
 Procedia Computer Science 46 (2015) 906 – 912

1877-0509 © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of organizing committee of the International Conference on Information and Communication Technologies (ICICT 2014)
doi: 10.1016/j.procs.2015.02.161

ScienceDirect
Available online at www.sciencedirect.com

International Conference on Information and Communication Technologies (ICICT 2014)

Open Issues in Software Defect Prediction

Ishani Aroraa, Vivek Tetarwala,*, Anju Sahaa
aUniversity School of Information and Communication Technology

Guru Gobind Singh Indraprastha University, Dwarka, Delhi- 110078, India

Abstract

Software Defect Prediction (SDP) is one of the most assisting activities of the Testing Phase of SDLC. It identifies the modules
that are defect prone and require extensive testing. This way, the testing resources can be used efficiently without violating the
constraints. Though SDP is very helpful in testing, it’s not always easy to predict the defective modules. There are various issues
that hinder the smooth performance as well as use of the Defect Prediction models. In this report, we have distinguished some of
the major issues of SDP and studied what has been done so far to address them.
© 2014 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of organizing committee of the International Conference on Information and Communication
Technologies (ICICT 2014).

Keywords:data mining;defect prediction;machine learning;software quality;software testing

1. Introduction

Defect Prediction in software is viewed as one of the most useful and cost efficient operation. Software
practitioners see it as a vital phase on which the quality of the product being developed depends. It has taken up
major part in bringing down the allegations on the software industry, of being incapable to deliver the requirements
within budget and on time. Besides this, the clients’ response regarding the product quality has shown a large shift
from unsatisfactory to satisfactory.

Today, many data miners have replaced the earlier statistical approaches for defect prediction. The basis of data
mining is the classification model which places the component in one of the two classes: fault prone or non fault
prone. Initially, already known instances, whose class we already recognize, are supplied to the classifier. Once the

* Corresponding author. Tel.: +918826658489.

E-mail address:tetarwalvivek1991@gmail.com

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of organizing committee of the International Conference on Information and Communication
Technologies (ICICT 2014)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82202998?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.02.161&domain=pdf

907 Ishani Arora et al. / Procedia Computer Science 46 (2015) 906 – 912

model is trained, this is tested on the unknown instances and prediction performance of the technique is judged.
Most of the study has been performed using the requirement1, 3 and design metrics1, 2.

Numerous amount of work has been done in the field of software defect prediction involving a varied number of
techniques such as bagging4, 5, boosting4, 5, naive bayes1, 5, 6, one rule1, 6, 7, support vector machine8, 9, 10, J48 decision
tree1, 6, 9, etc. A brief review of the significant work carried out in this field has been provided by Arora and Saha11.

Researchers have identified a bunch of problems in this area of software defect prediction and have tried to offer
the answers as well. However, the proposed solutions have not been accepted universally and are still left
unanswered. This paper identifies and provides a brief overview of such issues. Nevertheless, this is not a complete
view of the total work done so far in the area of software fault prediction.

Section II presents the issues which are still unresolved in this area and a brief overview of the work carried out in
the direction of solving these issues; and the section following gives the conclusions as well as future directions to
the scholars and researchers.

2. Issues in Software Defect Prediction

This section introduces the problems faced in software defect prediction and the solutions proposed by the
eminent researchers for these problems. It also addresses the unresolved issues in this area as well.

2.1. Relationship between Attributes and Fault

Researchers are not capable to identify a generalized subset of attributes which act as a substantial factor for a
module to be incorrect or non faulty. Also, there has been a controversy between which level of metrics to be
applied, requirement metrics, design metrics or source code metrics, for analysis purpose. A variety of studies1, 2, 3, 6,

12 have been performed, but unfortunately, with a different set of attributes every time. Overviews of the studies
which have tried to address the above issue have been described below.

Emam et al.2 examined the set of design metrics which act as a strong factor in determining the occurrence of the
bug. Object oriented features were included in this study. The analysis was done using area under ROC curve
(AUC) as an evaluation criterion. The results concluded that inheritance and export coupling (EC) strongly
associated with fault proneness.

Another similar experiment was performed by Koru and Liu12 where they compared the method level as well as
class level metrics to forecast the defect prone modules in five datasets of NASA13. The decision tree based and
instance based classifiers were applied in WEKA14 for building the defect prediction models. These models were
evaluated using precision, recall and F- measure. The results concluded that one should prefer using larger
components for fault prediction instead of smaller ones. They also suggested using class level metrics for defect
predictions involving smaller size modules.

