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Abstract

We present a general method for deciding whether a Grothendieck topos satisfies De Morgan’s law (resp.
the law of excluded middle) or not; applications to the theory of classifying toposes follow. Specifically, we
obtain a syntactic characterization of the class of geometric theories whose classifying toposes satisfy De
Morgan’s law (resp. are Boolean), as well as model-theoretic criteria for theories whose classifying toposes
arise as localizations of a given presheaf topos.
© 2009 Elsevier Inc. All rights reserved.
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1. Introduction

This paper solves the long-standing question of characterizing the class of geometric theories
classified by a De Morgan (resp. Boolean) topos, by providing complete syntactic characteriza-
tions for both these classes of theories.

In the first section of the paper, we introduce a new notion, that of De Morgan topology on an
elementary topos; the DeMorganization of a topos is then defined as the relevant subcategory of
sheaves with respect to this topology, and explicit descriptions of this construction for a presheaf
topos and a localic topos are provided. In this section, we also introduce general criteria for
deciding whether a Grothendieck topos satisfies De Morgan’s law (resp. the law of excluded
middle) or not.

These criteria are then refined in the course of the second section, to yield simplified descrip-
tions in several cases of interest. In this context, new notions – those of De Morgan and Boolean
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property on a general Heyting algebra – are also introduced and shown to be equivalent to the
traditional ones of De Morgan and Boolean algebra. These concepts will play a central role in
illuminating the topological meaning of their classical counterparts and will provide the key for
obtaining the syntactic characterizations in the third section as well as the axiomatizations in the
fourth section.

In the third section, we eventually obtain our syntactic characterizations, as an application of
the preceding results; various fragments of logic are considered, up to the most general geometric
one. In passing, we also obtain a new proof of the well-known result of Blass and Ščedrov
characterizing the class of coherent theories classified by a Boolean topos.

In the fourth section, by using results contained in a former paper of the present author, we
obtain model-theoretic characterizations for the class of theories whose classifying toposes are
De Morgan (resp. Boolean) toposes arising as localizations of a given presheaf topos. We also
introduce the notions of DeMorganization and Booleanization of a geometric theory, and give
model-theoretic descriptions of them in the case when the theory is of presheaf type; in particular,
we show that the homogeneous models introduced in another paper of the present author are
axiomatized by the Booleanization of the relevant theory of presheaf type.

A detailed analysis of some examples concludes the paper. A further example is discussed at
length in a joint paper with Peter Johnstone, where it is shown that the DeMorganization of the
classifying topos for the theory of fields classifies the theory of fields of non-zero characteristic
which are algebraic over their prime fields.

2. The De Morgan topology

In this section we first introduce, in the context of elementary toposes, the notion of De Mor-
gan topology; this is shown to play, with respect to De Morgan toposes, the same role that the
well-known notion of double-negation topology plays with respect to Boolean toposes. Then
we provide explicit descriptions of the De Morgan topology on a presheaf topos (in terms of
the corresponding Grothendieck topology) and on a localic topos (in terms of the corresponding
locale).

Let us recall the following definitions.

Definition 2.1. An Heyting algebra H is said to be a De Morgan algebra if and only if for each
p ∈ H , ¬p ∨ ¬¬p = 1.

Definition 2.2. An elementary topos E is said to satisfy De Morgan’s law (equivalently, to be a
De Morgan topos) if its subobject classifier Ω is an internal De Morgan algebra in E .

There are many different known characterizations of De Morgan’s law in toposes (we refer
the reader to [4] for a comprehensive treatment); we will make use of the following ones:

(1) A topos E is De Morgan if and only if the canonical monomorphism (�,⊥) : 2 = 1 � 1 �
Ω¬¬ is an isomorphism in E (here Ω¬¬ denotes the equalizer in E of the pair of arrows
1Ω : Ω → Ω and ¬¬ : Ω → Ω , that is the subobject classifier of the topos sh¬¬(E )).

(2) A topos E is De Morgan if and only if the arrow ⊥ : 1 → Ω (that is, the classifying map of
the least subobject 0 : 0 � 1 of Sub(1)) has a complement in the Heyting algebra Sub(Ω).
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Let us recall from [1] (or from [3]) that, given an elementary topos E and a topology j on it such
that j � ¬¬, shj (E ) is Boolean if and only if j = ¬¬; in other words, ¬¬ is the least topology
j on E among those which satisfy j � ¬¬ such that shj (E ) is Boolean.

Theorem 2.3. Let E be an elementary topos. Then there exists a topology m on E which is the
least topology j on E among those which satisfy j � ¬¬ such that shj (E ) is De Morgan.

The unique topology m on E satisfying the condition of the proposition will be called the De
Morgan topology on E , and the topos shm(E ) will be called the DeMorganization of the topos E .

Proof. First, a remark on notation: given a local operator (i.e. a topology) j on E , we denote by
Ωj the equalizer in E of the pair of arrows 1Ω : Ω → Ω and j : Ω → Ω , that is the subobject
classifier of the topos shj (E ), and by aj : E → shj (E ) the associated sheaf functor.

We define m to be the smallest local operator j on E such the canonical monomorphism
(�,⊥) : 2 = 1 � 1 � Ω¬¬ is j -dense; such an operator exists by a theorem of A. Joyal’s (see
[3, Example A4.5.14 (b), p. 215]).

If j is a topology such that j � ¬¬ then sh¬¬(E ) ⊆ shj (E ) and Ω¬¬ � Ωj in Sub(Ω);
from this it easily follows that (Ωj )¬¬ = Ω¬¬, equivalently sh¬¬(shj (E )) = sh¬¬(E ) (cf. the
proof of [3, Lemma A4.5.21, p. 220]). Since Ω¬¬ is a j -sheaf and the equality (Ωj )¬¬ = Ω¬¬
holds, the fact the associated sheaf functor aj : E → shj (E ) preserves coproducts implies that the
canonical monomorphism (�,⊥) : 2 = 1 � 1 � (Ωj )¬¬ for the topos shj (E ) can be obtained
as the result of applying aj to the canonical monomorphism (�,⊥) : 2 = 1 � 1 � Ω¬¬ for the
topos E . Hence, recalling that a monomorphism m is j -dense for a local operator j on E if and
only if aj (m) is an isomorphism in shj (E ), we conclude that m satisfies the following property:
for each local operator j such that j � ¬¬, shj (E ) is De Morgan if and only if m � j ; this in
particular implies that m � ¬¬ (as sh¬¬(E ) is always De Morgan being Boolean) and hence our
thesis. �

Let us prove an analogous characterization for the double-negation topology.

Theorem 2.4. Let E be an elementary topos. Then the double-negation topology ¬¬ on E is
the least topology j on E such that the canonical monomorphism (�,⊥) : 2 = 1 � 1 � Ω is
j -dense.

Proof. Let us denote by b the smallest local operator j on E such that (�,⊥) : 2 = 1 � 1 � Ω

is j -dense; again, such an operator exists by [3, Example A4.5.14 (b), p. 215].
The canonical morphism a¬¬(Ω) → Ω¬¬ is an isomorphism; indeed, this follows from [3,

Proposition A4.5.8] in view of the fact that the identity ¬¬(¬¬h ∨ h) = 1 holds in any Heyting
algebra. Hence, since a¬¬ preserves coproducts, a¬¬((�,⊥)) is an isomorphism if and only if
the canonical monomorphism (�,⊥) for the topos sh¬¬(E ) is an isomorphism, and this is the
case since sh¬¬(E ) is Boolean. So we have that (�,⊥) is ¬¬-dense and hence b � ¬¬. Now,
if j � ¬¬ then (�,⊥) factors through Ωj � Ω , so if (�,⊥) is j -dense then the factorization
(�,⊥) : 2 = 1 � 1 � Ωj is j -dense (recall that the composite of two monomorphisms is dense
with respect to a topology if and only if both of them are), in other words, shj (E ) is Boolean;
in particular, shb(E ) is Boolean (as we have observed above that b � ¬¬). Now, the facts that
b � ¬¬ and shb(E ) is Boolean together imply that b = ¬¬, by the remark before Theorem 2.3.
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Note that it is possible to avoid invoking the existence of the topology b in this proof by
arguing as follows. If j � ¬¬ then (we have observed above that) (�,⊥) j -dense implies shj (E )

Boolean, that is j = ¬¬. For a general j , consider the meet j ∧ ¬¬ in the lattice of topologies
on E . From the fact that meets in this lattice are computed “pointwise” and (�,⊥) is ¬¬-dense
(which we have observed above), we have that if (�,⊥) is j -dense then (�,⊥) is (j ∧ ¬¬)-
dense; so, since j ∧¬¬ � ¬¬, we can refer to the previous case and conclude that j ∧¬¬ = ¬¬
(equivalently, ¬¬ � j ). �

The following proposition states a couple of useful facts on the De Morgan topology.

Proposition 2.5. Let E be an elementary topos and m the De Morgan topology on it. Then

(i) shm(E ) = E if and only if E is a De Morgan topos;
(ii) For any topology j on E such that j � ¬¬, shm(shj (E )) = shk(E ) where k = m ∨ j in the

lattice of topologies on E .

Proof. Part (i) is an immediate consequence of Theorem 2.3 as E = sh1(E ), where 1 is the
smallest topology on E . Let us then prove part (ii). To prove our equality, we verify that the
topology k = m ∨ j on E satisfies the universal property of the De Morgan topology on shj (E )

given by Theorem 2.3. For a given topology l on shj (E ) such that l � ¬¬shj (E ), shl(shj (E )) is a
dense subtopos of shj (E ); but shj (E ) is a dense subtopos of E by hypothesis, so shl (shj (E )) is
a dense subtopos of E (as the composition of dense inclusions is again a dense inclusion); then,
by definition of De Morgan topology on E , we have that shl (shj (E )) is De Morgan if and only if
shl (shj (E )) ⊆ shm(E ), if and only if shl (shj (E )) ⊆ shm(E ) ∩ shj (E ) = shm∨j (E ). �

Now, our aim is to describe explicitly the De Morgan topology on a presheaf topos [C op,Set].
To this end, we rephrase criterion (2) above for a topos to be De Morgan in the case of a
Grothendieck topos E = Sh(C, J ). Recall that the subobject classifier ΩJ : C op → Set of the
topos Sh(C, J ) is defined by:

• ΩJ (c) = {R | R is a J -closed sieve on c} (for an object c ∈ C ),
• ΩJ (f ) = f ∗(−) (for an arrow f in C ),

where f ∗(−) denotes the operation of pullback of sieves in C along f .
The arrow ⊥ : 1 → ΩJ is the classifying map of the smallest subobject 0 : 0 → 1 in SubE (1),

which is the subfunctor of 1 defined by: 0(c) = 1(c) = {∗} if ∅ ∈ J (c) and 0(c) = ∅ if ∅ /∈ J (c).
A formula [5, p. 142] then gives:

⊥(c)(∗) = {
f : d → c

∣∣ ∗ ∈ 0(d)
} = {

f : d → c
∣∣ ∅ ∈ J (d)

}

(despite the notation, here and below the domains of the arrows are intended to be variable).
Let us put for convenience Rc := {f : d → c | ∅ ∈ J (d)}, for c ∈ C .
By using [5, formula (19), p. 149] we get

(¬⊥)(c) = {
R ∈ ΩJ (c)

∣∣ for any f : d → c, f ∗(R) = Rd implies f ∈ Rc

}
,

for any c ∈ C .
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Let us now calculate ⊥ ∨ ¬⊥ by using [5, formula (5), p. 145]:

(⊥ ∨ ¬⊥)(c) = {
R ∈ ΩJ (c)

∣∣ {
f : d → c

∣∣ f ∗(R) = Rd or f ∗(R) ∈ (¬⊥)(d)
} ∈ J (c)

}
,

for any c ∈ C .
Hence we conclude that ⊥ ∨ ¬⊥ = 1ΩJ

(equivalently, Sh(C, J ) is De Morgan) if and only if
for every object c ∈ C and J -closed sieve R on c

{
f : d → c

∣∣ (
f ∗(R) = Rd

)
or

(
for any g : e → d,g∗(f ∗(R)

) = Re implies g ∈ Rd

)}

belongs to J (c).
Let us now restrict our attention to Grothendieck topologies J on C such that all J -covering

sieves are non-empty. Under this hypothesis, we have that Rc = ∅ (for each c ∈ C ) and hence

(¬⊥)(c) = {
R ∈ ΩJ (c)

∣∣ for any f : d → c, f ∗(R) = ∅}
.

