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NADPH-induced chemiluminescence and lipid peroxidation in kidney
microsomes. Lipid peroxidation and reactive oxygen species have been
shown to affect diverse biological processes potentially important in
renal disease. We therefore examined NADPH-induced chemilumines-
cence (CL) and lipid peroxidation (LP) by renal cortical and, in some
experiments, niedullary niicrosomes. We further examined the role of
reactive oxygen species in these processes by the use of enzymatic and
chemical scavengers. Cortical microsomes gave a marked NADPH-
induced CL accompanied by LP. The time course of LP closely
paralleled the CL response. Cortical microsomal CL and LP increased
with increasing concentrations of protein (0.3 to 1.8 mg) and NADPH
(0.1 to 3.0mM); NADH could not substitute for NADPH. Using similar
amounts of protein and NADPH concentrations, cortical CL was
significantly higher than medullary CL at all time points examined (peak
cortical CL: 490 25 x l0 cpm/mg protein, N = 4; peak medullary
CL: 226 61 x i0 cpmlmg protein, N = 4). Cortical LP was similarly
higher at all time points, values corresponding to peak CL being 44.7
3 nmoles/mg protein for cortex and 29.9 0.8 nmoles/mg protein for
medulla Para-chloromercuribenzoate (PCMB), an inhibitor of
NADPH-cytochrome P450 reductase, caused a marked inhibition of the
microsomal CL and LP whereas SKF 525A, an inhibitor of cytochrome
P450, had a relatively minor effect. Marked inhibition of NADPH
induced CL and LP was observed with chelators EDTA and 1,10-
phenanthroline. The addition of NADPH to microsomes prepared with
sucrose-EDTA and washed in a Chelex-treated buffer gave a negligible
CL and LP response; the responses were restored by the addition of
iron. Scavengers of superoxide anion (superoxide dismutase), hydrogen
peroxide (catalase), and the hydroxyl radical (sodium benzoate, trypto-
phan) had a relatively minor effect on CL and LP. Singlet oxygen
quenchers sodium azide and 1,4-diazabicyclo (2.2.2) octane (DABCO)
caused an incomplete inhibition of CL and LP responses and then only
after the first 30 mm. Taken together, these data suggest that other free
radical mechanisms are likely to be important iti the CL and LP
responses. These results which demonstrate the production of excited
states and LP by renal microsomes suggest that their role in renal
disease deserves further study.

Chemiluminescence induite par le NADPH et peroxydatioti des lipides
dans les microsomes de rein. 11 a été montré que Ia peroxydation des
lipides et le type d'oxygène réactif modifient diversement les processus
biologiques potentiellement importants dans les maladies rénales. C'est
pourquoi nous avons examine Ia chemiluminescence (CL) induite par Ic
NADPH, et Ia peroxydation (LP) des lipides par des microsomes
corticaUx et dans quelques experiences, médullaires rénaux. Nous
avons ensuite examine le role du type d'oxygene réactif dans ces
processus en utilisant des agents métabolisants enzymatiques et chitTli-
ques. Les microsomes corticaux donnaient une CL marquee induite par
le NADPH accompagnee par une LP. Dans le temps, Ia LP était
étroitement parallele a Ia réponse CL. La CL et Ia LP microsomiales
corticales s'élevaierit avec l'accroissement des concentrations de pro-
téines (0, 1 a 1,8 mg) et de NADPH (0,1 a 3,0mM); le NADH ne pouvait
s: substituer au NADPH. En utilisant des quantités identiques de

protéines et de NADPH, la CL corticale était significativement plus
élevée que Ia CL médullaire a tous les temps examines (pic de CL
corticale: 490 25 x l0 cpm/mg protéine, N = 4, pic de CL
médullaire: 226 61 x l0 cpm/mg protéine, N = 4). Dc méme Ia LP
corticale était plus élevée a tous les temps, les valeurs correspondant au
pic de CL étant de 44,7 3 nmoles/mg protéine pour le cortex et de 29,9