Jiang et al.1 verified that the attributes available to the software developers can aid them to identify defects as
early as possible in the software lifecycle. They performed analysis, which compared the defect prediction models
developed from the requirement metrics, source code metrics and combination of requirement and code metrics. The
machine learning algorithms included one rule learner, naive bayes, voted perceptron, logistic regression, J48
decision tree and random forests. The results reported that the textual metrics combined with static code metrics
improve the defect predictors except, in the case of voted perceptron.

Sandhu et al.3 explored the applicability of requirement metrics by quantitatively comparing them with the code
based metrics and a combination of both of them. First, k-means clustering is applied in the transformation phase
and then the decision tree learner on CM1 project of MDP13 public repository. Optimal solutions are achieved with
100 percent precision and 100 percent recall. Hence, it is useful to make the prediction model with the metrics
available in the early phases of the software lifecycle.

In contrast to all the above studies, Menzies et al.6 presented a significant statement that the classification
methods used to build the defect prediction models are more important and not the metrics that are involved in the
experiment. They examined eight data sets of NASA MDP13 using decision tree based, rule based and bayes
theorem based learners. The experiment also compared the results of no filter with log filter. Recall, balance and the
probability of not having the false alarm were included for evaluation. The results proved that naive bayes with log

908 Ishani Arora et al. / Procedia Computer Science 46 (2015) 906 – 912

filter outperforms the OneR and J48 defect prediction models. They also proved that the naive bayes with log filter
have an average Pd of 71 percent and Pf of 25 percent.

As discussed in the above studies, none of them has been able to establish a generalized association between the
attributes and fault.

2.2. No Standard Measures for Performance Assessment

A great deal of inconsistency in choosing the performance reporting measures has been experienced across
several subject areas. No standard criterion has been set for analyzing and comparing the defect prediction models.
A brief description of research carried out by some eminent researchers in this direction is presented below.

Menzies et al. preferred reporting recall and Pf for evaluation purpose in6. However, Zhang and Zhang15 argued
to report recall and precision instead of recall and Pf. In reply, Menzies et al.16 explained the problem of precision
instability and that’s why they suggested it should not be used for operational assessment.

In cross project defect prediction, Gray et al.17 suggested that it should be in practice to report precision also, if
the data suffers from the class imbalance problem (described in section 2.6). They used data sets of thirteen projects
of NASA13 repository. The authors evaluated the classification techniques on the basis of recall, chances of having
the false alarms and precision. They said that recall and precision must be covered in case of class imbalance
problem.

In another experiment, Jiang et al.5 claimed that variance is an important criterion for evaluation of software
defect predictors. They statistically studied the importance of variance on twelve data sets from NASA MDP13
repository. The criteria used for performance assessment are recall, f-measure, precision and the area under ROC
curves (AUC). The methods employed to learn the prediction models include random forest, bagging, logistic
regression, boosting and naive bayes. The outcome reported that AUC has lower variance, therefore it is more static.
The authors reported that the model with the lowest variance is highly preferable.

Yet, in all the studies identified above, it is suggested to report recall in combination with other criteria, but, no
standard combination has been offered so far.

2.3. Issues with Cross-Project Defect Prediction

It is generally preferred for a model to learn using the locally available data, which is usually very similar to the
data on which it is to be tested. This local data can be taken from some previous versions of the same project, or
from some other similar project using the same programming language. Nevertheless, most of the times the risk
management team of an organization faces the problem of unavailability of this local site information. The
unavailability of training data may be due to many reasons, such as no similar project has been previously developed
or the current technology has changed.

To resolve this problem, researchers came up with a solution of cross project defect prediction, where the defect
prediction model is developed on one project and examined on some other. These two projects could be same or
completely different. Unfortunately, the performance of the models built using cross company data has not been
very promising.

Turhan et al.18 compared the performance of models built using cross company data and localized data for defect
prediction on ten projects of PROMISE19 repository and concluded that the localized predictors are preferable over
cross company ones. But, in case of unavailability of localized data the only viable solution is the use of cross-
company data. Many researchers have worked in this area proposing the methods to use cross project data efficiently
for defect prediction. Some of these studies are discussed below.