This motivates the following definition: a sieve R on c ∈ C is said to be stably non-empty if for
any f : d → c, f ∗(R) = ∅.

Let us put, for any sieve R on c ∈ C ,

MR := {
f : d → c

∣∣ (
f ∗(R) = ∅)

or
(
f ∗(R) is stably non-empty

)}
.

Then we have

(⊥ ∨ ¬⊥)(c) = {
R ∈ ΩJ (c)

∣∣ MR ∈ J (c)
}
.

So, under the hypothesis that every J -covering sieve in non-empty, we get the following sim-
plified form of our criterion: Sh(C, J ) is De Morgan if and only if for every object c ∈ C and
J -closed sieve R on c, MR ∈ J (c).

Remarks 2.6. (a) For any sieve R on c ∈ C and any arrow f : d → c in C , f ∗(MR) = Mf ∗(R).
(b) If r : c′ → c is a monomorphism in C then, given a sieve R′ on c′ and denoted by R the

sieve {r ◦ f | f ∈ R′} on c, we have that r∗(MR) = MR′ . Indeed, by (a) we have r∗(MR) =
Mr∗(R), so it is enough to prove that r∗(R) = R′; one inclusion is obvious, while the other holds
since r ′ is monic. This implies that if J is a Grothendieck topology on C then MR ∈ J (c) implies
MR′ ∈ J (c′); thus, in checking that the condition of our criterion is satisfied, we can restrict our
attention to any collection F of objects in C with the property that for each object c in C there is
a monomorphism r in C from c to an object in F .

(c) Under the hypothesis that every J -covering sieve in non-empty, if R is the J -closure of
the sieve R, MR = MR ; indeed, a sieve R is empty if and only if its J -closure R is.

Remark 2.6(c) implies that in the simplified form of our criterion above we can equivalently
quantify over all sieves R in C . This leads us to give the following definition: given a category C ,
the De Morgan topology MC on it is the Grothendieck topology on C generated by the family of
sieves {MR | R sieve in C}. In fact, our criterion says precisely that, for any Grothendieck topol-
ogy J such that every J -covering sieve is non-empty (equivalently, J � ¬¬[C op,Set]), Sh(C, J )

is De Morgan if and only MC � J . This, together with the observation that every MC -covering
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sieve is non-empty, proves that the De Morgan topology MC on C is exactly the Grothendieck
topology on C corresponding to the De Morgan topology on the topos [C op,Set].

Summarizing, we have the following result.

Theorem 2.7. Let C be a category. There exists a Grothendieck topology MC on C , called the
De Morgan topology on C , which satisfies the following property: for any Grothendieck topol-
ogy J such that every J -covering sieve is non-empty, Sh(C, J ) is De Morgan if and only MC � J .
MC is the Grothendieck topology on C corresponding to the De Morgan topology on the topos
[C op,Set] and is generated by the family of sieves {MR | R sieve in C}.

Notice that in case J is the trivial topology the theorem immediately gives the following char-
acterization: the topos [C op,Set] is De Morgan if and only if C satisfies the right Ore condition
(this is a well-known result, cf. [4, Example D4.6.3(a), p. 1001]). Also, if C satisfies the right
Ore condition, then MC is clearly the trivial Grothendieck topology on C ; as a consequence, we
obtain the following result.

Corollary 2.8. Let C be a category satisfying the right Ore condition. Then for every
Grothendieck topology J such that every J -covering sieve is non-empty, Sh(C, J ) is De Morgan.

Now, let us briefly turn our attention to Boolean toposes. Starting from the well-known char-
acterization: Sh(C, J ) is Boolean if and only if ⊥ ∨ � = 1ΩJ

in Sub(ΩJ ), our methods can be
easily adapted to prove the following criterion:

Sh(C, J ) is Boolean if and only if for every object c ∈ C and J -closed sieve R on c,

{
f : d → c

∣∣ (
f ∗(R) = Rd

)
or (f ∈ R)

} ∈ J (c).

If J is a Grothendieck topology on C such that every J -covering sieve is non-empty, the criterion
becomes:

Sh(C, J ) is Boolean if and only if for every object c ∈ C and J -closed sieve R on c, BR :=
{f : d → c | (f ∗(R) = ∅) or (f ∈ R)} ∈ J (c).

In fact, the condition ‘J -closed’ here can be put in parentheses, by the following charac-
terization of the double-negation topology ¬¬[C op,Set] on the topos [C op,Set] (and the remark
preceding Theorem 2.3).

Recall from [5] that ¬¬[C op,Set] corresponds to the dense topology D on C , that is to the
Grothendieck topology D on C defined as follows: for a sieve R in C

R ∈ D(c) iff R is stably non-empty.

It is immediate to prove that the topology D is given precisely by the collection of sieves {BR |
R sieve in C}; indeed, for any sieve R on c ∈ C , BR ∈ D(c) and for any R ∈ D(c), R = BR .

Suppose now that C satisfies the right Ore condition and every J -covering sieve is non-empty;
the criterion above simplifies to:

Sh(C, J ) is Boolean iff for every object c ∈ C and J -closed sieve R on c,

R ∪ {
f : d → c

∣∣ f ∗(R) = ∅} ∈ J (c),

iff every non-empty J -closed sieve is J -covering,
iff the only non-empty J -closed sieves are the maximal sieves.



O. Caramello / Advances in Mathematics 222 (2009) 2117–2144 2123
Finally, let us describe the De Morgan topology on a given topos Sh(X) of sheaves a locale X.
To this end, we prove the following result, which is the natural embodiment of a number of ideas
present in [3] and [4] (the notation used below being that of [3] and [4]).

Proposition 2.9. Let X be a locale. Then there exists a frame isomorphism N(O(X)) ∼=
Lop(Sh(X)) from the frame N(O(X)) of nuclei on the frame O(X) corresponding to X and the
frame Lop(Sh(X)) of local operators on the topos Sh(X) (equivalently, a coframe isomorphism
between the coframe of sublocales of X and the coframe of subtoposes of Sh(X)). Through this
isomorphism, an open (resp. closed) nucleus on an element a ∈ O(X) corresponds to the open
(resp. closed) subtopos of Sh(X) determined by a (regarded as a subterminal object in Sh(X)),
and the dense-closed factorization of a given sublocale of X corresponds to the dense-closed
factorization of the corresponding geometric inclusion.

Proof. Given a geometric inclusion i : E → Sh(X) with codomain Sh(X), i is localic (cf.
[3, Example A4.6.2(a)]), hence the topos E is localic (cf. [3, Example A4.6.2(e)] and [4, The-
orem C1.4.7]), that is there exists a locale Y such that E � Sh(Y ); by [4, Proposition C1.4.5]
such a locale Y is unique up to isomorphism in the category Loc of locales and by [4, Corol-
lary C1.5.2] the inclusion i : Sh(Y ) → Sh(X) corresponds to a unique subobject Y → X in
Loc. Conversely, any sublocale L of X gives rise to a geometric inclusion Sh(L) → Sh(X)

(again by [4, Corollary C1.5.2]). These two assignments are clearly inverse to each other, and
hence define a bijection between the (equivalence classes of) geometric inclusions with codomain
Sh(X) and the sublocales of X. Now, recalling that the (equivalence classes of) geometric inclu-
sions with codomain Sh(X) are in bijection with the local operators on the topos Sh(X) and
the sublocales of X are in bijection with the nuclei on the frame O(X), we obtain a bijection
N(O(X)) ∼= Lop(Sh(X)). This bijection is in fact a frame isomorphism; indeed, given two sublo-
cales of X, they are included one into the other if and only if the corresponding subtoposes are
(again, this is an immediate consequence of [4, Proposition C1.4.5] and [4, Corollary C1.5.2]).
This concludes the proof of the first part of the proposition. Now, if o(a) is the open nucleus
on an element a ∈ O(X) then the subtopos corresponding to it via the isomorphism is the open
subtopos õ(a) determined by a, a being regarded here as a subterminal object in Sh(X) (cf. the
discussion [3, p. 204]); from this we deduce that the closed nucleus c(a) on an element a ∈ O(X)

corresponds to the closed subtopos c̃(a) determined by a, as c(a) and c̃(a) are respectively the
complements of o(a) and õ(a) in the frames N(O(X)) and Lop(Sh(X)) (cf. [3, Section A4.5]
and [4, Example C1.1.16(b)]).

Recall from [4] that every sublocale Y of a given locale X has a closure Y ; specifically, if j

is the nucleus on O(X) corresponding to Y then c(j (0)) is the nucleus on O(X) corresponding
to Y . In passing, we note that Y is characterized among the sublocales of X by the following
property: it is the largest sublocale Z of X such that for each open sublocale A of X A ∩ Z = ∅
(if) and only if A ∩ Y = ∅; indeed, by considering the corresponding fixsets, it is immediate to
see that A ∩ Y = ∅ if and only if a � j (0), where A = o(a). Then we have a factorization Y →
Y → X where Y → Y is dense and Y → X is closed. We want to show that the corresponding
geometric inclusions Sh(Y ) → Sh(Y ) and Sh(Y ) → Sh(X) are respectively dense and closed.
We recall from [3] that the dense-closed factorization of a geometric inclusion shj (E ) ↪→ E
is given by shj (E ) → shc̃(ext(j))(E ) → E , where ext : Lop(E ) → SubE (1) is the right adjoint
to the map c̃ : SubE (1) → Lop(E ) sending each subterminal object to the corresponding closed
subtopos. Now, if E = Sh(X) the map c̃ corresponds via our isomorphism to the map c : O(X) →
N(O(X)) sending an element a ∈ O(X) to the corresponding closed nucleus c(a); by arguing
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in terms of fixsets, it is immediate to verify that this map has a right adjoint given by the map
sending a nucleus j to its value j (0) at 0; hence, the dense-closed factorization of the subtopos
Sh(Y ) → Sh(X) is given by Sh(Y ) → Sh(Y ) → Sh(X), as required. �

We are now ready to solve our original problem.