0,8 nmoles/mg protéine pour Ia médullaire, Le parachloromercuri-
benzoate (PCMB), un inhibiteur de Ia réductase NADPH-cytochrome
P450 a entrainé une inhibition marquee de la CL et de Ia LP microso-
miales tandis que le SKF 525 A, un inhibiteur du cytochrome P450,
avait on effet relativement minime. Une inhibition marquee de Ia CL
induite par Ic NADPH et de Ia LP a été observée avec des chélateurs
tels I'EDTA et Ic 1,10-phenanthroline. Laddition de NADPH a des
microsomes prepares dans do sucrose-EDTA et lavés dans un tampon
traité au Chelex entrainait one réponse CL et LP negligeable; les
réponses étaient restaurées par l'addition de fer. Les agents métaboli-
sants l'anion superoxide (dismutase superoxide), le peroxide d'hydro-
gene (catalase), et le radical hydroxyle (benzoate de sodium, trypto-
phane) avaient un effet relativement minime sur CL et LP. Les capteurs
d'oxygene singulet comme l'azide de sodium et le 1,4-diazabicyclo
(2.2.2) octane (DABCO) entrainaient one inhibition incomplete des
réponses CL et LP et cela seulement après les 30 premieres mm. Prises
dans leur ensemble, ces données suggèrent que d'autres mécanismes
par radicaux libres sont probablement importants dans les reponses CL
et LP. Ces résultats, qui démontrent la production d'états excites et de
LP par des microsomes rénaux, suggèrent que leur rOle dans les
maladies rénales nCcessite d'autres etudes.

Biological membranes have a high content of polyunsaturated
fatty acids and in addition are constantly being bathed in
oxygen rich fluids. As a result, they are particularly susceptible
to peroxidative attack by oxygen-derived free radicals, result-
ing in lipid peroxidation (LP) [1—3]. The oxygen-derived free
radicals and lipid peroxidation can alter membrane structure [1,
2, 4] and permeability [1, 2] and affect activities of several
membrane-bound enzymes [1, 2, 5—8]. In addition LP and
reactive oxygen species can affect a variety of other biological
processes potentially important in renal disease [9—18].

Lipid peroxidation has been shown to occur both in vivo [19,
20] and in vitro in a variety of tissues and subcellular fractions
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including nuclei, lysosomes, mitochondria, and microsomes [I,
2, 9, 21—24]. The endoplasmic reticulum (isolated as micro-
somes) is among the best characterized and most active suhcel-
lular fractions with respect to LP, Microsomes catalyze an iron
and NADPI-1-dependent peroxidation of endogenous lipid 1251.
This NADPH-induced LP, sometimes referred to as enzymatic
LP, is associated closely with the microsornal electron trans-
port chain which catalyzes oxidative drug metabolism [261.
Both the LP and drug metabolizing systems utilize the enzyme
NADPH-cytochrome P450 reductase [27, 281.

Several studies have shown the production of reactive oxy-
gen species during NADPH-induced LP [1, 2, 29—331. These
reactive oxygen species, including superoxide anion, hydroxyl
radicals, and singlet oxygen, have been implicated in both the
initiation and propagation of LP [1, 2, 34—39).

The addition of NADPH to microsomes also produces a
chemiluminescence (CL) indicative of the presence of excited
states, which, upon relaxation to ground state, emit light. This
low level of light emission can be measured in a liquid scintilla-
tion counter. Because of the low energy of the light emitting
species, the liquid scintillation counter must be operated in the
out-of-coincidence mode which allows events from both the
photomultiplier tubes to be seen individually and summed [401.
The precise mechanisms responsible for this CL are not known.
Originally Allen, Stjernholm, and Steele [411 attributed the CL
from phagocytic cells to singlet oxygen. However, recent
studies indicate, that at least in the CL response of phagocytic
cells, several reactive oxygen species including superoxide
anion, hydroxyl radical, hydrogen peroxide, and possibly sin-
glet oxygen are involved [42—44]. In NADPH-induced micro-
somal CL, such reactive oxygen species may also he partly
responsible for the observed CL. In addition, however, reactive
lipid intermediates appear to be important in NADPH-induced
microsomal CL. A close association between microsomal CL
and LP appears to exist [2, 45] and, in fact, CL has been used as
an index of LP [46, 47].