Watanabe et al.20 identified the issue of unavailability of training data for defect predictors. They performed intra
and inter project analysis using object oriented metrics using Sakura editor and jEdit projects. The evaluation uses
precision and recall as the performance measures. The results showed that inter project defect prediction is useful
between the similar projects, but the effects are not really acceptable.

Peters et al.8 applied CLIFF and MORPH techniques together to maintain the privatization as well as utilization
of the organizational data. The analysis was done on data sets of ten object oriented projects taken from the
PROMISE21 repository. The three classification algorithms - naive bayes, neural networks and support vector

909 Ishani Arora et al. / Procedia Computer Science 46 (2015) 906 – 912

machine, implemented in WEKA14 were used. The method proposed by them was assessed on the basis of recall, g –
measure and probability of false alarm. The results showed that this approach made no compromise in predicting
defects while sharing the private data.

Peters et al.22 presented peters filter for filtering out irrelevant data from the entire cross project data. The useful
data was then used during the learning phase of the predictive model. The learnt classifier was then used for fault
prediction at the local site. The peters filter was compared with the Burak filter18 on the basis of accuracy, recall,
false alarm rate, f-measure and g-measure using class level metrics. The analysis was done with 56 data sets from
PROMISE21 repository, out of which 35 were used for training purpose and 21 data sets were used during model
testing. The classifiers that were used include random forest, naive bayes, logistic regression and nearest neighbor
(k=1) algorithm. It was concluded that the small data sets were not suitable for local site prediction and the proposed
peters filter was sixty four percent higher in performance than Burak filter18.

Herbold9 proposed two methods for improving the results of inter project defect prediction. These machine
learning algorithms were based on the distance between the instances such as expectation-maximization (EM)
clustering and nearest neighbor selection. The experiments were performed on 44 data sets from 14 open source
projects. Logistic regression, naive bayes, bayesian networks, support vector machine, J48 decision tree, random
forest and multi layer perceptron models were applied. The results proved that both the proposed methods were
highly preferable in enhancing the operation of cross project defect predictors. Nevertheless, the local site prediction
still outperforms the cross project fault prediction.

As discussed above, the proposed methods have improved the efficiency/performance of models built using cross
project data, yet there is great scope of improvement in this area.

2.4. No General Framework Available

Another issue with this upcoming field is that different scholars and researchers have used different techniques
on different data sets. But, there has been no standard framework or procedure to apply a software defect prediction
process on a local or cross company project. A few studies have proposed different frameworks for the
implementation of software defect prediction models, which are discussed below.

Song et al.7 proposed a framework which compared the predictors comprehensively and in an unbiased manner.
The applicability of the framework is evaluated using simulated data and data available from the public repositories.
The learning schemes are naive bayes, J48 decision tree and one rule learner. These schemes are operated in
combination with data pre-processors and attribute selection methods. The results are compared on the basis of
recall, area under ROC (AUC) and balance measures. The authors reported that this framework is more efficient and
the learning scheme of the model depends on the type of the data from which the model will be trained.

Chen et al.10 proposed a semi-automated method for improving the software development process. Nine software
projects are employed and a comparative analysis has been done between the proposed method and the other
standard methods. The classification techniques involved decision trees, naive bayes, support vector machines,
Adaboost and logistic regression. The judgment criteria were precision, recall, f-measure, accurately, area under
ROC curve and root mean squared error. A new measure “process execution qualification rate” was proposed and
also used for evaluation. The results have proven that the proposed approach is advantageous as compared to the
other classifiers.

Although the proposed approaches have proven to be advantageous, but are very different from each other and
are not generalized.

2.5. Economics of Software Defect Prediction

The irony of the discipline of software defect prediction is that most of the work has been done considering its
ease of use and very few of them have focused on its economical position. The misclassification can prove to be real
pricey, particularly in the case of predicting faulty component as non faulty. Hence, determining the answer to when
and how much utility it has is very important. A few studies answering these inquiries have been discussed below.

Jiang et al.4 investigated this area of software defect prediction with a view of analyzing the cost involved in
misclassifying the units/modules of the system. The study is done on sixteen projects from MDP13 and PROMISE20

910 Ishani Arora et al. / Procedia Computer Science 46 (2015) 906 – 912

public repositories. The classification methods that were applied are: random forest, boosting, logistic regression,
naive bayes and bagging. It was graphically shown that the cost should be restrained in mind as a significant factor
during the assessment of the fault prediction models.

