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SUMMARY

BAFF is a soluble factor required for B cell maturation
and survival. BAFF-R signals via the noncanonical
NF-kB pathway regulated by the TRAF3/NIK/IKK1
axis. We show that deletion of Ikk1 during early B
cell development causes a partial impairment in B
cell maturation and BAFF-dependent survival, but
inactivation of Ikk1 in mature B cells does not affect
survival. We further show that BAFF-R employs
CD19 to promote survival via phosphatidylinositol
3-kinase (PI3K), and that coinactivation of Cd19
and Ikk1 causes a profound block in B cell maturation
at the transitional stage. Consistent with a role for
PI3K in BAFF-R function, inactivation of PTEN medi-
ates a partial rescue of B cell maturation and function
in Baff�/� animals. Elevated PI3K signaling also
circumvents BAFF-dependent survival in a sponta-
neous B cell lymphoma model. These findings indi-
cate that the combined activities of PI3K and IKK1
drive peripheral B cell differentiation and survival in
a context-dependent manner.

INTRODUCTION

BAFF is themost critical soluble factor for peripheral B cell matu-

ration and survival, and dysregulated BAFF expression is asso-

ciated with lupus-like autoimmunity and B cell non-Hodgkin

(B-NHL)-like lymphoma (Mackay et al., 2010; Rickert et al.,

2011). BAFF-R expression is induced on newly formed B cells

that are poised to egress from the bone marrow and enter the

spleen, and is further upregulated as transitional B cells mature

to become follicular or marginal zone (MZ) B cells (Hsu et al.,

2002; Meyer-Bahlburg et al., 2008; Stadanlick et al., 2008).
1022 Cell Reports 5, 1022–1035, November 27, 2013 ª2013 The Aut
Consistent with the pattern of BAFF-R expression, BAFF or

BAFF-R deficiency imposes a block at the transitional T1-T2

maturation step due to failed survival, while follicular and MZ B

cells are reduced by >90% and do not recover with age (Miller

and Hayes, 1991; Schiemann et al., 2001; Thompson et al.,

2001). Provision of a survival signal in the form of forced Bcl-2

expression rescues the transitional B cell block, leading to the

generation of follicular B cells; however, MZ B cell formation

remains impaired, indicating that BAFF-R engagement also

imparts essential differentiation signals (Rahman and Manser,

2004; Sasaki et al., 2004; Tardivel et al., 2004).

In early work distinguishing the canonical (IKK2/Nemo-depen-

dent) from the noncanonical (IKK1-dependent) NF-kB pathways,

it was observed that BAFF-R engagement efficiently induced the

cleavage of p100 (encoded by NF-kB2) into p52, allowing it to

pair with RelB to drive gene expression (Claudio et al., 2002;

Kayagaki et al., 2002; Senftleben et al., 2001). Cleavage of

p100 is enabled by IKK1-dependent phosphorylation, which

requires upstream activation by NIK (Senftleben et al., 2001;

Xiao et al., 2001). In unstimulated B cells, cytosolic TRAF3 is

bound to NIK and mediates its continual ubiquitination and

degradation (Vallabhapurapu et al., 2008; Zarnegar et al.,

2008b). BAFF-R engagement relieves this suppression by redi-

recting the ubiquitin-mediated degradation machinery to target

TRAF3, allowing for newly formed NIK to persist (Chan et al.,

2010). Consistently, gene-targetedmice lacking TRAF3 in B cells

(Gardam et al., 2008; Xie et al., 2007), or mice expressing a

mutated NIK molecule that cannot interact with TRAF3 (Sasaki

et al., 2008), have been found to exhibit BAFF-independent B

cell accumulation. The canonical NF-kB pathway has been

shown to prime the noncanonical pathway by driving the expres-

sion ofNF-kB2 (Dejardin et al., 2002). In this regard, studies have

shown that the B cell receptor (BCR) induces p100 to facilitate

BAFF-R signaling (Stadanlick et al., 2008). In addition, BAFF-R

has some intrinsic capacity to activate canonical NF-kB

signaling (Hildebrand et al., 2010). While inhibition of RelB by
hors
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p100 is relieved by cleavage of p100 into p52, p100 has been

shown to aggregate and act as an inhibitor of p50:p65 (Basak

et al., 2007). Moreover, NIK was recently shown to be destabi-

lized by IKK1 phosphorylation (Razani et al., 2010). Thus, there

are both positive and negative feedback mechanisms regulating

the NF-kB pathways in B cells.