NADPH-induced CL, its relationship to LP, and the role of
reactive oxygen species in these processes in renal microsomes
has not been examined previously. We therefore examined
NADPH-induced chemiluminescence and lipid peroxidation in
renal cortical microsomes and in some experiments medullary
microsomes obtained from rat kidney. We further examined the
role of reactive oxygen species in these processes by utilizing
several scavengers of reactive oxygen species.

Methods

Kidneys were rapidly removed from male Sprague-Dawley
rats and placed in ice-cold 0.25 M sucrose. All subsequent
manipulations were made at 0 to 4°C. Each cortex and medulla
was separated carefully, weighed, minced and homogenized in
0.25 M sucrose (1:5 wt/v) using a Potter-Elvehjem smooth glass
homogenizer with a motor driven pestle (Teflon). The micro-
somal fraction was obtained by differential centrifugation, es-
sentially as described in our previous study [48]. The microsom-
al pellet was washed once with 0.1 M phosphate buffer, pH 7.4,
then resuspended in the same buffer, divided into several small
aliquots, and stored at —80°C.

Chemiluminescence measurements were carried out at ambi-
ent temperature, in a dark room illuminated with red light.
Incubations were carried out in dark adapted glass scintillation

vials. CL was measured with a liquid scintillation system
(Beckman Instruments Inc., Fullerton, California), operated in
the out-of-coincidence summation mode as described in our
previous studies [48, 491. A standard reaction mixture consisted
of 0.2 ml microsomal preparation (I to 2 mg protein) and
sufficient 0.1 M phosphate buffer pH 7.4 so that the final volume
after all additions was 3.0 ml. Under these conditions the CL of
vials containing only buffer and microsomes ranged between
5,000 to 10,000 cpm. In our initial experiments, we observed, as
have other investigators [25, 45, 50] that the addition of
exogenous iron was not necessary for NADPH-induced CL and
LP. It has been suggested that even small amounts of iron
present in microsomes and/or phosphate buffer are sufficient for
LP [25, 45, 50]. Reactions were initiated by the addition of
NADPH (Sigma Chemical Company, St. Louis, Missouri) with
a final concentration of 3 mM for most experiments, and CL was
measured at different time intervals as shown in the Results. In
every experiment vials without added NADPH were also
included.

Malondialdehyde production, which has been used exten-
sively to quantify LP, was measured using the thiobarbituric
acid assay of Ottolenghi [51]. in some experiments (Figs. 1,2,
and 3)0.5-mi aliquots were obtained at the end of the incubation
from the same vials as those in which CL measurements were
made. In all other experiments, aliquots were obtained at
several time points from incubations which were run in parallel
with the incubations for CL measurements; the aliquots were
obtained at the same time points as the CL measurements. Each
0.5-mI aliquot was added to 1 ml of 17.5% TCA to terminate the
reaction and stored at —20°C for subsequent measurement of
malondialdehyde. Malondialdehyde was determined as follows:
One milliliter of 0.6% (w/v) 2-thiobarbituric acid was added to
thawed samples, and after thorough mixing, the tubes were
placed in a boiling water bath for 15 mm. After cooling (in a
water bath at ambient temperature), I ml of 70% trichloroacetic
acid was added, and samples were allowed to stand for 20 mm
at room temperature. The samples were then centrifuged and
the optical density of the clear supernatants determined at 535
nm against a reagent blank. The amount of malondialdehyde,
expressed in nanomoles, was calculated using a molar extinc-
tion coefficient of 1.56 x l0 M1 cm' at 535 nm [45, 52].
Values for CL and LP obtained in the absence of NADPH were
subtracted to obtain NADPH-induced CL and LP. CL measure-
ments are expressed as cpm/mg protein and malondialdehyde
production as nmoles/mg protein. Protein determinations were
carried out by the Bio-Rad method (Bio-Rad Lab, Richmond,
California) as described by the supplier.

