costmed � 5000), the degradation in accuracy is far more extreme,
such that

√
dlopt-opt provides almost no information about costmed . These results clearly

reinforce the deficiencies of the dlopt-opt model discussed in Section 4.5: accuracy is
inversely proportional to both dlopt-opt and costmed. As a direct consequence, although we
are now able to account for much of the variability in search cost for ‘typical’ general JSPs,
an understanding of the search space properties that make certain problems exceptionally
difficult for TSTaillard remains elusive.

Several researchers have reported situations in which problems that are exceptionally
difficult for one algorithm are much easier for other algorithms [15,29]. To date, this

212 J.-P. Watson et al. / Artificial Intelligence 143 (2003) 189–217

Fig. 8. Scatter-plots of
√

dlopt-opt versus log10(costmed) for easy (costmed ∈ [1,49]), moderate
(costmed ∈ [50,499]), high (costmed ∈ [500,4999]), and very high-cost (costmed ∈ [5000,∞]) 6 × 4 (left fig-
ure) and 6 × 6 (right figure) general JSPs; the least-squares fit lines are super-imposed. The r2 values for the
corresponding regression models are 0.7742 and 0.6820, respectively.

phenomenon has only been observed in constructive search algorithms, and occurs when
one algorithm makes a particular sequence of decisions that yields a very difficult sub-
problem [29]. Although this phenomenon has not been observed for local search in any
NP-complete problem, it does raise an obvious question: “Is the exceptional difficulty
of our very high-cost general JSPs algorithm-independent?”. To informally answer this
question, we solved both the 500 very high-cost and 1000 ‘typical’ 6 × 6 (i.e., those
considered in Section 4) instances using two local search algorithms other than TSTaillard,
and a constructive heuristic search algorithm. Specifically, we considered the following
local search algorithms: (1) Nowicki and Smutnicki’s state-of-the-art tabu search algorithm
[22] and (2) van Laarhoven et al.’s simulated annealing algorithm [35]. We selected
Nowicki and Smutnicki’s algorithm because it uses a more powerful move operator than
TSTaillard, and employs an intensification mechanism (see Section 3.3); van Laarhoven et
al.’s algorithm provides a well-known alternative local search paradigm to tabu search.
The constructive algorithm we consider is Beck and Fox’s constraint-directed scheduling
algorithm [5], which was selected because it shares little in common with local search
algorithms for the JSP. In all three cases, the search cost (as measured by the median search
cost over 1000 independent trials for the two local search algorithms, and the number of
nodes visited by the constructive algorithm) was generally larger in the very high-cost
instances. However, we did find some exceptional instances that were easily solved by the
other algorithms. Upon closer examination, we found that these instances are extremely
sensitive to the length of the tabu list of TSTaillard. We conclude that, with a few exceptions,
the difficulty of our very high-cost general JSPs is algorithm-independent.

Finally, we conjecture that the failure of the dlopt-opt model to account for local search
cost in very difficult problem instances also extends to SAT. Although Singer et al. do not
provide scatter-plots of dlopt-opt versus log10(costmed) for high-cost problem instances (i.e.,
those with large backbones), their analysis does indicate that the accuracy of the dlopt-opt

model is inversely proportional to backbone size (e.g., see Singer et al. (2000), Table 2,
p. 249), and as a consequence, to costmed (as in the general JSP, local search cost and
backbone size are positively correlated in SAT). Further, very high-cost SAT instances

J.-P. Watson et al. / Artificial Intelligence 143 (2003) 189–217 213

possess the largest residuals under Singer et al.’s model of backbone robustness (e.g., see
Singer et al. (2000), Fig. 11, p. 255), which in turn is correlated with dlopt-opt.

6.2. Modeling search cost in JSPs with workflow

In the JSP and SAT, the primary problem constraints are the job routing orders πi and the
disjunctive clauses, respectively. Generally, benchmark suites consist of problem instances
in which these constraints are, in expectation, completely random. An important issue is
then generalization: real-world problems have non-random constraints, and it is unclear
whether static cost models developed for random instances are extensible to instances
with more structured constraints. To study the effect of non-random constraints on the
accuracy of the static cost models examined in Section 4, we apply the same analysis to
JSPs with workflow—which impose a simple structure on the job routing orders. All results
are produced using groups of 6×4 and 6×6 workflow JSPs, each containing 1000 problem
instances; the details of the problem generation process are discussed in Section 3.2.