Banthia et al.23 proposed a cost evaluation framework to actually evaluate whether the fault prediction is useful
and if yes, when it is beneficial to use. The study was performed on 19 data sets of MDP13 and PROMISE20
repository and applied five algorithms: random forests, J48 decision tree, k-means clustering, neural network and
instance based classifier. Two cases, with and without fault prediction, were compared using normalized estimated
cost. The results concluded that software defect prediction is beneficial only when the project under study has the
number of faulty modules in the range of 21 to 42 percent. Also, random forests perform better when the faulty
modules are less and J48 and neural network is better in case of higher number of faulty modules. However, none of
the techniques superseded the other in all the cases.

The above two studies have considered the economical aspect of software defect prediction models, yet some
more exploration is needed in this direction.

2.6. Class Imbalance Problem

The efficiency of Software Fault prediction models is greatly shaped by the class distribution of the training
data24. Class distribution is described as the number of instances of each class in the training dataset. If the number
of instances belonging to one class is much more than the number of instances belonging to another class, then the
problem is known as class imbalance problem25. The class with more instances is called majority class and the one
with lesser instances is called minority class. The problem widens when the class under consideration, i.e. the faulty
class is represented by fewer instances. Various techniques have been proposed for addressing this problem and a
few are discussed below.

Barandela et al.26 carried out a comparative study of various sampling, i.e. resizing techniques including
Undersampling and Oversampling techniques for handling class imbalance and analyzed the relative performance of
these two categories of sampling techniques. They concluded that, in case of highly imbalanced data sets,
oversampling of minority class should be done, whereas, if the datasets are not severely biased then undersampling
is better. Likewise, the combination of Undersampling and Oversampling can be a safer alternative.

An empirical study was carried out by Zhou and Liu27 for studying the effect of sampling and threshold moving
on the training of cost-sensitive neural networks. The results showed that cost sensitive learning is easy for binary
class dataset and difficult for multi-class dataset as well as for a highly imbalanced dataset.

The effect of sampling rate on the performance of defect prediction models was carried out by Pelayo and Dick28
using 4 NASA datasets. The sampling technique used was Synthetic Minority Oversampling Technique (SMOTE)
and the classifier used was Decision Tree Classifier.

Khoshgoftaar et al.29 compared 5 data sampling techniques, namely, Random Under Sampling (RUS), SMOTE,
Borderline-SMOTE, Random Over Sampling (ROS) and Wilson’s Editing (WE) with Boosting algorithm and
concluded that sampling performs significantly well but Boosting performs even better.

A Genetic Algorithm based sampling technique called Evolutionary Sampling was proposed by Khoshgoftaar et
al.30 and compared with various imbalance handling methods using two classifiers namely C4.5 and RIPPER. The
proposed technique proved to be better than the other techniques.

Khoshgoftaar et al.31 offered a hybrid Sampling/Boosting algorithm to address class imbalance namely
RUSBoost. The performance of the proposed algorithm was then compared to its individual techniques, namely
RUS and Boosting as well as with another hybrid Sampling /Boosting algorithm SMOTEBoost and its individual
techniques i.e. SMOTE. It was concluded that, the operation of two hybrid algorithms is not significantly different,
but RUSBoost is simpler and quicker than the other.

Galar et al.25 proposed a taxonomy of ensemble based algorithms for addressing class imbalance. They also
showed empirically that ensemble methods improve the performance of prediction models as compared to
preprocessing techniques applied to a single classifier model.

Wang and Yao32 investigated if class imbalance learning can benefit software defect prediction and if yes, then
how. They compared various imbalance learning methods, namely RUS, Balanced RUS, threshold moving,
SMOTEBoost and AdaBoost. NC and observed that the best performance wass achieved using AdaBoost. NC.

911 Ishani Arora et al. / Procedia Computer Science 46 (2015) 906 – 912

The impact of class noise along with class imbalance on the performance of classifier algorithms was studied by
Seiffert et al.33. They found that class noise impacts the performance more significantly and as the level of class
noise in the data set decreases, the performance of the classifier improves.

Tetarwal and Saha34 combined cost sensitive ensembles with preprocessing techniques and concluded that all the
combinations as well as the best individual technique was outperformed by Cost Sensitive Boosting with
Resampling.