The role of reactive oxygen species in CL and LP was
examined by using enzymatic and chemical scavengers. Super-
oxide dismutase (type I), catalase (thymol free), benzoate,
trytophan, histidine, and sodium azide (all obtained from Sigma
Chemical Company, St. Louis, Missouri) and 1,4-diazabicyclo
[2.2.2loctanc (DABCO) (Aldrich Chemical Co., Milwaukee,
Wisconsin) in concentrations similar to those used by others
[42, 43, 53, 54] were added to the vials prior to addition of
NADPH (Table 2, Fig. 5). The effect of the sulthydryl agent, p-
chloromercuribenzoate (PCMB) (Sigma Chemical Company),
an inhibitor of NADPH-cytochrome P450 reductase [55, 56] and
5KF525A, (a generous gift from Smith Kline and French
Laboratories, Philadelphia, Pennsylvania) an inhibitor of cyto-
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Fig. 1. Effect of NADPH concentration on cortical mkrosomal chemi-
luminescence and lipid peroxidation. A standard reaction mixture
consisted of 0.2 ml microsomal preparation (1 to 2 mg protein) and
sufficient 0.1 M phosphate buffer, pH 7.4, so that the final volume after
all additions was 3.0 ml. The reaction was initiated by the addition of
NADPH (final concentrations shown) and chemiluminescence mea-
sured at different time intervals. Lipid peroxidation (insert) was quanti-
fied by measuring malondialdehyde (MDA) production in aliquots of
reaction mixtures obtained at the end of the incubations. Results shown
are the mean SEM from three separate experiments.

chrome P450 [57], and chelators EDTA and 1,10-phenanthro-
line (Eastman Kodak, Rochester, New York) on NADPH-
induced CL and LP were also examined (Table 1). The effects
of these agents and scavengers on CL and LP are expressed as a
percentage change compared to control vials containing the
same microsomes incubated under identical conditions. The
percentage change was calculated as follows:

Value in experimental vials — Value in control vials
xlOO.

Value in control vials

In these experiments, the effects of these agents on CL were
measured at several time points; the effects on LP were
measured at the same time in parallel incubations. For those
experiments in which the observed effects were similar at
various time points, only the effect at the time of peak CL
response is shown (Tables 1 and 2).

To demonstrate the dependence of NADPH-induced CL and
LP on iron, renal cortical microsomes were prepared from three
separate groups of rats using 0.25 M sucrose in 1 mM EDTA (pH
7.4). These microsomes were washed in Chelex-l00-treated 0.1
M phosphate buffer, pH 7.4, to remove EDTA [25], and

Time, minutes

Fig. 2. Effect of protein concentration on NADPH-induced cortical
microsomal chemiluminescence and lipid peroxidation. Results (mean

sEM) of one experiment performed in triplicate are shown. Similar
results were obtained in two other experiments performed in triplicate.
See the legend to Figure 1 and Methods for details.

resuspended in the same buffer. For these experiments only
glassware (including homogenizer tubes and scintillation vials),
previously rinsed with 50% nitric acid, was utilized. The
incubation conditions were the same as other experiments
except that Chelex-100-treated phosphate buffer was used. The
effect of NADPH (3 mM) with and without added iron on
microsomal CL and LP was examined. The effect of iron by
itself (without NADPH) was also examined. As described by
others [22, 30], iron was added as ADP-Fe3 (ADP 1 ms'i, FeCI3
0.01 mM), with ADP apparently as an aid to maintain iron in the
solution [30].

Results

NADPH
mM

0.1
0.5
1.0
2.0

M 24
nmo/es/mg protein

3.5± 1.0
15.8± 4.2
28.7± 4.9
34.0± 5.3
41.3± 7.0

Lipid peroxidation
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0.6 43.1±0.4
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In the absence of NADPH, there was negligible CL (5,000 to
10,000 cpm) and malondialdehyde production (0.4 to 2.1
nmoles/mg protein) by microsomes. in the data presented these
values have been subtracted to calculate NADPH-induced CL
and LP. The time course of CL resulting from the addition of
different concentrations of NADPH to cortical microsomes is
shown in Figure 1. Negligible CL was observed with 0.1 mM
NADPH. increasing concentrations of NADPH gave a higher
CL response at every time point; the highest response was
observed with 3 mtvi NADPH. Malondialdehyde production,
measured in the same samples at the end of the incubations,
also increased with higher concentrations of NADPH (Fig. 1).
NADH (1 mrt or 3 mM) could not substitute for NADPH in
inducing either the CL or LP response.
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Table 1. Effect of p-chloromercuribenzoate, SKF525-A, and chelators
on NADPH-induced chemiluminescence and lipid peroxidation in

renal cortical microsomes'