We first consider the results for 6 × 4 workflow JSPs. A scatter-plot of
√

dlopt-opt versus
log10(costmed) is shown in the left side of Fig. 9. The r2 value for the corresponding
regression model is 0.6082, which is roughly 75% of the r2 value observed for 6 × 4
general JSPs (see Section 4.5). In contrasting the left sides of Figs. 4 and 9, it is clear that
the presence of workflow partitions greatly increases the relative frequency of instances
with large values of dlopt-opt, which partially explains the reduction in the observed r2.
Workflow partitions also have a substantial impact on the accuracy of the other models
considered in Section 4. For example, we observed an r2 value of only 0.0016 for the
loptdist model, in contrast to 0.2415 for 6 × 4 general JSPs: the size of the local optima
sub-space has effectively no influence on the cost of search with TSTaillard. In contrast to the
results for dlopt-opt, we observed roughly a 20% increase in the r2 values for the |optsols|
and |backbone| models, to 0.6155 and 0.6107, respectively. Consequently, the accuracy
of the |optsols|, |backbone|, and dlopt-opt models is nearly identical for 6 × 4 workflow

Fig. 9. Scatter-plots of
√

dlopt-opt versus log10(costmed) for 6 × 4 (left figure) and 6 × 6 (right figure) workflow

JSPs; the least-squares fit lines are super-imposed. The r2 values for the corresponding regression models are
0.6082 and 0.3049, respectively.

214 J.-P. Watson et al. / Artificial Intelligence 143 (2003) 189–217

JSPs. Finally, we note that strong correlation between log10(|optsols|) and |backbone|2 is
maintained (r = −0.8936).

Next, we consider the results for 6×6 workflow JSPs; a scatter-plot of
√

dlopt-opt versus
log10(costmed) is shown in the right side of Fig. 9. Here, we see a further reduction in
the accuracy of the dlopt-opt model: the r2 value is over 50% less than that observed for
6 × 6 general JSPs, dropping from 0.6541 to 0.3049. As with 6 × 4 workflow JSPs, the
reduction in accuracy is partially due to dramatic increases in the relative frequency of
problem instances with very large values of dlopt-opt. Similarly, the correlation between
loptdist and log10(costmed) is insignificant (r2 = 0.002983), and we observed an increase
in the accuracy of the |optsols| and |backbone| models (to r2 values of 0.3345 and 0.2974,
respectively); the relatively strong correlation between log10(|optsols|) and |backbone|2
was again maintained (r = −0.8346).

Our results cast serious doubt on Mattfeld et al.’s assertion that differences in the
relative difficulty of general and workflow JSPs are due to differences in loptdist. While
we observed statistically significant differences between the mean loptdist of general
and workflow JSPs (e.g., 0.2080 versus 0.3465 in 6 × 6 general and workflow JSPs,
respectively), we also computed a relatively weak correlation between loptdist and
log10(costmed) for general JSPs – for workflow JSPs, the correlation between these same
variables is effectively 0. Statistically significant mean differences between general and
workflow JSPs also exist for |optsols|, |backbone|2, and

√
dlopt-opt. Further, each of these

models is at least as accurate as the loptdist model for both general and workflow JSPs.
Consequently, we believe that any of the |optsols|, |backbone|, and dlopt-opt models provide
at least an equally likely explanation as the loptdist model for the differences in relative
difficulty between general and workflow JSPs.

Finally, we note that our results provide the first solid evidence that the static cost
models for random and structured problem instances may in fact be quite different. No
research to date has considered the impact of problem structure on the static cost models
for SAT. Given the strong similarities between the models for the JSP and SAT, we
conjecture that existing static cost models for SAT, because they are based on random
problem instances, are likely to be significantly less accurate when applied to structured
SAT instances.

7. Conclusion

Drawing from research on problem difficulty in SAT, we demonstrated that the dlopt-opt

static cost model accounts for much of the variability in the cost of finding optimal
solutions to general JSPs using a straightforward tabu search algorithm, TSTaillard. This
result was somewhat unexpected, given the differences in both the search space topologies
and local search algorithms for the general JSP and SAT. Further, the accuracy of the model
is nearly identical in both problems. In the course of our analyses, we also encountered
several other important, unanticipated results:

(1) backbone size and the number of optimal solutions are largely redundant search space
features,

J.-P. Watson et al. / Artificial Intelligence 143 (2003) 189–217 215

(2) there is no significant interaction effect between dlopt-opt and any of the other search
space features we considered,

(3) multiple-factor models do not significantly improve upon the accuracy of the dlopt-opt

model.