Theorem 2.10. Let X be a locale. Then the DeMorganization Shm(Sh(X)) of the topos Sh(X)

is equivalent to the topos Sh(Xm) of sheaves on the locale Xm defined as follows: O(Xm) is the
quotient of O(X) by the filter generated by the family {u∨¬u | u is a regular element of O(X)}.

Proof. By definition of De Morgan topology, Shm(Sh(X)) is the largest dense De Morgan subto-
pos of Sh(X). In view of Proposition 2.9 and of the well-known characterization ‘Sh(X) is a De
Morgan topos if and only if X is a De Morgan locale (i.e. O(X) is a De Morgan algebra)’, it is
equivalent to prove that Xm is the largest dense De Morgan sublocale of X. This will immedi-
ately follow from the definition of Xm, once we have proved that Xm is dense in X. Indeed, if L

is a sublocale of X with corresponding surjective homomorphism of frames l : O(X) → O(L)

then L is dense in X if and only if for each a ∈ O(X), l(a) = 0 implies a = 0; so, if L is dense
in X, l preserves the operation of pseudocomplementation and hence L is a De Morgan locale if
and only if l factors through the natural projection O(X) → O(Xm).

Now, if j is the nucleus corresponding to the sublocale Xm then to prove that Xm is dense
amounts to verify that j (0) = 0. By definition of nucleus corresponding to (a sublocale regarded
as) a surjective homomorphism of frames, we have that j (0) is the largest element a ∈ O(X)

such that both a ⇒ 0 and 0 ⇒ a belongs to the filter in the statement of the proposition; so we
have to prove that for any a ∈ O(X), ¬a belongs to the filter if and only if a = 0. For a to
belong to the filter it is necessary (and sufficient) that there exists a finite number u1, u2, . . . , un

of regular elements of O(X) such that a �
∨

1�i�n(ui ∨ ¬ui). Now, denoted by O(X)¬¬ the
lattice of regular elements of O(X), the double negation operator ¬¬ is a frame homomorphism
O(X) → O(X)¬¬ and hence by applying it to the inequality above we obtain that ¬a = ¬¬¬a

is the top element of the Boolean algebra O(X)¬¬, equivalently a = 0. �
3. The simplification method

The purpose of this section is to give a simplified description of our criterion for a
Grothendieck topos to be De Morgan, and in particular of the De Morgan topology, in several
cases of interest.

Let us start with an informal description of our strategy. The main idea is that the more cat-
egorical stucture we have on C , the more we should be able to simplify the description of our
criterion. This simplification will in fact be carried out in three steps; at each step the category C
will be supposed to have some more categorical structure than it had in the previous step and, as
a result, a simpler description of the criterion will be achieved.

Let (C, J ) be a Grothendieck site. Then, denoted by C̃ the full subcategory of C on the ob-
jects which are not J -covered by the empty sieve and by J̃ the topology induced by J on C̃ ,
the toposes Sh(C, J ) and Sh(C̃, J̃ ) are naturally equivalent (cf. [4, Example C2.2.4(e)]). Theo-
rem 2.7 then implies that a Grothendieck topos Sh(C, J ) is De Morgan if and only if MC̃ � J̃ . In
investigating whether a Grothendieck topos Sh(C, J ) is De Morgan, we would then naturally opt
for using, because of its simplicity, this latter form of the criterion which involves working with
the category C̃ rather than with C . However, while our original category C may have a certain
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amount of categorical structure, by passing from C to C̃ it often happens that a lot of categorical
structure is lost. Our strategy will be then to work with the site (C̃, J̃ ), but by keeping in mind its
relationship with the original site (C, J ) (what we exactly mean by this will be clear later). We
will restrict our attention to Grothendieck topologies J such that the only object of C which is
J -covered by the empty sieve is the initial object 0C (up to isomorphism) (note that for a sub-
canonical topology J , this is always the case). Also, instead of requiring that the category C has
enough structure itself, we will more loosely require C to be closed (in the obvious sense) under
the categorical structure on a larger category D; that is, we will work in the context of (full)
embeddings C̃ ↪→ C ↪→ D, where D is supposed to be a category “with enough structure” and C
is assumed to be closed under this structure.

First, let us introduce some terminology.
Given an embedding C ↪→ D, where D is a category with pullbacks, and two arrows f : a → c

and g : b → c in D with common codomain, we denote by p.b.(f, g) the object p in D forming
the pullback square

p a

f

b
g

c

in D; of course, p is defined only up to isomorphism in D.
The following proposition represents the first step of our simplification process. Below, for C

to be closed in D under pullbacks we mean that whenever we have a pullback square

p a

f

b
g

c

in D where f and g lie in C then (an isomorphic copy of) the object p, and hence the whole
square, also lies in C .

Proposition 3.1. Let C ↪→ D be a full embedding of categories such that D has pullbacks and a
strict initial object 0 ∈ C and C is closed in D under pullbacks. Then for any object c ∈ C̃ , sieve
R on c in C̃ and arrow f : d → c in C̃ we have:

f ∗(R) = ∅ iff for every arrow r in R,p.b.(f, r) ∼= 0;
f ∗(R) is stably non-empty iff for every arrow g in C̃ s.t. cod(g) = dom(f ),

there exists r in R with p.b.(g, r) � 0

(the sieve pullbacks f ∗(R) above being taken in the category C̃ ).

Proof. Let us prove the first assertion, the second being an immediate consequence of it.
Let us suppose that f ∗(R) = ∅. If for an arrow r in R we had p.b.(f, r) � 0 then we would

have a pullback square
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p

h

k
d

f

b
r

c

in D with P � 0; hence, since C is closed in D under pullbacks, the arrow k would lie in C̃ and
satisfy k ∈ f ∗(R), contradicting our assumption.

Conversely, let us suppose that f ∗(R) is non-empty. Then there exists an arrow k : e → d in
C̃ such that f ◦ k belongs to R. Hence e � 0 and we have a commutative square

e

1d

k
d

f

e
f ◦k c

Then, 0 being a strict initial object in D, by the universal property of the pullback it follows that
p.b.(f,f ◦ k) � 0. �

It is sensible at this point to introduce the following terminology: given two arrows f and g

in C̃ with common codomain, they are said to be disjoint (equivalently, f is said to be disjoint
from g) if p.b.(f, g) ∼= 0, while f is said to be stably joint with g if for each arrow k in C̃ such
that cod(k) = dom(f ) we have p.b.(f ◦ k, g) � 0.

We note that Proposition 3.1 implies that, given two arrows f and r in C̃ with common
codomain, f ∗((r)) = ∅ if and only if f and r are disjoint, while f ∗((r)) is stably non-empty
if and only if f is stably joint with r .

Let us go on to the second step. Below, for C to be closed in D under cover-mono factorizations
we mean that if d � c′ � c is the cover-mono factorization in D of a morphism d → c lying
in C , then (an isomorphic copy of) the object c′ (and hence the whole factorization) also lies in C .

Proposition 3.2. Let C ↪→ D be a full embedding of categories such that D is a regular category
having a strict initial object 0 ∈ C and C is closed in D under pullbacks and cover-mono factor-
izations. Given an object c ∈ C̃ , a sieve R on c in C̃ and an arrow f : d → c in C̃ , let us denote,

for each arrow r in R, by dom(r) � x
r ′
� c its cover-mono factorization in D and by R′ the sieve

in C̃ generated by the arrows r ′ (for r in R). Then we have:

f ∗(R) = ∅ iff f ∗(R′) = ∅;
f ∗(R) is stably non-empty iff f ∗(R′) is stably non-empty.

Proof. Of course, it is enough to prove the first equivalence. This easily follows from Propo-
sition 3.1 and our hypotheses. Indeed, we have that f ∗(R) = ∅ if and only if for each r in R

p.b.(f, r) ∼= 0, if and only if for each r ′ in R′ p.b.(f, r) ∼= 0, if and only if f ∗(R′) = ∅, where the
second equivalence follows from the fact that, given a cover d � c, c ∼= 0 if and only if d ∼= 0
(0 being a strict initial object). �
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Corollary 3.3. Let (C, J ) be a Grothendieck site such that the only object of C which is J -
covered by the empty sieve is the initial object 0 of C (up to isomorphism) and C ↪→ D a full
embedding of categories such that D is a regular category having a strict initial object 0 ∈ C and
C is closed in D under pullbacks and cover-mono factorizations. Then Sh(C, J ) is a De Morgan
topos if and only if for each sieve R in C̃ generated in C̃ by morphisms which are monic in D,
MR = {f : d → c in C̃ | (f ∗(R) = ∅) or (f ∗(R) is stably non-empty)} is a J̃ -covering sieve.

Proof. From Proposition 3.2 we have that MR = MR′ ; our thesis then follows from the remarks
at the beginning of this section. �

Let us now proceed to the third step. Below, for C to be closed in D under arbitrary (i.e.
set-indexed) unions of subobjects we mean that whenever we have a set of arrows in C with
common codomain c ∈ C which are monic in D, the union of them in SubD(c) also lies (up to
isomorphism) in C .

Proposition 3.4. Let C ↪→ D be a full embedding of categories such that D is a geometric cat-
egory with a (strict) initial object 0 ∈ C and C is closed in D under pullbacks, cover-mono
factorizations and arbitrary unions of subobjects. Given an object c ∈ C̃ , a sieve R on c in C̃
generated by arrows {ri , i ∈ I } which are monic in D, and an arrow f : d → c in C̃ , let us
denote by r the union of the subobjects ri (for i ∈ I ) in SubD(c) and by (r) the sieve generated
by r in C̃ . Then we have:

f ∗(R) = ∅ iff f ∗((r)) = ∅;
f ∗(R) is stably non-empty iff f ∗((r)) is stably non-empty.

Proof. This immediately follows from Proposition 3.1 and the fact that unions of subobjects
in D are stable under pullback; indeed, we have that f ∗(R) = ∅ if and only if for each ri in
R p.b.(f, ri) ∼= 0, if and only if

⋃
i∈I p.b.(f, ri) ∼= 0, if and only if p.b.(f, r) ∼= 0, if and only if

f ∗((r)) = ∅. �
From Propositions 3.2 and 3.4 we immediately deduce the following corollary.

Corollary 3.5. Let (C, J ) be a Grothendieck site such that the only object of C which is J -
covered by the empty sieve is the initial object 0 of C (up to isomorphism) and C ↪→ D be a
full embedding of categories such that D is a geometric category with a (strict) initial object
0 ∈ C and C is closed in D under pullbacks, cover-mono factorizations and arbitrary unions
of subobjects. Then Sh(C, J ) is a De Morgan topos if and only if for each arrow r in C̃ which
is monic in D M(r) = {f : d → c in C̃ | (f is disjoint from r) or (f is stably joint with r)} is a
J̃ -covering sieve.

The following propositions are the analogues “for the arrows f ” of Propositions 3.2 and 3.4.

Proposition 3.6. Let C ↪→ D be a full embedding of categories such that D is a regular category
having a strict initial object 0 ∈ C and C is closed in D under pullbacks and cover-mono factor-

izations. Given an object c ∈ C̃ , a sieve R on c in C̃ and an arrow f : d → c in C̃ , if d
f ′′
� x

f ′
� c

is the cover-mono factorization of f in D then
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f ∗(R) = ∅ iff f ′∗(R) = ∅;
f ∗(R) is stably non-empty iff f ′∗(R) is stably non-empty.