% Change at the time of peak CL
response5

Chemiluminescence Lipid peroxidation

—97 0.3 (3)
—12 0.5 (3)
—77 1.6 (3)
—57 3.4 (3)

a NADPH-induced chemiluminescence was measured at different
time points as described in Methods and shown in Figure 5. Lipid
peroxidation, quantified by malondialdehyde production, was mea-
sured in aliquots obtained from parallel incubations; the aliquots were
obtained at the exact time points as the chemiluminescence measure-
ments. Results are shown at the time of peak chemiluminescence;
similar results were obtained at all other time points.

b The percentage change was calculated as follows:
Value in presence of inhibitor — Control value

x 100.
Control value

All values are mean SEM. The numbers in parentheses indicate
the number of experiments.

The effect of protein concentration on the NADPH-induced
CL and LP is shown in Figure 2. The higher the microsomal
protein concentration, the higher and earlier was the maximum
CL response. The amount of malondialdehyde formed also
increased with higher protein concentrations (Fig. 2). The
results depicted in Figure 2 are from one experiment performed
in triplicate; however, similar results were obtained in two
other experiments.

The sulfhydryl reagent, p-chloromercuribenzoate (1 mM), an
inhibitor of NADPH cytochrome P450 reductase [55, 56] caused
a marked inhibition of both CL and LP in renal cortical
microsomes. At the time of peak CL response, CL was inhibit-
ed —99 0.03% (N = 3), and LP —97 0.3% (N = 3) (Table I).
Inhibitory effects were similarly observed at all other time
points (data not shown). In contrast, SKF 525A (I mM), an
inhibitor of cytochrome P450 [57], had only a minor effect on
both NADPH-induced CL and LP at all time points examined.
At the time of peak CL response, CL was inhibited —5 2%,
(N = 3) and LP —12 0.5%, (N = 3) (Table I). Both chelators
EDTA (1 mM) and 1,10 phenanthroline (1 mM) caused marked
inhibition of NADPH-induced CL and LP at all time points
(Table 1). Addition of NADPH to cortical microsomes prepared
with sucrose-EDTA gave only a negligible response at all time
points examined (peak CL: 19 1 x io cpm/mg protein; LP:
2.8 0.4 nmoles/mg protein, N = 3). When ADP-Fe34 (ADP I
mM; FeCl3 0.01 mM) was included in the incubations in concen-
trations similar to those used by others [22, 301 a marked
NADPH-induced response was observed (peak CL: 398 9 X

io cpm/mg protein; LP: 19.8 1.6 nmoles/mg protein, N = 3).
Addition of ADPFe3* alone gave a negligible response similar
to that observed in microsomes without NADPH (CL: 0.1 0.1
x l0 cpm/mg protein; LP: 3.0 0.5 nmoles/mg protein, N =
3).

We compared the NADPH-induced CL response and LP in
cortical and medullary microsomes. These microsomes were
prepared simultaneously from the same animals, and the incu-

Time, minutes

Fig. 3. NADPH-induced chemiluminescence and lipid peroxidution in
cortical and medullary microso,nes. Cortical and medullary micro-
somes were obtained at the same time from the same rats, and
incubations were carried out simultaneously using 3 mM-NADPH and
similar amounts of microsomal protein. The insert shows the maldialde-
hyde (MDA) production in the same samples at the end of the
incubations. Symbols are: U—U, cortex; •—•, medulla. All
results shown are the mean SEM of four separate experiments in
triplicate. Asterisks denote P <0.05 or a greater level of significance.
See the legend to Figure 1 and Methods for details.

bations were carried out in the same experiments. Based on the
data presented above, we used 3 mtvi NADPH and similar
amounts of protein for cortical and medullary microsomes. The
results of these experiments are shown in Figure 3. At every
time point, the CL response was higher in cortical microsomes
compared to medullary microsomes. Correspondingly, malon-
dialdehyde production, measured in the same vials at the end of
incubation, was significantly higher in cortical microsomes
(44.7 3.0 nmoles/mg protein, N = 4) compared to medullary
microsomes (29.8 0.8 nmoles/mg protein, N = 4).