We then used the dlopt-opt model to provide explanations for two qualitative observations
regarding problem difficulty in the JSP. First, we showed that the dlopt-opt model accounts
for much of the variability in the cost of locating sub-optimal solutions to general JSPs
using TSTaillard. The resulting extension provides an explanation for the discontinuous
jumps in search cost observed at particular offsets from the optimal makespan. Second,
we demonstrated that strong differences in the distributions of dlopt-opt provide a possible
explanation for differences in the relative difficulty of square versus rectangular JSPs:
problem instances with large values of dlopt-opt are common in square JSPs, but are
relatively rare in rectangular JSPs.

Finally, we showed that the dlopt-opt model has some limitations. First, our analyses
indicated that the accuracy of the model is inversely proportional to the magnitude of
dlopt-opt, or equivalently, the difficulty of the problem instance. We also found that the
accuracy is exceptionally poor on relatively rare, very high-cost problem instances. Second,
we demonstrated that the accuracy of the dlopt-opt model is significantly worse for a
particular class of structured JSPs—those with workflow partitions.

We selected TSTaillard precisely because it serves as a baseline for more advanced tabu
search algorithms, such as the state-of-the-art algorithm of Nowicki and Smutnicki, which
employ more advanced move operators and make more extensive use of long-term memory
and intensification mechanisms. With a relatively accurate static cost model of Taillard’s
algorithm, we can begin to systematically assess the influence of these more advanced
features on the model. One inherent limitation of our analysis is that it is only directly
applicable to tabu-like search algorithms for the JSP. Because static cost models are tied to
specific algorithms, it seems likely that other factors may be responsible for local search
cost in algorithms such as iterated local search or genetic algorithms, which are based on
principles quite different from tabu search. At the same time, it seems likely that variations
on the basic dlopt-opt model may account for the cost of tabu search in other NP-complete
problems.

Because the static cost models for SAT and the JSP are very similar, it also seems
likely that our results will be useful to researchers working on models of local search
cost in SAT. For example, our analyses indicate that the backbone size and the number
of optimal solutions are largely redundant, that simultaneous consideration of number
of optimal solutions, backbone size, the average distance between local optima fail to
improve the accuracy of the basic dlopt-opt model, and that the accuracy of the dlopt-opt

model is exceptionally poor on very high-cost problem instances. We conjecture similar
observations hold in SAT. Similarly, we showed that the static cost models for random
and structured problem instances can be very different. If similar results hold in SAT, they
would provide some evidence that the best algorithms for solving random instances may
be based on different principles than the best algorithms for solving structured instances.

216 J.-P. Watson et al. / Artificial Intelligence 143 (2003) 189–217

References

[1] D. Achlioptas, C. Gomes, H. Kautz, B. Selman, Generating satisfiable problem instances, in: K. Ford (Ed.),
Proc. AAAI-2000, Austin, TX, AAAI/MIT Press, Cambridge, MA, 2000, pp. 256–261.

[2] E. Balas, A. Vazacopoulos, Guided local search with shifting bottleneck for job-shop scheduling,
Management Sci. 44 (2) (1998) 262–275.

[3] J.W. Barnes, J.B. Chambers, Solving the job shop scheduling problem with tabu search, IIE Trans. 27 (1995)
257–263.

[4] J.E. Beasley, OR-library: Distributing test problems by electronic mail, J. Oper. Res. Soc. 41 (11) (1990)
1069–1072.

[5] J.C. Beck, M.S. Fox, Dynamic problem structure analysis as a basis for constraint-directed scheduling
heuristics, Artificial Intelligence 117 (2) (2000) 31–81.

[6] J. Blażewicz, W. Domschke, E. Pesch, The job shop scheduling problem: Conventional and new solution
techniques, European J. Oper. Res. 93 (1996) 1–33.

[7] J. Blażewicz, E. Pesch, M. Sterna, The disjunctive graph machine representation of the job shop scheduling
problem, European J. Oper. Res. 127 (2000) 317–331.

[8] K.D. Boese, A.B. Kahng, S. Muddu, A new adaptive multi-start technique for combinatorial optimization,
Oper. Res. Lett. 16 (1994) 101–113.

[9] J.B. Chambers, J.W. Barnes, New tabu search results for the job shop scheduling problem, Technical Report
ORP96-10, Graduate Program in Operations Research and Industrial Engineering, The University of Texas
at Austin, 1996.

[10] D.A. Clark, J. Frank, I.P. Gent, E. MacIntyre, N. Tomov, T. Walsh, Local search and the number of
solutions, in: Proceedings of the Second International Conference on Principles and Practices of Constraint
Programming (CP-96), Cambridge, MA, 1996, pp. 119–133.