Proof. Let us begin to prove the first part of the proposition. One implication is obvious as f

factors through f ′; let us prove the other one. Suppose that f ′ ∗(R) = ∅. Then there exists an
arrow k : dom(k) → x in C̃ such that f ′ ◦k belongs to R. Now, since f ′ is monic p.b.(f ′ ◦k,f ′) =
dom(k) � 0 so p.b.(f ′ ◦ k,f ) � 0 as f ′′ is a cover and 0 is strictly initial. This implies that
f ∗(R) = ∅ by Proposition 3.1. This concludes the proof of the first part.

Let us now prove the second part. Again, one direction is trivial. To prove the other implica-
tion, let us suppose that f ∗(R) is stably non-empty. Given any arrow g : e → x in C̃ , we want to
prove, according to Proposition 3.1, that there exists an arrow r in R such that p.b.(f ′ ◦g, r) � 0.
To find such an arrow r , consider in D the pullback

y

h

k
d

f ′′

e
g

x

As f ′′ is a cover then h is a cover, so y � 0 and k is an arrow in C̃ ; then, f ∗(R) being stably
non-empty, there exists an arrow r in R such that p.b.(f ◦ k, r) � 0. From this it is immediate to
see (by using that h is a cover and 0 is strictly initial) that p.b.(f ′ ◦ g, r) � 0. �
Proposition 3.7. Let C ↪→ D be a full embedding of categories such that D is a geometric cat-
egory with a (strict) initial object 0 ∈ C and C is closed in D under pullbacks, cover-mono
factorizations and arbitrary unions of subobjects. Given an object c ∈ C̃ , a sieve R on c in C̃
and a set-indexed collection {fi : di → c | i ∈ I } of arrows in C̃ which are monic in D, if f is the
union of the subobjects fi (for i ∈ I ) in SubD(c) then

f ∗(R) = ∅ iff for each i ∈ I f ∗
i (R) = ∅;

f ∗(R) is stably non-empty iff for each i ∈ I f ∗
i (R) is stably non-empty.

Proof. The first part of the proposition follows as an immediate consequence of Proposition 3.1
by using the fact that unions of subobjects in D are stable under pullback. It remains to prove
the second part. One implication is obvious, since each fi factors through f . To prove the other
implication, suppose that for each i ∈ I f ∗

i (R) is stably non-empty. By Propositions 3.2 and 3.4
we can suppose without loss of generality that R is the sieve generated in C̃ by an arrow r in C̃
which is monic in D. So we assume that for each i ∈ I fi is stably joint with r and want to prove
that f is stably joint with r . Given an arrow g : e → d in C̃ , let us define for each i ∈ I gi to be
the pullback in D of g along the inclusion ji : di → c, as in the following diagram:

yi

hi

gi

di

ji

fi

e
g

d
f

c
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Now, 1e = (f ◦ g)∗(f ) = (f ◦ g)∗(
⋃

i∈I fi) = ⋃
i∈I (f ◦ g)∗(fi) = ⋃

i∈I hi , hence since e � 0
there exists i ∈ I such that ei � 0. So gi is an arrow in C̃ and hence by our assumption
p.b.(fi ◦ gi, r) � 0; the fact that 0 is a strict initial object then implies that p.b.(f ◦ g, r) � 0,
as required. �

Let us now work under the hypotheses of Corollary 3.5 with the additional assumption that
the topology J on C is induced on C by the canonical topology on the geometric category D
(equivalently, the J -covering sieves are exactly those which contain small covering families). By
using such explicit description of the topology J , we have that, for each arrow r : d → c in C̃
which is monic in D, M(r) ∈ J̃ (c) if and only if there exists a small covering family {fi | i ∈ I }
in C̃ such that for each i ∈ I either

(1) fi is disjoint from r or
(2) fi is stably joint with r .

Note that, since C is closed in D under pullbacks and arbitrary unions of subobjects, for each
c ∈ C , the collection of subobjects in SubD(c) which lie (up to isomorphism) in C form a sub-
frame of SubD(c); this frame, regarded as a (complete) Heyting algebra, will be denoted by
SubC

D(c).
Suppose that for each i ∈ I condition (1) holds. Then by Proposition 3.7 there exists a cover

f : dom(f ) � c such that f is disjoint from r ; this clearly implies (0 being strict initial) that
dom(r) = 0, that is r is the zero subobject in the Heyting algebra SubC

D(c).
Suppose that for each i ∈ I condition (2) holds; again, by Proposition 3.7 we deduce that

for every arrow g : dom(g) → c, g is stably joint with r ; this is in turn clearly equivalent (by
Proposition 3.6) to saying that ¬r ∼= 0 in SubC

D(c).

So, provided that r � 0 and ¬r � 0 in SubC
D(c), the sets I1 = {i ∈ I | fi is disjoint from r} and

I2 = {i ∈ I | fi is stably joint with r} are both non-empty and we can deduce by Propositions 3.6
and 3.7 that there exists two arrows f1 : dom(f1) → c and f2 : dom(f2) → c in C̃ which are
monic in D, jointly covering and satisfy: f1 is disjoint from r and f2 is stably joint from r .
In terms of the Heyting algebra SubC

D(c) this condition precisely means that the union of the
subobjects f1 and f2 in SubC

D(c) is 1c , f1 ∩ r = 0 and χ ∩ r = 0 for each χ in SubC
D(c) such

that χ = 0 and χ � f2 (we may suppose – without loss of generality – χ to be in SubC
D(c) by

Proposition 3.6). On the other hand, note that the existence of two such arrows f1 and f2 implies
M(r) ∈ J̃ (c).

This leads us to introduce the following definition.

Definition 3.8. Let H be an Heyting algebra. Then H is said to satisfy De Morgan property if for
each element r ∈ H such that r = 0 and ¬r = 0 there exist elements f1 and f2 in H satisfying
the following conditions:

• f1, f2 = 0,
• f1 ∨ f2 = 1,
• f1 ∧ r = 0,
• χ ∧ r = 0 for each χ = 0 such that χ � f2.
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Remark 3.9. This definition can be clearly put also in the following form: an Heyting algebra H

satisfies De Morgan property if and only if for each element r ∈ H such that r = 0 and ¬r = 0
there exists a complemented element f in H such that f ∧ r = 0 and χ ∧ r = 0 for each χ = 0
such that χ ∧ f = 0.

Proposition 3.10. Let H be an Heyting algebra. Then H satisfies De Morgan property if and
only if it is a De Morgan algebra.

Proof. Let us use the second form of the definition of De Morgan property. In one direction,
let us suppose that H satisfies De Morgan property. To prove that H is a De Morgan algebra we
need to verify that for each element r ∈ H we have ¬r ∨¬¬r = 1. Now, if either r = 0 or ¬r = 0
this is obvious; if r = 0 and ¬r = 0 then there exists a complemented element f in H such that
f ∧ r = 0 and χ ∧ r = 0 for each χ = 0 such that χ ∧ f = 0. We have that f � ¬r as f ∧ r = 0.
To prove that ¬f � ¬¬r , observe that ¬f ∧ ¬r = 0, as otherwise by taking χ = ¬f ∧ ¬r

we would get ¬f ∧ ¬r ∧ r = 0, a contradiction. So we have 1 = f ∨ ¬f � ¬r ∨ ¬¬r , that is
¬r ∨ ¬¬r = 1.

Conversely, let us suppose that H is a De Morgan algebra; given r ∈ H such that r = 0 and
¬r = 0, we take f to be the complemented element ¬r ; this does the work because obviously
f ∧ r = 0 and given χ = 0 such that χ ∧ f = 0, χ ∧ r = 0 as otherwise we would have χ � ¬r

and hence χ � ¬r ∧ ¬¬r = 0. �
So we have arrived at the following result.

Theorem 3.11. Let (C, J ) be a Grothendieck site and C ↪→ D be a full embedding of categories
such that D is a geometric category with a (strict) initial object 0 ∈ C and C is closed in D under
pullbacks, cover-mono factorizations and arbitrary unions of subobjects. If J is the Grothendieck
topology on C induced by the canonical topology on D then Sh(C, J ) is a De Morgan topos if
and only if for each object c ∈ C the Heyting algebra SubC

D(c) satisfies De Morgan property
(equivalently, is a De Morgan algebra).

Finally, let us consider how our simplification method can be adapted to the Boolean case.
From the considerations in the first section we deduce the following criterion: provided that

every J -covering sieve is non-empty, Sh(C, J ) is Boolean if and only if every stably non-
empty sieve in C̃ is J̃ -covering. Now, if D is a regular (resp. geometric) category and J is the
Grothendieck topology on C induced via the embedding C ↪→ D by the regular (resp. canoni-
cal) topology on D, Proposition 3.2 (resp. Proposition 3.4) enables us to restrict our attention to
sieves R which are generated by a family of arrows which are monic in D (resp. by a single arrow
which is monic in D), as in Corollary 3.3 (resp. Corollary 3.5). In fact, the following results hold.

Corollary 3.12. Let (C, J ) be a Grothendieck site and C ↪→ D a full embedding of categories
such that D is a regular category having a strict initial object 0 ∈ C and C is closed in D under
pullbacks and cover-mono factorizations. Then

(a) If J is the Grothendieck topology on C induced by the regular topology on D then Sh(C, J )

is Boolean if and only if every stably non-empty sieve R in C̃ generated in C̃ by morphisms
which are monic in D is a J̃ -covering sieve (equivalently, the maximal sieve).
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(b) If D is a coherent category and J is the Grothendieck topology on C induced by the coherent
topology on D then Sh(C, J ) is Boolean if and only if every stably non-empty sieve R in C̃
generated in C̃ by morphisms which are monic in D contains a finite covering family.

Proof. (a) One direction is obvious. Let us prove the other one. If R is a stably non-empty
sieve in C̃ on an object c then by Proposition 3.2 the sieve R′ generated by the images in D of
the morphisms in R is stably non-empty and hence J̃ -covering. Then, J̃ being induced by the
regular topology on the regular category D, there exists a morphism in C̃ which is a cover in D
and belongs to R′. Thus, the identity 1c factors through one of the generating morphisms of R′,
that is there exists a morphism in R whose image is isomorphic to the identity, i.e. which is a
cover in D; hence R is a J̃ -covering sieve.

(b) One direction is obvious. In the other direction, given a stably non-empty sieve R, consider
the sieve R′ as above. Then R′ is J̃ -covering and hence, J̃ being induced by the coherent topol-
ogy on the coherent category D, R′ contains a finite covering family. In fact, R′ being generated
by monomorphisms, we may clearly suppose the members of such a family to belong to this
collection of monomorphisms. Then R contains a finite covering family (take the arrows whose
images are in the family above), and hence is J̃ -covering. �
Corollary 3.13. Let (C, J ) be a Grothendieck site and C ↪→ D a full embedding of categories
such that D is a geometric category with a (strict) initial object 0 ∈ C and C is closed in D
under pullbacks, cover-mono factorizations and arbitrary unions of subobjects of objects in C .
If J is the Grothendieck topology on C induced by the canonical topology on D then Sh(C, J ) is
Boolean if and only if for each arrow r in C̃ such that r is monic in D and (r) is stably non-empty,
(r) is a J̃ -covering sieve (equivalently, the maximal sieve).