To study the relationship between CL and LP, the two
responses were measured at various time points in the same
microsomal preparations in simultaneous incubations (Fig. 4).
A close relationship between CL and LP was observed, both
responses reaching a peak at about 40 to so mm. Additionally in
experiments to determine the effect of protein concentration on
CL and LP, the peak CL response was correlated with LP. In
three separate experiments, each with four different protein
concentrations in triplicate, the peak CL showed a significant
correlation with LP, with correlation coefficients of 0.97, 0.92,
and 0.94.

We next evaluated the role of reactive oxygen species in the
CL and LP responses by using scavengers of reactive oxygen
species. In these experiments the effects of the scavengers on
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Fig. 4. Time course of NADPH-induced chemiluminescence and lipid
peroxidation in cortical microsomes. The reaction was initiated by the
addition of 3 mri NADPH and chemiluminescence was measured at
different time intervals as shown. For lipid peroxidation (•—),
parallel incubations were run and aliquots for measurement of malon-
dialdehyde (MDA) were obtained at exactly the same time points as
chemiluminescence (•—• measurements. Values shown are mean

SEM of three separate experiments performed in triplicate. See the
legend to Figure 1 and Methods for details.

CL were measured at several time points, with LP measure-
ments obtained at the same time from parallel incubations.
Since similar effects were observed at all time points with the
scavengers (except DABCO), only the effect at the time of peak
CL is shown (Table 2). Superoxide dismutase, an enzyme that
scavengers superoxide anion, in two different doses caused a
consistent but small increase in both CL and LP (Table 2).
Inactivated superoxide dismutase (100°C x 15 mm) caused a
small inhibitory effect on CL (—13 0.3%, N = 3) and LP (—6

0.2%, N = 3). We also examined the effect of catalase, an
enzyme which destroys hydrogen peroxide, on CL and LP.
Catalase (with thymol, an antioxidant, as a preservative) caused
a marked inhibition of CL (—91 5%, N = 3). However,
thymol by itself also had a marked inhibitory effect on CL (—93

5%, N = 3). When thymol-free catalase was used, only a
small inhibitory effect on CL and LP was noted (Table 2).
Bovine serum albumin in concentrations similar to those used
for catalase caused a small inhibitory effect on CL (—11
0.3%, N = 3) and LP(—3 0.3%, N = 3). Two hydroxyl radical
scavengers, sodium benzoate and tryptophan, in doses similar
to those used by other investigators [42, 53], also produced a
relatively minor inhibition of the CL and LP (Table 1). The
effects of singlet oxygen quenchers were as follows: After a
small lag, histidine had a relatively minor effect on CL and LP
(data not shown). Azide caused inhibition of NADPH-induced
CL and LP response, and the maximum inhibitory effects were
observed after the first 30 mm. At the time of peak CL, CL was

Table 2. Effect of scavengers of reactive oxygen species on the
NADPH-induced chemiluminescence and lipid peroxidation by renal

cortical microsomesa

% Change at the time of peak CL
responseb

Chemiluminescence Lipid peroxidation

Superoxide dismutase°
200 p.g/ml +8 2 (4)d +12 3 (4)
400 gIml +9 1(4) +10 2 (4)

Catalase, 250 jj,g/mlc —14 2(4) —11 2 (4)
Sodium benzoate, 20 msi —6 1 (4) —9 3 (4)
Tryptophan, 1 mzti —3 1(4) —11 2 (4)
Sodium azide, 1 m —60 3(4) —31 4 (4)

° NADPH-induced chemiluminescence was measured at different
time points as described in Methods and shown in Figure 5. Lipid
peroxidation as quantified by malondialdehyde production was mea-
sured in aliquots obtained from parallel incubations; the aliquots were
obtained at the exact time points as the chemiluminescence measure-
ments. Results are shown at the time of peak chemiluminescence;
similar results were obtained at all ether time points.

b The percentage change was calculated as follows:
Value in presence of scavenger — Control value

< 100
Control value

Heat-inactivated superoxide dismutase and bovine serum albumin
had a minor inhibitory effect on both CL and LP (see Results).

d All values are mean SEM. The numbers in parentheses indicate
the number of experiments.