Although various techniques have been proposed by various researchers to address this issue, but not a single
technique outperformed the others in all the studies. Hence we cannot reach a conclusion as to which technique
should be applied to solve the class imbalance problem.

3. Conclusions and Future Directions

Software defect prediction is seen as the phase of enhancing the software quality. It helps us to forecast the
future, i.e. to identify the modules which are likely to have faults. This aids the software project management team
to deal with those areas in the project on a timely basis and with sufficient effort. This research area has emerged
since 1990s. With nearly 24 years of its history, this area still lacks in solving some issues. This paper has shown
and analyzed what has been done so far and what needs to be done ahead. An aggregate of six problems was
discussed: finding the set of attributes to be correlated with fault, the absence of standard measures for performance
assessment, problems with cross project defect prediction, economics of software defect prediction and class
imbalance problem and the absence of any general framework for the software defect prediction.

For finding relationship between attributes and faults, more studies can be carried out using all the combinations
and subsets of attributes with various classifiers. Also, the studies may verify if there is a relationship between
attributes and faults, or not. For assessing performance of a prediction model, the importance of each measure can
be found out and depending on their importance, a new measure can be proposed by weighted combination of all the
measures. In case of cross project defect prediction, prior to training the model using cross-project defect data, the
data should be refined using some pre-processing method so that it becomes similar to the localized data. In order to
provide a general framework, one may consider the effect of classifier combination, order of training data, effect of
pre-processing techniques and attribute selection on the performance of prediction model. For the purpose of
economic assessment of application of a defect prediction model, the estimated cost of defect prediction using
prediction model along with misclassification cost may be taken into account and compared with the estimated cost
of defect prediction without using prediction models. For this, a model needs to be proposed for assessing these
costs. In order to address the class imbalance problem in Software defect prediction, more focus should be on
providing algorithmic alternatives as preprocessing techniques affect the actual information of the dataset. From the
issues discussed in this paper, one can get a better understanding of the problems still prevailing in the field of
software defect prediction and affecting the applicability and effectiveness of the software defect prediction models.
Thus, from the issues stated in this paper, the researchers may get directions to carry out studies oriented towards
finding generalized solutions for the problems.

References

1. Jiang Y, Cukic B, Menzies T. Fault prediction using early lifecycle data. In: 18th IEEE International Symposium on Software Reliability.
Trollhattan; 2007. p. 237-246.

2. Emam KE, Melo W, Machado JC. The prediction of faulty classes using object-oriented design metrics. Journal of Systems and Software
2001; 56:63-75.

3. Sandhu PS, Brar AS, Goel R, Kaur J, Anand S. A model for early prediction of faults in software systems. In: 2nd International Conference
on Computer and Automation Engineering. Singapore; 2010. p. 281-285.

4. Jiang Y, Cukic B, Menzies T. Cost curve evaluation of fault prediction models. In: 19th International Symposium on Software Reliability
Engineering. Seattle; 2008. p. 197-206.

5. Jiang Y, Lin J, Cukic B, Menzies, T. Variance analysis in software fault prediction models. In: 20th International Symposium on Software
Reliability Engineering. Mysuru; 2009. p. 99-108.

6. Menzies T, Greenwald J, Frank A. Data mining static code attributes to learn defect predictors. IEEE Transactions on Software Engineering
2007; 33:2-13.

912 Ishani Arora et al. / Procedia Computer Science 46 (2015) 906 – 912

7. Song Q, Jia Z, Shepperd M, Ying S, Lin J. A general software defect-proneness prediction framework. IEEE Transactions on Software
Engineering 2011; 37:356-70.

8. Peters F, Menzies T, Gong L, Zhang H. Balancing privacy and utility in cross-company defect prediction. IEEE Transactions on Software
Engineering 2013; 39:1054-68.

9. Herbold S. Training data selection for cross-project defect prediction. In: 9th International Conference on PROMISE ’13. Baltimore; 2013.
p. 1-10.

10. Chen N, Hoi SCH, Xiao X. Software process evaluation: A machine learning framework with application to defect management process.
Empirical Software Engineering 2013; 19:1531-64.

11. Arora I, Saha A. A literature review on software defect prediction. In: Second International Conference on Emerging Research in
Computing, Information, Communication and Applications. Bangalore; 2014. p. 478-487.