Proof. One direction being obvious, let us prove the other one. By Corollary 3.12 we can restrict
our attention to sieves R generated by a set {ri | i ∈ I } of arrows in C̃ which are monomorphisms
in D. Denoted by r the union of these monomorphisms in SubD(c), we have by Proposition 3.4
that (r) is stably non-empty. Then (r) is a J̃ -covering sieve, that is (J̃ being induced by the
canonical topology on the geometric category D) (r) contains a small covering family of arrows
lying in C̃ . Now, the fact that r is monic in D implies that the sieve (r) is closed in D under
taking images and unions of subobjects in C̃ , so 1c ∈ (r). Thus, {ri | i ∈ I } is a small covering
family and hence R is a J̃ -covering sieve. �

Analogously to the De Morgan case, we are led to introduce the following notion.

Definition 3.14. Let H be an Heyting algebra. Then H is said to satisfy the Boolean property if
the only element r ∈ H such that for each χ ∈ H , χ = 0 implies χ ∧ r = 0, is 1.

Proposition 3.15. Let H be an Heyting algebra. Then H satisfies the Boolean property if and
only if it is a Boolean algebra.

Proof. In one direction, let us suppose that H satisfies the Boolean property. To prove that H

is a Boolean algebra we need to verify that for each element r ∈ H we have r ∨ ¬r = 1. Now,
for any χ = 0 we have χ ∧ (r ∨ ¬r) = (χ ∧ r) ∨ (χ ∧ ¬r) = 0 because otherwise we would
have χ ∧ r = 0, χ ∧¬r = 0 and hence χ � ¬r ∧¬¬r = 0, which is absurd; so we conclude that
r ∨ ¬r = 1.
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Conversely, let us suppose that H is a Boolean algebra; then given r ∈ H such that r = 1,
χ = ¬r satisfies χ = 0 and χ ∧ r = 0. �

The analogue of Theorem 3.11 is then given by the following result.

Theorem 3.16. Let (C, J ) be a Grothendieck site and C ↪→ D be a full embedding of categories
such that D is a geometric category with a (strict) initial object 0 ∈ C and C is closed in D under
pullbacks, cover-mono factorizations and arbitrary unions of subobjects. If J is the Grothendieck
topology on C induced by the canonical topology on D then Sh(C, J ) is Boolean if and only if
for each object c ∈ C the Heyting algebra SubC

D(c) satisfies Boolean property (equivalently, is a
Boolean algebra).

Proof. This immediately follows from Corollary 3.13 by using Proposition 3.6. �
4. Applications

4.1. Syntactic criteria

Given a geometric theory T, we say that T is a De Morgan (resp. Boolean) theory if its
classifying topos Set[T] satisfies De Morgan’s law (resp. is Boolean).

In this section we show how it is possible to deduce from Theorem 3.11 (resp. Theorem 3.16)
in the last section a syntactic criterion for a geometric theory to be a De Morgan (resp. Boolean)
theory.

We recall from [4] that, given a geometric theory T, its classifying topos Set[T] for T can be
represented as the category Sh(CT, JT) of sheaves on the syntactic category CT of T with respect
to the syntactic topology JT on it (i.e. the canonical topology on the geometric category CT).
Taking C = D = CT the hypotheses of Theorem 3.11 (resp. Theorem 3.16) are clearly satis-
fied, so we obtain the following criterion: given a geometric theory T, T is a De Morgan (resp.
Boolean) theory if and only if the subobject lattices SubCT

(c) (for c ∈ CT) are all De Morgan
(resp. Boolean) algebras (equivalently, they satisfy De Morgan (resp. Boolean) property). In fact,
it is possible to rephrase this latter condition as a syntactic property of the geometric theory T,
as in the following results.

Below, in the context of a geometric theory T over a signature Σ , a geometric formula φ(�x)

is said to be consistent if the sequent φ(�x) ��x ⊥ is not provable in T.

Theorem 4.1. Let T be a geometric theory over a signature Σ . Then T is a De Morgan theory
if and only if for every consistent geometric formula φ(�x) over Σ such that � ��x φ(�x) is not
provable in T, there exists two consistent geometric formulae ψ1(�x) and ψ2(�x) over Σ in the
same context such that:

• � ��x ψ1(�x) ∨ ψ2(�x) is provable in T,
• ψ1(�x) ∧ φ(�x) ��x ⊥ is provable in T and
• χ(�x) ∧ φ(�x) is consistent for every consistent geometric formula χ(�x) over Σ in the same

context such that χ(�x) ��x ψ2(�x) is provable in T.

Proof. For each geometric formula φ(�x), there is an obvious monomorphism {�x.φ(�x)} → {�x.�}
in the syntactic category CT, so by Remark 2.6(b), we can restrict our attention to the subobject
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lattices SubCT
({�x.�}). Our thesis then follows from the explicit description of subobjects in the

syntactic category CT given by [4, Lemma D1.4.4(iv)]. �
Theorem 4.2. Let T be a geometric theory over a signature Σ . Then T is a Boolean theory if and
only if every consistent geometric formula φ(�x) over Σ such that χ(�x) ∧ φ(�x) is consistent for
each consistent geometric formula χ(�x) over Σ in the same context is provable equivalent to �
in T; equivalently, for every geometric formula φ(�x) over Σ there is a geometric formula χ(�x)

over Σ in the same context such that φ(�x) ∧ χ(�x) ��x ⊥ and � ��x φ(�x) ∨ χ(�x) are provable
in T.

Proof. Similar to the proof of Theorem 4.1. �
Now, let us suppose that T is a coherent theory over a signature Σ . The classifying topos

Set[T] can be represented as the category Sh(C coh
T

, J coh
T

) of sheaves on the coherent syntactic
category C coh

T
of T with respect to the coherent topology J coh

T
on it, that is the topology having

as covering sieves those which contain finite covering families.
From Corollary 3.3 and Proposition 3.6, by arguing as above, we immediately obtain the

following result.

Theorem 4.3. Let T be a coherent theory over a signature Σ . Then T is a De Morgan theory if
and only if for every family {φi(�x) | i ∈ I } of consistent coherent formulae over Σ in the same
context there exists a finite family ψ1(�x),ψ2(�x), . . . ,ψn(�x) of consistent coherent formulae over
Σ in the same context such that:

• � ��x
∨

1�j�n ψj (�x) is provable in T and for each 1 � j � n

– either ψj(�x) ∧ φi(�x) ��x ⊥ is provable in T for all i ∈ I or
– for every consistent geometric formula χ(�x) such that χ(�x) ��x ψj (�x) is provable in T

there exists i ∈ I such that χ(�x) ∧ φi(�x) is consistent.

Theorem 4.4. Let T be a coherent theory over a signature Σ . Then T is a Boolean theory if
and only if for every family {φi(�x) | i ∈ I } of consistent coherent formulae over Σ in the same
context with the property that for each coherent consistent formula χ(�x) over Σ in the same
context there exists i ∈ I such that φi(�x) ∧ χ(�x) is consistent, there exists a finite subset J ⊆ I

such that � ��x
∨

j∈J φj (�x) is provable in T.

Proof. This follows as an immediate consequence of Corollary 3.12(b) by identifying formulas
with the corresponding monomorphisms in the coherent syntactic category (as in the proof of
Theorem 4.1). �

Note that for families {φi(�x) | i ∈ I } formed by just one element, Theorem 4.4 says precisely
that the subobject lattices in the coherent syntactic category C coh

T
satisfy Boolean property (equiv-

alently, are Boolean algebras). If T is Boolean, this also implies that they are finite (cf. [4, the
proof of Theorem D3.4.3]). On the other hand, given a coherent theory T such that all the subob-
ject lattices in C coh

T
are finite, we may immediately deduce from Theorem 4.4 that if they are all

also Boolean algebras, T is Boolean (under these hypotheses, all the families {φi(�x) | i ∈ I } in
the statement of the theorem are finite and hence they can be replaced – for our purposes – by the
singletons {φ(�x)}, where φ(�x) is the finite disjunction of all the φi(�x)). In view of Remark 2.6(b),
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this proves that a coherent theory T is Boolean if and only if all the subobject lattices in C coh
T

of
the form Sub({�x.�}) are finite Boolean algebras; we note that this is essentially the content of
[4, Theorem D3.4.6].

Suppose now that T is a regular theory. The classifying topos Set[T] can be represented as the
category Sh(C reg

T
, J

reg
T

) of sheaves on the regular syntactic category C reg
T

of T with respect to the
regular topology J

reg
T

on it, that is the topology having as covering sieves those which contain a
cover. Since the category C reg

T
satisfies the right Ore condition (being cartesian) and the topology

J
reg
T

has no empty covering sieves, we deduce from Corollary 2.8 that Set[T] � Sh(C reg
T

, J
reg
T

) is
a De Morgan topos. We have thus proved the following result.

Theorem 4.5. Let T be a regular theory. Then T is a De Morgan theory.

Concerning the Boolean case, we have the following result.

Theorem 4.6. Let T be a regular theory over a signature Σ . Then T is a Boolean theory if and
only if for every family {φi(�x) | i ∈ I } of consistent regular formulae over Σ in the same context
such that for each regular consistent formula χ(�x) over Σ in the same context there exists i ∈ I

such that φi(�x) ∧ χ(�x) is consistent, there exists i ∈ I such that � ��x φi(�x) is provable in T.

Proof. This immediately follows from Corollary 3.12(a) (by the usual identification of formulas
with monomorphisms in the relevant syntactic category). �
4.2. Separating sets for Grothendieck toposes

We observe that our simplification method can be easily modified to obtain a version of it for
∞-pretoposes in place of geometric categories; in particular, we have the following result.

Theorem 4.7. Let (C, J ) be a Grothendieck site and C ↪→ D be a full embedding of categories
such that D is an ∞-pretopos D with a (strict) initial object 0 ∈ C and C is closed in D under
pullbacks, cover-mono factorizations and arbitrary unions of subobjects. If J is the Grothendieck
topology on C induced by the canonical topology on D then Sh(C, J ) is a De Morgan topos (resp.
a Boolean topos) if and only if for each object c ∈ C the subobject lattice SubC

D(c) is a De Morgan
algebra (resp. a Boolean algebra).

From this theorem one can immediately deduce that if C ↪→ E is a separating set for a
Grothendieck topos E which is closed under in E under pullbacks and under taking subobjects
in E then E is a De Morgan (resp. Boolean) topos if and only if for each c ∈ C , SubE (c) is a
De Morgan (resp. Boolean) algebra. In fact, the following more general result hold.

Theorem 4.8. Let E be an ∞-pretopos with a separating set C . Then E is a De Morgan (resp.
Boolean) topos if and only if for each c ∈ C , SubE (c) is a De Morgan (resp. Boolean) algebra.