Fig. 5. Effect of DABCO (20 mM) on NADPH-induced chemilumines-
cence (left panel) and lipid peroxidation (right panel) in cortical
microsomes. Values shown are mean SEM from four separate
experiments performed in triplicate. Asterisks denote P < 0.05 or a
greater level of significance. See the legend to Figure 1 and Methods for
details.

inhibited —60 3%, N = 4, and LP —31 4%, N = 4 (Table 2).
DABCO had no significant effect on CL and LP for the first 30
mm of incubation; however, at subsequent time points, a
significant inhibitory effect was observed (Fig. 5).

Discussion

NADPH-induced chemiluminescence in renal microsomes,
its relationship to lipid peroxidation, and the role of reactive
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oxygen species in these processes has not been examined
previously. Our results show that addition of NADPI-1 to renal
cortical microsomes gave a CL response which reached a peak
at about 40 to 50 miii with a gradual decline thereafter. Addition
of NADPH to renal cortical microsornes also resulted in LP as
measured by malondialdehyde production; the time course of
LP closely paralleled the CL response (Fig. 4). The NADPH-
induced CL and LP responses were dose-dependent; the niaxi-
mum responses were observed with 3 mat NADPH, the highest
concentration tested. NADH could not substitute for NADPH.

We did not examine in detail the mechanisms responsible for
the NAI)PH-induced CL and LP. However, in our preliminary
studies we found that p-chloromercurihenzoate, a sull1ydryl
reagent which inhibits NADPH-cytochrome P450 reductase
[55, 561, caused a marked inhibition of both the CL and LP in
renal cortical microsomes. In addition, the lack of response to
NADPH by microsomes prepared with sucrose-EDTA, restora-
tion of the response by addition of iron in the incubation
medium, and the marked inhibitory effects of chelators EDTA
and 1,10-phenanthroline all lend strong support for the iron
requirement for NADPH-induced CL and LP. These results are
in keeping with previous studies and suggest that NADPH-
induced CL and LP responses are an iron-dependent [25, 50]
and an enzymatic process utilizing NADPH-cytochrome P450
reductase [27, 28]. SKF 525A, an inhibitor of cytochrome P450,
caused only a minor inhibition of CL and LP in cortical
microsomes. This, along with our observation that medullary
microsomes, which have been reported to lack cytochrome
P450 [58, 591, gave a NADPH-induced response which suggests
that either cytochrome P450 is not essential or that small
amounts of cytochrome P450 are sufficient for NADPH-induced
CL and LP [601. Alternatively, other hemoproteins may substi-
tute for cytochrome P450.

Using similar amounts of protein and NADPH concentra-
tions, we found that cortical microsomes had a higher CL
response and greater malondialdehyde production compared to
medullary microsomes prepared simultaneously from the same
rats and incubated in the same experiments (Fig. 3). The higher
NADPH-cytochrome P450 reductase activity in cortex com-
pared to medulla [59] and a recent preliminary report [58] that
the highest activity of the enzyme was present in the proximal
tubule may explain the higher response in the cortex. The
higher cortical response may also be due to differences in the
content of antioxidants as well as the amount and the nature of
polyunsaturated fatty acids present in cortical and medullary
microsomes.