12. Koru AG, Liu H. Building effective defect-prediction models in practice. IEEE Software 2005; 22:23-9.
13. http://mdp.ivv.nasa.gov.
14. http://www.cs.waikato.ac.nz/ml/weka/.
15. Zhang H, Zhang X. Comments on “Data mining static code attributes to learn defect predictors”. IEEE Transactions on Software

Engineering 2007; 33:635-37.
16. Menzies T, Dekhtyar A, Distefano J, Greenwald J. Problems with precision: A response to “Comments on ‘Data mining static code

attributes to learn defect predictors’”. IEEE Transactions on Software Engineering 2007; 33:637-40.
17. Gray D, Bowes D, Davey N, Sun Y, Christianson B. Further thoughts on precision. In: 15th Annual Conference on Evaluation &

Assessment in Software Engineering. Durham; 2011. p. 129-133.
18. Turhan B, Menzies T, Bener AB, Stefano JD. On the relative value of cross-company and within-company data for defect prediction.

Empirical Software Engineering 2009; 14:540-78.
19. Boetticher G, Menzies T, Ostrand T. Promise repository of empirical software engineering data. 2007. Available at: http://promisedata.org/.
20. Watanabe S, Kaiya H, Kaijiri K. Adapting a fault prediction model to allow inter language reuse. In: 4th International Workshop on

PROMISE ’08. Leipzig; 2008. p. 19-24.
21. Menzies T, Caglayan B, Kocaguneli E, Krall J, Peters F, Turhan B. The promise repository of empirical software engineering data. 2012.

Available at: promisedata.googlecode.com.
22. Peters F, Menzies T, Marcus A. Better cross company defect prediction. In: 10th IEEE Working Conference on Mining Software

Repositories. San Francisco; 2013. p. 409-418.
23. Bathia D, Gupta A. A framework to assess the effectiveness of fault-prediction techniques for quality assurance. In: 7th CSI International

Conference on Software Engineering. Pune; 2013. p. 40-49.
24. Batista GEAPA, Prati RC, Monard MC. A study of the behavior of several methods for balancing machine learning training data. SIGKDD

Explorations 2004; 6:20-9.
25. Galar M, Fernandez A, Barrenechea E, Bustince H, Herrera F. A review on ensembles for the class imbalance problem: bagging-, boosting-,

and hybrid-based approaches. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 2012; 42:463-84.
26. Barandela R, Valdovinos RM, Sánchez JS, Ferri FJ. The imbalanced training sample problem: Under or over sampling? Structural,

Syntactic, and Statistical Pattern Recognition. Springer Berlin Heidelberg; 2004. p. 806-814.
27. Zhou ZH, Liu XY. Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Transactions on

Knowledge and Data Engineering 2006; 18:63-77.
28. Pelayo L, Dick S. Applying novel resampling strategies to software defect prediction. In: Annual Meeting of the North American Fuzzy

Information Processing Society (NAFIPS'07). 2007. p. 69-72.
29. Seiffert C, Khoshgoftaar TM, Van Hulse J, Napolitano A. Building useful models from imbalanced data with sampling and boosting. In:

FLAIRS Conference. 2008. p. 306-311.
30. Drown DJ, Khoshgoftaar TM, Seliya N. Evolutionary sampling and software quality modeling of high-assurance systems. IEEE Trans.

Syst., Man, Cybern, Part A: Systems and Humans 2009; 39:1097–107.
31. Seiffert C, Khoshgoftaar TM, Van Hulse J, Napolitano A. RUSBoost: A hybrid approach to alleviating class imbalance. IEEE Transactions

on Systems, Man and Cybernetics, Part A: Systems and Humans 2010; 40:185-97.
32. Wang S, Minku LL, Yao X. A learning framework for online class imbalance learning. In: IEEE Symposium on Computational Intelligence

and Ensemble Learning (CIEL). 2013. p. 36-45.
33. Seiffert C, Khoshgoftaar TM, Van Hulse J, Folleco A. An empirical study of the classification performance of learners on imbalanced and

noisy software quality data. Information Sciences 2014; 259:571-95.
34. Tetarwal V, Saha A. Combining cost-sensitive ensembles with pre-processing techniques for addressing class-imbalance. In: International

Conference on Communication and Computing ICC-2014. Bangalore; 2014. p. 565-576.