Proof. Given an elementary topos E , it is well known that E is a De Morgan (resp. Boolean)
topos if and only if all the subobject lattices SubE (e) for e ∈ E are De Morgan (resp. Boolean)
algebras; here we want to show that, under our hypotheses, it is enough to check that all
the subobject lattices SubE (c) for c ∈ C are. Given a Grothendieck topos E and an object
e ∈ E , if C is a separating set for E then e can be expressed as a quotient of a coproduct
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of objects in C , that is there exists a family {ci | i ∈ I } (where I is a set) of objects in C
and an epimorphism p : ∐

i∈I ci � e. Since p is an epimorphism, then the pullback functor
p∗ : SubE (e) → SubE (

∐
i∈I ci) ∼= ∏

i∈I SubE (ci) is (logical and) conservative (cf. [3, Exam-
ple 4.2.7(a), p. 181]), hence SubE (e) is a De Morgan (resp. Boolean) algebra if all the SubE (ci)

are. �
Remarks 4.9. (a) The classifying topos Set[T] of a geometric theory T is the ∞-pretopos gen-
erated by the geometric syntactic category CT of T (cf. [4, Proposition D3.1.12]), so the objects
of CT form a separating set for Set[T]; hence the hypotheses of Theorem 4.8 are satisfied and we
get Theorems 4.1 and 4.2 as an application.

(b) Another case of interest in which the theorem can be applied is when we have a pre-bound
B for E ; indeed, the subobjects of finite powers Bn form a separating set for E and hence, in view
of Remark 2.6(b), we obtain the following characterization: E is a De Morgan (resp. Boolean)
topos if and only if for each natural number n the Heyting algebra Sub(Bn) is a De Morgan
(resp. Boolean) algebra; in particular, if Set[T] is the classifying topos of a one-sorted geometric
theory T then the underlying object MT ∈ Set[T] of the universal T-model is a pre-bound for
Set[T] so we obtain the following criterion: T is a De Morgan (resp. Boolean) theory if and only
if all the lattices Sub(MT

n) (for n natural number) are De Morgan (resp. Boolean) algebras.

4.3. Topological interpretations

In Section 2, we have introduced the notions of an Heyting algebra satisfying De Morgan
(resp. Boolean) property; in this section, we show that these notions have a clear topological
meaning in terms of the (generalized) locale corresponding to the Heyting algebra.

Given an Heyting algebra H , we can consider it as a generalized locale (recall that locales are
the same thing as complete Heyting algebras). We recall that any sublocale Y of a given locale X

has a closure Y ; in particular, if Y is the open sublocale of a locale H corresponding to an element
a ∈ H , then Y is the closed sublocale of H corresponding to the element ¬a ∈ H (note that this
notion of closure of an open sublocale is liftable from the context of locales to that of generalized
locales). Now, by using the characterization of the closure of a sublocale given in the proof of
Proposition 2.9, it is easy to see that De Morgan property on an Heyting algebra is equivalent
to the statement that the corresponding (generalized) locale is extremally disconnected (i.e. the
closure of any open sublocale is open), while the Boolean property is equivalent to saying that
the (generalized) locale is almost discrete (i.e. the only non-empty dense open sublocale is the
whole locale, in other words every open sublocale is closed).

By regarding a locale L as a geometric category, Theorems 3.11 and 3.16 (together with
Remark 2.6(b)) then give the following results.

Theorem 4.10. Let L be a locale. Then Sh(L) is a De Morgan topos if and only if L is a
De Morgan algebra (equivalently, satisfies De Morgan property), if and only if L is extremally
disconnected.

Theorem 4.11. Let L be a locale. Then Sh(L) is a Boolean topos if and only if L is a Boolean
algebra (equivalently, satisfies Boolean property), if and only if L is almost discrete.
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These results are more or less well known, but we feel that, by introducing the concepts of
De Morgan and Boolean property, we have added another viewpoint that clarifies the interplay
between the topological and logical notions.

Now, let T be a geometric theory over a signature Σ and M a T-model in a Grothendieck
topos E . For each context �x = (x

A1
1 , . . . , x

An
n ) over Σ , the subobjects of MA1 × · · · × MAn of

the form �φ(�x)�, where φ(�x) is a geometric formula in the context �x over Σ (here � �x.φ� denotes
the interpretation of the formula φ(�x) in the model M) clearly form a subframe of SubE (MA1 ×
· · · × MAn). The locale corresponding to this frame will be denoted by Defgeom

�x (M); we note
that, at least when E is the topos Set, this locale is spatial, so that we have a topological space
Defgeom

�x (M) whose open subsets are exactly the subsets of MA1 ×· · ·×MAn which are definable
by geometric formulas.

Given a geometric theory T, we now consider how the property of the classifying topos
Set[T] to be De Morgan (or Boolean) reflects into topological or logical properties of the locales
Defgeom

�x (M). First, we note that there is a geometric surjective functor IntM�x : SubC geom
T

({�x.�}) →
Defgeom

�x (M) which sends each formula φ(�x) (identified with the corresponding subobject
{�x.φ(�x)} → {�x.�} in C geom

T
) to the interpretation � �x.φ� in the model M . As a consequence of

the fact that IntM�x is geometric we deduce that if SubC geom
T

({�x.�}) is a Boolean algebra then

Defgeom
�x (M) is also a Boolean algebra; however, it is not true in general that if SubC geom

T

({�x.�})
is a De Morgan algebra then Defgeom

�x (M) is a De Morgan algebra. If M is a conservative T-
model, then clearly IntM�x is conservative and hence an isomorphism, so SubC geom

T

({�x.�}) is a

De Morgan (resp. Boolean) algebra if and only if Defgeom
�x (M) is. As an application of this, con-

sider the universal model MT of a geometric theory T lying in the classifying topos Set[T]; in
view of our characterization saying that Set[T] is De Morgan (resp. Boolean) if and only if all
the subobject lattices of the form so SubC geom

T

({�x.�}) are De Morgan (resp. Boolean) algebras,
we obtain the following criterion: T is a De Morgan (resp. Boolean) theory if and only if all the
Defgeom

�x (MT) are De Morgan (resp. Boolean) algebras.

5. Model-theoretic characterizations

Let us first introduce some notation. Given two Grothendieck topologies J and J ′ on a given
category C , we write J ′ ⊆ J to mean that every J ′-covering sieve is a J -covering sieve (equiv-
alently, J ′ � J as topologies on the topos [C op,Set]). Given a Grothendieck topology J on a
category C , we denote by aJ : [C op,Set] → Sh(C, J ) the associated sheaf functor.

Given a Grothendieck topos E and a category C , we write Flat(C, E ) for the category of
flat functors C → E and natural transformations between them; for a Grothendieck topology J

on C , FlatJ (C, E ) will denote the full subcategory of J -continuous flat functors C → E . The 2-
category of Grothendieck toposes, geometric morphisms and geometric transformations between
them will be denoted by BTop and, given two Grothendieck toposes E and F , we will write
Geom(E , F ) for the category of geometric morphisms E → F and geometric transformations
between them.

Lemma 5.1. Let J and J ′ be two Grothendieck topologies on a given category C . Then J ′ ⊆
J if and only if for each Grothendieck topos E every J -continuous flat functor C → E is J ′-
continuous, equivalently the functor aJ ◦ y : C → Sh(C, J ) is J ′-continuous (where y : C →
[C op,Set] is the Yoneda embedding).



O. Caramello / Advances in Mathematics 222 (2009) 2117–2144 2137
Proof. We recall that there is an equivalence of categories FlatJ (C, E ) � Geom(E ,Sh(C, J )),
which is natural in E ∈ BTop. By this equivalence, requiring that for each Grothendieck topos E
there is an inclusion FlatJ (C, E ) ⊆ FlatJ ′(C, E ) as in the statement of the lemma, is equivalent
to demanding that for each E ∈ BTop there is a commutative diagram

Geom(E ,Sh(C, J )) Geom(E ,Sh(C, J ′))

Geom(E , [C op,Set])

which is natural in E ∈ BTop, where the two diagonal arrows are the obvious ones induced
by the inclusions. This is in turn equivalent, by Yoneda, to requiring that the geometric inclu-
sion Sh(C, J ) ↪→ [C op,Set] factors through the inclusion Sh(C, J ′) ↪→ [C op,Set] (equivalently
the flat J -continuous functor aJ ◦ y : C → Sh(C, J ) is J ′-continuous); and from the theory of
elementary toposes we know that this happens precisely when J ′ ⊆ J . �

Given a Grothendieck site (C, J ), let us consider the “reduced” site (C̃, J̃ ), as in Section 2. As
we have already remarked, there is an equivalence of categories Sh(C, J ) � Sh(C̃, J̃ ), given
by the Comparison Lemma. This equivalence is in fact a geometric equivalence of toposes
τ : Sh(C̃, J̃ ) → Sh(C, J ), having as its inverse image the obvious restriction functor. Indeed,
from [4, the proof of Theorem C2.2.3] we see (by invoking the uniqueness – up to isomor-
phism – of right adjoints), that the geometric morphism l : [C̃ op,Set] → [C op,Set] induced by
the inclusion C̃ op ↪→ C op (as in [3, Example A4.1.4]), restricts to the equivalence τ between the
subtoposes Sh(C̃, J̃ ) and Sh(C, J ), that is we have a commutative diagram

Sh(C̃, J̃ )

τ

[C̃ op,Set]
l

Sh(C, J ) [C op,Set]

in BTop (where the horizontal arrows are the obvious geometric inclusions). Now, for
each Grothendieck topos E , the equivalence of categories − ◦ τ : Geom(E ,Sh(C, J )) →
Geom(E ,Sh(C̃, J̃ )) obtained by composing with τ , induce, via the equivalences Geom(E ,

Sh(C, J )) � FlatJ (C, E ) and Geom(E ,Sh(C̃, J̃ )) � Flat
J̃
(C̃, E ), an equivalence of categories

FlatJ (C, E ) � Flat
J̃
(C̃, E ), whose explicit description is given by the following lemma.

Lemma 5.2. With the above notation, the equivalence FlatJ (C, E ) � Flat
J̃
(C̃, E ) has the fol-

lowing description: one half of the equivalence sends a J -continuous flat functor F : C → E to
its restriction F |C̃ : C̃ → E to the category C̃ , while the other half of the equivalence sends a

J̃ -continuous flat functor G : C̃ → E to the its extension G : C → E to C obtained by putting
G(c) = 0 for each c ∈ C not in C̃ .

Proof. The equivalence Geom(E ,Sh(C, J )) � FlatJ (C, E ) (resp. Geom(E ,Sh(C̃, J̃ )) �
Flat

J̃
(C̃, E )), sends a geometric morphism f : E → Sh(C, J ) to the functor f ∗ ◦ aJ ◦ y ∈

FlatJ (C, E ) (resp. a geometric morphism f ′ : E → Sh(C̃, J̃ ) to the functor f ′∗ ◦ a ˜ ◦ y ∈

J
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Flat
J̃
(C̃, E )) (see for example [5]). From the commutativity of the square above it is then imme-

diate to see that the half of the equivalence given by the composition with the inverse image of τ

corresponds to the obvious restriction functor FlatJ (C, E ) → Flat
J̃
(C̃, E ). The other half of the

equivalence necessarily induce the functor which sends a J̃ -continuous flat functor G : C̃ → E
to its extension G : C → E to C obtained by putting G(c) = 0 for each c ∈ C not in C̃ ; indeed,
there is at most one J -continuous flat functor G : C → E whose restriction to C̃ is a given functor
G : C̃ → E (for G to be J -continuous, G(c) must be equal to 0 for each object c ∈ C which is
J -covered by the empty sieve). �

Let us now apply the lemmas above to deduce a model-theoretic characterization of De Mor-
gan (resp. Boolean) toposes among those which arise as localizations of a given presheaf topos
[C op,Set].