The production of several reactive oxygen species, including
superoxide anion, hydroxyl radical, and singlet oxygen during
LP, has been well demonstrated [1, 2, 29—331. These reactive
oxygen species have been implicated both in initiation and
propagation of LP [1, 2, 34—39]. The role of these reactive
oxygen species in LP has been best demonstrated in studies
utilizing either a superoxide anion generating system (for exam-
ple, xanthine/xanthine oxidase) or purified NADPH cyto-
chrome P450 reductase with exogenous lipids. In these systems
several scavengers of reactive oxygen species, including super-
oxide dismutase, catalase, scavengers of hydroxyl radicals, and
singlet oxygen, inhibited LP [34—37]. In intact microsomes with
NADPH-induced LP of endogenous lipids, results with scaven-
gers of reactive oxygen species have been conflicting [7, 22, 45,

61]. This may be due, at least partly, to a lack of accessibilities
of the scavengers to the site of production of reactive oxygen
species [7, 22, 611. In our study with intact microsomes we
found only minor effects of superoxide dismutase, catalase, and
hydroxyl radical scavengers on CL and LP. These results are
similar to those reported by others using intact microsomes [22,
45, 611. However, as stated above, this does not entirely
exclude a role for superoxide, hydrogen peroxide, and hydroxyl
radical in the CL and LP in renal cortical microsomes. In
addition, although the contamination with catalase in washed
microsomes is likely to be minor [62], we cannot exclude the
possibility that the lack of effect of exogeneously added catalase
was due to a sufficient amount of catalase present in the
microsomes. Previous studies have demonstrated both the
production of singlet oxygen during NADPH-induced LP [30,
321 and the ability of singlet oxygen to induce LP [34—38]. In our
study, histidine, a singlet oxygen quencher, had a relatively
minor effect on CL and LP, similar to the effect on LP in liver
microsomes [62]. DABCO and azide, also reported to be singlet
quenchers, had no significant effect for the first 30 mm; an
incomplete inhibition of the CL and LP response was noted at
subsequent time points. These results suggest that other free
radical mechanisms [3] are likely to play an important role in the
NADPH-induced CL and LP response by renal microsomes.

There appears to be a close relationship between CL and LP
in renal cortical microsomes. As described above, the time
course of CL closely paralleled the time course of LP (Fig. 4).
In addition, the peak CL correlated well with LP, in experi-
ments to determine the effect of protein concentration on CL
and LP (see Results). Further, PCMB and chelators which
markedly inhibited LP, also markedly inhibited CL whereas
SKF525A had a relatively minor effect on both CL and LP.
Finally, in experiments with scavengers of reactive oxygen
species, the effect on CL and LP was qualitatively always in the
same direction. Our results are similar to those in liver micro-
somes and mitochondria where a close relationship between CL
and LPwas observed [2, 45]. Because of this close relationship,
CL has been used as a sensitive index to quantitate LP in whole
organs in situ [46, 47]. However, it must be pointed out that,
under special incubation conditions, CL from microsomes may
be observed without accompanying LP as measured by malon-
dialdehyde production [48].

Although LP has been documented extensively in vitro, its
occurrence and hence its importance in vivo were questioned.
Recent studies demonstrating the occurrence of LP in vivo [19,
20, 46, 47], coupled with diverse biological effects of LP arid
reactive oxygen species, suggest their possible importance in
pathophysiology. Thus LP and/or reactive oxygen species have
been shown to affect membrane structure [1, 2, 4] and mem-
brane permeability [1, 2]. behave as calcium ionophores [14],
activate adenylate cyclase [6], increase cellular proliferation
[2], and alter vascular permeability [10. 12, 13], lysosomal
stability [91, and prostaglandin synthesis [17. 63]. Several
observations more directly related to renal disease further
support a potential role for LP and reactive oxygen species in
renal pathophysiology. LP has been shown to inhibit NaK-
ATPase [5], an enzyme postulated to be important in at least
one model of acute renal failure [64]. In analgesic nephropathy,
the presence of tubular lipofuscin pigment [16]. indicative of in
vivo LP, and depletion of renal glutathione [15, 65], a reducing
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agent which protects against free radical damage, is consistent
with a mechanism involving oxidative damage and LP [15, 16,
65]. Both gentamicin and LP cause similar changes in mitchon-
dna! states 3 and 4 respiration suggesting the potential involve-
ment of lipid peroxides in gentamicin nephrotoxicity [66, 67].
These observations along with our results suggest that the role
of reactive oxygen species and LP in renal pathophysiology
should be examined critically.
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