[11] P.R. Cohen, Empirical Methods for Artificial Intelligence, MIT Press, Cambridge, MA, 1995.
[12] H. Fisher, G.L. Thompson, Probabilistic Learning Combinations of Local Job-Shop Scheduling Rules,

Prentice-Hall, Englewood Cliffs, NJ, 1963, Chapter 15, pp. 225–251.
[13] J. Frank, P. Cheeseman, J. Stutz, When gravity fails: Local search topology, J. Artificial Intelligence Res. 7

(1997) 249–281.
[14] M.R. Garey, D.S. Johnson, R. Sethi, The complexity of flowshop and jobshop scheduling, Math. Oper.

Res. 1 (2) (1976) 117–129.
[15] I.P. Gent, T. Walsh, Easy problems are sometimes hard, Artificial Intelligence 70 (1–2) (1994) 335–345.
[16] F. Glover, M. Laguna, Tabu Search, Kluwer Academic, Boston, MA, 1997.
[17] T. Hogg, B.A. Huberman, C.P. Williams, Phase transitions and the search problem, Artificial Intelli-

gence 81 (1–2) (1996) 1–15.
[18] H.H. Hoos, Stochastic local search—Methods, models, applications, PhD Thesis, Darmstadt University of

Technology, 1998.
[19] A.S. Jain, S. Meeran, Deterministic job-shop scheduling: Past, present and future, European J. Oper. Res. 113

(1999) 390–434.
[20] D.C. Mattfeld, C. Bierwirth, H. Kopfer, A search space analysis of the job shop scheduling problem, Ann.

Oper. Res. 86 (1999) 441–453.
[21] R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, L. Troyansky, Determining computational complexity

for characteristic ‘phase transitions’, Nature 400 (1998) 133–137.
[22] E. Nowicki, C. Smutnicki, A fast taboo search algorithm for the job shop problem, Management Sci. 42 (6)

(1996) 797–813.
[23] R. Lyman Ott, An Introduction to Statistical Methods and Data Analysis, Duxbury Press, Belmont, CA,

1993.
[24] A.J. Parkes, Clustering at the phase transition, in: Proc. AAAI-97, Providence, RI, 1997, pp. 340–345.
[25] C.M. Riedys, P.F. Stadler, Combinatorial landscapes, Technical Report 01-03-014, The Santa Fe Institute,

2001.
[26] J. Singer, Why solutions can be hard to find: A featural theory of cost for a local search algorithm on random

satisfiability, PhD Thesis, University of Edinburgh, 2000.
[27] J. Singer, I.P. Gent, A. Smaill, Backbone fragility and the local search cost peak, J. Artificial Intelligence

Res. 12 (2000) 235–270.

J.-P. Watson et al. / Artificial Intelligence 143 (2003) 189–217 217

[28] J. Slaney, T. Walsh, Backbones in optimization and approximation, in: B. Nebel (Ed.), Proc. IJCAI-01,
Seattle, WA, Morgan Kaufmann, San Mateo, CA, 2001, pp. 254–259.

[29] B. Smith, S. Grant, Sparse constraint graphs and exceptionally hard problems, in: C. Mellish (Ed.), Proc.
IJCAI-95, Montreal, Quebec, 1995.

[30] R.H. Storer, S.D. Wu, R. Vaccari, New search spaces for sequencing problems with application to job shop
scheduling, Management Sci. 38 (1992) 1495–1509.

[31] T. Stützle, Local search algorithms for combinatorial problems—Analysis, improvements, and new
applications, PhD Thesis, Darmstadt University of Technology, 1999.

[32] E.D. Taillard, Benchmarks for basic scheduling problems, European J. Oper. Res. 64 (1993) 278–285.
[33] E.D. Taillard, Parallel taboo search techniques for the job shop scheduling problem, ORSA J. Comput. 6 (2)

(1994) 108–117.
[34] R.J.M. Vaessens, E.H.L. Aarts, J.K. Lenstra, Job shop scheduling by local search, INFORMS J.

Comput. 8 (3) (1996) 302–317.
[35] P.J.M van Laarhoven, E.H.L. Aarts, J.K. Lenstra, Job shop scheduling by simulated annealing, Oper. Res. 40

(1992) 113–125.
[36] J.-P. Watson, J.C. Beck, A.E. Howe, L.D. Whitley, Toward an understanding of local search cost in job-shop

scheduling, in: A. Cesta (Ed.), Proceedings of the Sixth European Conference on Planning, Springer, Berlin,
2001.