Recall that in [2] we introduced the notion of J -homogeneous model of a theory of presheaf
type T with respect to a Grothendieck topology J on the category (f.p.T-mod(Set))op. Having
this notion in mind, we now introduce the following more specific definition (the notation below
being taken from [2]).

Given a Grothendieck topos E with a class of generators G , a geometric theory T classified
by the topos [C op,Set] (with C = (f.p.T-mod(Set))op), and a collection S of arrows in C op with
common domain, a model M ∈ T-mod(E ) is said to be S-homogeneous if for each object E ∈ G
and arrow y : E∗(γ ∗

E (i(c))) → E∗(M) in T-mod(E /E) there exists an epimorphic family (pf :
Ef → E, f ∈ S) and for each arrow f : c → d in S an arrow uf : E∗

f (γ ∗
E (i(d))) → E∗

f (M) in
T-mod(E /E) such that p∗

f (y) = uf ◦ E∗
f (γ ∗

E (i(f ))).
The following results hold.

Theorem 5.3. Let T be a geometric theory classified by the topos [C op,Set] (with C =
( f.p.T-mod(Set))op) and T′ a geometric theory classified by a topos E = Sh(C, J ) together with
a full and faithful indexed functor i : T′-mod ↪→ T-mod which is induced via the universal prop-
erty of the classifying toposes by the inclusion Sh(C, J ) ↪→ [C op,Set]. If m is the De Morgan
topology on the topos E then shm(E ) classifies the T′-models which are S-homogeneous (as T-
models via i) for each MC̃ -covering sieve S. In particular, T′ is a De Morgan theory if and only
if every T′-model (in any Grothendieck topos) is (as a T-model via i) S-homogeneous for each
MC̃ -covering sieve S.

Proof. We have shm(E ) = shm([C̃ op,Set]) ∩ E by Proposition 2.5(ii). From this it is clear that
shm(E ) classifies the flat functors on C̃ which are J̃ -continuous and MC̃ -continuous (where MC̃
is the De Morgan topology on the category C̃ ), equivalently (by Lemma 5.2) the J -continuous
flat functors on C which send MC̃ -covering sieves to epimorphic families. The thesis then follows
from [2, Theorems 4.6–4.8]. The last part of the theorem follows from the first part together with
Proposition 2.5(i) and Lemma 5.1. �
Theorem 5.4. Let T be a geometric theory classified by the topos [C op,Set] (with C =
( f.p.T-mod(Set))op) and T′ a geometric theory classified by a topos E = Sh(C, J ) together with a
full and faithful indexed functor i : T′-mod ↪→ T-mod which is induced via the universal property
of the classifying toposes by the inclusion Sh(C, J ) ↪→ [C op,Set]. Then sh¬¬(E ) classifies the
T′-models which are (as T-models via i) S-homogeneous for each stably non-empty sieve S in C̃ .
In particular, T′ is a Boolean theory if and only if the T′-models (in any Grothendieck topos) are
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(identified by i with) the T-models which are S-homogeneous for every stably non-empty sieve S

in C̃ .

Proof. This is similar to the proof of Theorem 5.3; we omit the details. �
5.1. Axiomatizations

Let us start with some preliminary observations on the operation of pseudocomplementation in
the Heyting algebras of the form SubCT

({�x.�}), where CT is the syntactic category of a geometric
theory T over a signature Σ .

We will use the following terminology. A geometric formula φ(�x) over Σ is said to be consis-
tent (with respect to T) if the sequent φ(�x) ��x ⊥ is not provable in T. Two geometric formulas
φ(�x) and ψ(�x) over Σ in the same context are said to be consistent with each other (with respect
to T) if their conjunction is consistent; otherwise, they are said to be inconsistent with each other.
ψ(�x) is said to be stably consistent with φ(�x) if χ(�x) ∧ φ(�x) is consistent for each consistent
formula χ(�x) in the same context which T-provably implies ψ(�x); ψ(�x) is said to be stably
consistent if it is stably consistent with �(�x). From now on we will freely identify a geometric
formula φ(�x) over Σ with the corresponding monomorphism {�x.φ(�x)} → {�x.�} in CT.

Let us put, for φ(�x) ∈ SubCT
({�x.�}), Cons(φ(�x)) = {ψ(�x) ∈ SubCT

({�x.�}) | ψ(�x) and φ(�x)

are consistent} (and Incons(φ(�x)) equal to the complement SubCT
({�x.�}) \ Cons(φ(�x))). Note

that this assignment actually defines a functor Cons : SubCT
({�x.�}) → P (SubCT

({�x.�})), where
P (SubCT

({�x.�})) is regarded as a poset category with respect to the inclusion. This is in fact an
instance of a more general construction, which we describe now.

Given a (complete) Heyting algebra H , we can define a functor Cons : H → P (H) by
Cons(h) = {h′ ∈ H | h′ ∧ h = 0}.

We can rephrase various concepts involving the operation of pseudocomplementation ¬ in H

in terms of the functor Cons; for instance, we have the following proposition.

Proposition 5.5. Let H be a complete Heyting algebra. Then

(i) For each h ∈ H , ¬h = 0 if and only if Cons(h) = H \ {0}.
(ii) For each h,h′ ∈ H , h′ � ¬¬h if and only if Cons(h′) ⊆ Cons(h), if and only if h′ is stably

joint with h (i.e. a ∧ h = 0 for each a = 0 such that a � h′).
(iii) For each h ∈ H , ¬¬h = h if and only if for every h′ ∈ H , Cons(h′) ⊆ Cons(h) implies

h′ � h.
(iv) H is a Boolean algebra if and only if the functor Cons is conservative.

Proof. (i) This is immediate from the fact that for each h ∈ H , ¬h = ∨
h′∧h=0 h′.

(ii) For each h,h′ ∈ H , h′ � ¬¬h if and only if h′ ∧ ¬h = 0, if and only if h′ ∧ ∨
a∧h=0 a =∨

a∧h=0 a ∧ h′ = 0, if and only if Cons(h′) ⊆ Cons(h). The last equivalence in (ii) is obvious.
(iii) For any h ∈ H , ¬¬h = h if and only if ¬¬h � h, if and only if for each h′ ∈ H h′ � ¬¬h

implies h′ � h, if and only if Cons(h′) ⊆ Cons(h) implies h′ � h, where the last equivalence
follows from (ii).

(iv) H is a Boolean algebra if and only for each h ∈ H ¬h = 0 implies h = 1 (one direction
is obvious, while for the other one it suffices to observe that h ∨ ¬h = 1 for each h ∈ H as
¬(h ∨ ¬h) = ¬h ∧ ¬¬h = 0), if and only if for each h ∈ H ¬¬h = h; then our thesis follows at
once from (i) and (iii). �
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Given a complete Heyting algebra H , we note that H is a De Morgan algebra if and only if for
each pair of elements h,h′ ∈ H , h∧h′ = 0 implies ¬h∨¬h′ = 1 that is

∨
a∧h=0 or a∧h′=0 a = 1;

as we have observed above, H is a Boolean algebra if and only if for each h ∈ H ¬h = 0 implies
h = 1.

These characterizations are the ingredients of our axiomatizations.

Theorem 5.6. Let T be a geometric theory over a signature Σ classified by a Grothendieck
topos E . Then the theory T′ obtained by adding to the axioms of T all the geometric sequents of
the form � ��x

∨
ψ(�x)∈Incons(φ(�x))∪Incons(φ′(�x)) ψ(�x), where φ(�x) and φ′(�x) are geometric formu-

las in the same context which are inconsistent with each other with respect to T, is classified by
the topos shm(E ) (where m is the De Morgan topology on E ).

Proof. Let us represent E as Sh(CT, JT). Recall that we have an equivalence of categories
T-mod(E ) � FlatJT

(CT, E ) (natural in E ∈ BTop) which sends each model M ∈ T-mod(E )

the functor F : CT → E assigning to a formula φ(�x) its interpretation �φ(�x)�M in M . As we
have observed in the proof of Theorem 5.3, shm(E ) classifies the JT-continuous flat func-
tors on CT which send MC̃T

-covering sieves to epimorphic families; it remains to show that,
via the equivalence above, these functors correspond precisely to the T-models M such that
�¬φ(�x) ∨ ¬¬φ(�x)�M = ��(�x)�M for each geometric formula φ(�x) over Σ (equivalently,
�¬φ(�x) ∨ ¬ψ(�x)�M = ��(�x)�M for each pair φ(�x) and ψ(�x) of geometric formulas over Σ

in the same context which are inconsistent with each other with respect to T). By our results in
Section 2 and Lemma 5.1, we have that the JT-continuous flat functors on CT which send MC̃T

-
covering sieves to epimorphic families are exactly those which send every family of arrows of
the form Mφ(�x) = {ψ(�x) | ψ(�x) ∈ Incons(φ(�x)) or (ψ(�x) is stably consistent with φ(�x))} (for a
geometric formula φ(�x) over Σ ) to an epimorphic family; by Proposition 5.5(ii), this is clearly
equivalent to saying that the corresponding models M satisfy �¬φ(�x) ∨ ¬¬φ(�x)�M = ��(�x)�M

for each geometric formula φ(�x) over Σ . �
The theory T′ defined in the theorem above will be called the DeMorganization of the the-

ory T.

Theorem 5.7. Let T be a geometric theory over a signature Σ classified by a Grothendieck
topos E . Then the theory T′ obtained by adding to the axioms of T all the geometric sequents of
the form � ��x φ(�x), where φ(�x) is a geometric formula over Σ which is stably consistent with
respect to T, is classified by the topos sh¬¬(E ).

Proof. The proof proceeds analogously to that of Theorem 5.6, by using Theorem 5.4 and the
fact that the JT-continuous flat functors on CT which send stably non-empty sieves in C̃T to epi-
morphic families are exactly those which send each sieve in C̃T generated by a stably consistent
formula (cf. Section 2) to an epimorphic family. �

The theory T′ defined in the theorem above will be called the Booleanization of the theory T.
From the theorems above we can deduce the following corollaries.

Corollary 5.8. Let T be a theory classified by a topos [C op,Set] (with C = ( f.p.T-mod(Set))op).
Then the DeMorganization of T axiomatizes the T-models which are S-homogeneous for every
MC -covering sieve S (where MC is the De Morgan topology on the category C ).
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Proof. This immediately follows from Theorems 5.3 and 5.6 by using [2, Theorems 4.6–
4.8]. �
Corollary 5.9. Let T be a theory classified by a topos [C op,Set] (with C = ( f.p.T-mod(Set))op).
Then the Booleanization of T axiomatizes the T-models which are S-homogeneous for every
stably non-empty sieve S in the category C . In particular, if C satisfies the right Ore condition,
the Booleanization of T axiomatizes the homogeneous T-models.

Proof. This immediately follows from Theorems 5.4 and 5.7 by using [2, Theorems 4.6–
4.8]. �
6. Examples

In this section we provide some examples of theories which are De Morgan and theories which
are not, focusing our attention on coherent theories (recall that we have proved that every regular
theory is De Morgan, cf. Theorem 4.5 above).

The first theory we consider is the theory of dense linear orders. As remarked in [1], this
theory is not Boolean; however it is a De Morgan theory, as stated in the following proposition.

Proposition 6.1. The theory of dense linear orders is a De Morgan theory.

Proof. By an obvious variation of the arguments in [4, Example D3.4.11], the classifying topos
for the theory of dense linear orders can be represented as the topos Sh(Ordop

fm, J ) of sheaves
on the opposite of the category Ordfm of finite ordinals and order-preserving injections between
them with respect to a Grothendieck topology J on Ordop

fm with no empty covering sieves. Note

that the category Ordop
fm satisfies the right Ore condition; our thesis then follows from Corol-

lary 2.8. �
Next, let us consider a couple of theories which arise as “quotients” of the algebraic theory of

rings.

Proposition 6.2. The theory of local rings is not a De Morgan theory.

Proof. It is well known that the coherent theory of local rings is classified by the Zariski topos Z ,
that is the topos Sh(Rngop

f.g., J ) of sheaves on the opposite of the category C = Rngf.g. of finitely

generated rings with respect to the topology J on Rngop
f.g. defined as follows: given a cosieve S

in Rngf.g. on an object A, S ∈ J (A) if and only if S contains a finite family {ξi : A → A[si−1] |
1 � i � n} of canonical inclusions ξi : A → A[si−1] in Rngf.g. where {s1, . . . , sn} is any set
of elements of A which is not contained in any proper ideal of A. Obviously, the only object
of Rngf.g. which is J -covered by the empty cosieve is the zero ring. In order to apply our

criterion ‘Sh(C, J ) is De Morgan if and only if MC̃ � J̃ ’ (established in section 2 above) to

decide whether Z is De Morgan or not, let us consider the reduced site (C̃, J̃ ). Notice that for
A ∈ C̃ , the canonical inclusion ξs : A → A[s−1] lies in C̃ (i.e. it is not the zero map) if and only
if s is not nilpotent. Then we have: S ∈ J̃ (A) if and only if S contains a finite family {ξsi : A →
A[si−1] | 1 � i � n} of canonical inclusions ξsi : A → A[si−1] in Rngf.g. where {s1, . . . , sn} is
any set of non-nilpotent elements of A which is not contained in any proper ideal of A. Indeed,
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by definition of induced topology, S ∈ J̃ (A) if and only if there exists elements s1, . . . , sn and
t1, . . . , tm such that the set {s1, . . . , sn, t1, . . . , tm} is not contained in any proper ideal of A, all the
si are non-nilpotent, all the tj are nilpotent and S contains the family {ξs1, . . . , ξs1, ξt1, . . . , ξtm};
but (s1, . . . , sn, t1, . . . , tm) = 1 implies (sr

1, . . . , sr
n, t

r
1 , . . . , t rm) = 1 for any natural number r , in

particular for an r such that t rj = 0 for each 1 � j � m and hence (s1, . . . , sn) = 1.

For an object A ∈ C̃ and a non-nilpotent element a ∈ A, let us denote by SA
a the cosieve in C̃

generated by the arrow ξa : A → A[a−1]; note that SA
a can be identified with the collection of

arrows f in C̃ with domain A such that f (a) is invertible. Let us now observe some facts about
these sieves.

Lemma 6.3. With the above notation, for any object A ∈ C̃ and non-nilpotent element a ∈ A the
following facts hold:

(i) For any arrow f : A → B in C̃ with domain A,

f ∗(SA
a

) =
{∅ if f (a) is nilpotent,

SB
f (a) if f (a) is not nilpotent;

(ii) SA
a is a J̃ -closed cosieve;

(iii) SA
a is stably non-empty if and only if it is the maximal cosieve on A i.e. a is invertible.

Proof. (i) This is immediate from the equalities f ∗(SA
a ) = {g : B → cod(g) | g ◦ f ∈ SA

a } =
{g : B → cod(g) | g(f (a)) is invertible}.

(ii) Suppose that for an arrow f : A → B in C̃ with domain A we have f ∗(SA
a ) ∈ J̃ (B);

then (by the description of J̃ given above) there exist a finite number of non-nilpotent elements
s1, . . . , sn ∈ B such that (s1, . . . , sn) = 1 and ξsi belongs to f ∗(SA

a ) for each 1 � i � n. So
we have (by the calculation above) that ξsi (f (a)) is invertible for each 1 � i � n; this in turn
means that there exists for each 1 � i � n an element ci ∈ B and a natural number ni such that
f (a)ci = s

ni

i . Now, by taking p = max{ni} we have (s
p

1 , . . . , s
p
n ) = 1 and hence the existence of

an element c such that f (a)c = 1, that is f (a) invertible in B i.e. f belongs to SA
a .

(iii) One direction is obvious; let us prove the other one. If a is not invertible then (a) is
a proper ideal of A and hence the quotient A/(a) belongs to C̃ . But if π : A → A/(a) is the
natural projection map we have (by part (i) of the lemma) π∗(SA

a ) = ∅, hence SA
a is not stably

non-empty. �
Now by Lemma 6.3 we have that, for a given object A ∈ C̃ and non-nilpotent element a ∈ A,

M(ξa) = {f : A → cod(f ) | f (a) is nilpotent or invertible} (with the notation of section 2 above).
Suppose now that A is an integral domain and M(ξa) is J̃ -covering. Then there exists a finite
number of non-nilpotent elements s1, . . . , sn of A such that (s1, . . . , sn) = 1 and ξsi belongs to
M(ξa) for each 1 � i � n. If for some i ξsi (a) were nilpotent then, A being an integral domain,
si would be nilpotent, contradicting our assumption. So we deduce that ξsi (a) is invertible for
each 1 � i � n, from which it follows (as in the proof of part (i) of Lemma 6.3) that a is invertible.
So we have proved that if A ∈ C̃ is an integral domain and a ∈ A is a non-nilpotent element of
A then M(ξa) is J̃ -covering if and only a is invertible. Any instance of an integral domain A

together with a non-invertible element a ∈ A (for example A equal to the ring of integers Z and
a = 2) then proves that Z is not De Morgan. �
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Proposition 6.4. The theory of integral domains is not a De Morgan theory.

Proof. The theory T of integral domains is obtained from the algebraic theory of rings by adding
the following axioms:

0 = 1 �{} ⊥;
x · y = 0 �x,y (x = 0) ∨ (y = 0).

By using [4, Proposition D3.1.10] we immediately obtain the following representation for the
classifying topos Set[T] of T: Set[T] � Sh(Rngop

f.g., J ), where J is the smallest Grothendieck

topology on C = Rngop
f.g. such that the empty sieve on the zero ring and the cosieve in Rngf.g.

on Z[x, y]/(x · y) generated by the canonical projections Z[x, y]/(x · y) → Z[x, y]/(x) and
Z[x, y]/(x · y) → Z[x, y]/(y) are J -covering. The following result (which was motivated by the
arguments [5, pp. 111–112]) will be useful for giving an explicit description of the topology J .

Lemma 6.5. Let C be a category and K be a function which assigns to each object c ∈ C a
collection K(c) of sieves in C on c. Then K is a Grothendieck topology if and only if it satisfies
the following properties:

(i) the maximal sieve M(c) belongs to K(c);
(ii) for each pair of sieves S and T on c such that T ∈ K(c) and S ⊇ T , S ∈ K(c);

(iii) if R ∈ K(c) then for any arrow g : d → c there exists a sieve S ∈ K(c) such that for each
arrow f in S, g ◦ f ∈ R;

(iv) if {fi : ci → c | i ∈ I } ∈ K(c) and for each i ∈ I we have a sieve {gij : dij → ci | j ∈ Ii} ∈
K(ci), then the family of composites {fi ◦ gij : dij → c | i ∈ I, j ∈ Ii} belongs to K(c).

Proof. In one direction, let us suppose that K is a Grothendieck topology. Properties (i) and
(ii) are well known to hold. Property (iii) holds as we can clearly take as cover S satisfying the
condition the pullback of the sieve R along the arrow g : d → c, which is K-covering by the
stability axiom for Grothendieck topologies. Property (iv) easily follows from the transitivity
axiom for Grothendieck topologies; indeed, the sieve R := {fi ◦ gij : dij → c | i ∈ I, j ∈ Ii}
satisfies the following property with respect to the sieve S := {fi : ci → c | i ∈ I } ∈ K(c): for all
arrows h in S, h∗(R) is K-covering.

Conversely, let us suppose that K satisfies properties (i), (ii), (iii) and (iv). To prove that K

satisfies the stability axiom for Grothendieck topologies we observe that if R ∈ K(c) and
g : d → c is an arrow with codomain c, then h∗(R) contains the sieve S given by property
(iii) and hence is K-covering by property (ii). It remains to verify that K satisfies the transitivity
axiom for Grothendieck topologies. Given a sieve R on c and a sieve S ∈ K(c) such that for all
arrows h in S, h∗(R) is K-covering, we want to prove that R is K-covering. This follows from
property (ii) as R contains “the composite” of the sieve S with the sieves of the form h∗(R) for
h in S. �

Notice that, in case C has pullbacks, property (iii) in the lemma may be replaced by the fol-
lowing condition: if {fi : ci → c | i ∈ I } ∈ K(c) then for any arrow g : d → c the sieve generated
by the family of pullbacks {p.b.(fi, g) → d | i ∈ I } belongs to K(d).
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Now, as a consequence of Lemma 6.5, it is immediate to see that J is the topology defined as
follows: given a cosieve S in Rngf.g. on an object A ∈ Rngf.g., S ∈ J (A) if and only if either A

is the zero ring and S is the empty sieve on it or S contains a finite family {πai
: A → A/(ai) |

1 � i � n} of canonical projections πai
: A → A/(ai) in Rngf.g. where {a1, . . . , an} is any set of

elements of A such that a1 · . . . · an = 0.
Let us now observe the following fact.

Lemma 6.6. Let C be a category and J be a Grothendieck topology on it with no empty covering
sieves. If there exists an object c ∈ C such that J (c) = {M(c)} and two arrows f and g with
codomain c such that f ∗((g)) = ∅ then Sh(C, J ) is not a De Morgan topos.

Proof. By using the notation of Section 2 above, we have that M(g) ∈ J (c) implies (g) empty or
stably non-empty; as none of the two alternatives hold in our case (in view of our hypotheses), we
conclude that M(g) /∈ J (c) and hence, by Theorem 2.7, Sh(C, J ) is not a De Morgan topos. �

Lemma 6.6 provides us with a counterexample to Set[T] being De Morgan. Indeed, we note
that if A ∈ Rngf.g. is an integral domain then J̃ (A) = {M(A)}; so by taking A = Z, and f and
g to be respectively the canonical projections Z → Z/2Z and Z → Z/3Z in Rngf.g. we have

that the reduced site (C̃, J̃ ) satisfies the hypotheses of the lemma. �
An analysis of the theory of fields in relation to De Morgan’s law is carried out in a joint paper

with Peter Johnstone available in this issue.
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