The majority of studies of BAFF-R signaling have focused on

signaling via the TRAF/IKK/NF-kB pathway. However, the phos-

phatidylinositol (PtdIns) 3-kinase (PI3K) pathway has also been

implicated in BAFF-R function (Baracho et al., 2011). The class

IA PI3Ks consist of three catalytic isoforms (p110a, p110b, and

p110d) that form heterodimers with adaptor subunits (p85a,

p55a, p50a, p85b, and p55g) that regulate the location and enzy-

matic activity of the PI3K heterodimer. PtdIns(3,4,5)P3 is also the

primary substrate for the phosphoinositide 3-phosphatase

PTEN, which directly antagonizes PI3K activity. Activation of

downstream pathways is initiated by the recruitment of effector

molecules such as PDK1, Akt, Btk, and PLCg2, which

bear pleckstrin homology (PH) domains that directly bind

PtdIns(3,4,5)P3 (Baracho et al., 2011). p110d-deficient B cells

exhibit impaired BAFF-induced survival (Henley et al., 2008),

and combined inactivation of p110a/d results in failed B cell

generation or accumulation (Ramadani et al., 2010). Using Akt

phosphorylation as a surrogate readout, investigators have

observed that BAFF induces PI3K activity with both rapid and

delayed kinetics (Otipoby et al., 2008; Patke et al., 2006). Thus,

there is experimental evidence supporting a role for the PI3K

pathway in BAFF-R function, but it is unclear whether this is

a primary or ancillary role relative to the noncanonical NF-kB

signaling pathway.

Here, we report the surprising finding that acute mature B cell

survival is unaffected by the inducible loss of Ikk1, whereas early

deletion of Ikk1 results in an incomplete block in B cell maturation

and BAFF responsiveness. We also provide evidence that

CD19-dependent activation of the PI3K pathway is an important

contributor to BAFF-mediated B cell survival. Thus, PI3K activity

is pivotal for both BCR and BAFF-R signaling, underscoring its

significance as a therapeutic target in autoimmune disease and

B cell malignancy.

RESULTS

BAFF-Mediated Mature B Cell Survival Is IKK1
Independent
Although both NF-kB and PI3K pathways are activated down-

stream of BAFF-R engagement by BAFF, and loss of either

Baff or Baff-r expression results in a block at the transitional

stage of B cell maturation, it is unclear whethermature B cells still

require IKK1 and/or PI3K for maintenance and survival. To

address this issue, we generated a mouse strain in which IKK1

expression can be inducibly ablated in mature B cells by

intercrossing mice containing a loxP-flanked Ikk1 allele (Ikk1L)

(Liu et al., 2008) with the recently described hCD20TamCre strain

(Khalil et al., 2012) bearing a loxP-regulated enhanced yellow

fluorescent protein (EYFP) reporter cassette (Srinivas et al.,

2001). Following administration of tamoxifen, Cre recombinase

is rapidly activated with concomitant expression of EYFP and

deletion of Ikk1 in B cells expressing Cre. Strikingly, we found
Cell Re
that deletion of Ikk1 in mature B cells did not result in depletion

of mature B cells 1 or 2 weeks following induction of Cre with

tamoxifen (Figure 1A). Flow-cytometric analysis showed that in

Ikk1L/LhCD20TamCre mice, on average, over 70% of cells were

YFP+ (and thus deleted Ikk1; Figure 1B). Separation of

CD21intCD23hi follicular cells and CD21hiCD23int/low MZ B cells

7 days after tamoxifen injection showed that both subsets

of YFP+ B cells persisted equally well in the spleens of

Ikk1L/LhCD20TamCre mice (Figure 1B).

Consistent with our in vivo observations, in vitro survival

assays showed that B cells isolated from Ikk1L/LhCD20TamCre

mice survived as well as control B cells in media alone or with

BAFF stimulation (Figure 1C). By immunoblotting whole-cell

lysates from sorted YFP+ and YFP� B cells, we confirmed that

the survival of Ikk1L/LhCD20TamCre B cells was not due to

residual expression of IKK1 protein (Figure 1D). Interestingly,

we also found that p52 was present in similar amounts in YFP+

and YFP� B cells from Ikk1L/LhCD20TamCre mice, and could be

generated de novo upon BAFF stimulation (Figure 1D).

Since the hCD20TamCre inducible system does not account

for the contribution of p100 cleavage that occurred before

tamoxifen-induced Ikk1 inactivation, we intercrossed Ikk1L/L

mice with Cd19Cre mice to eliminate IKK1 prior to the onset of

BAFF-R expression. Ikk1L/LCd19Cre mice exhibited a 40%–

50% reduction in mature B cells (Figure 2A), but B cell develop-

ment was not blocked at the T1-T2 maturation stage as

observed in mice lacking BAFF/BAFF-R (Figures 2A and 2B)

(Sasaki et al., 2004) or mice reconstituted with Ikk1�/� fetal liver

cells (Kaisho et al., 2001). Bromodeoxyuridine (BrdU)-labeling

experiments revealed that phenotypically mature splenic B cells

in Ikk1L/LCd19Cre mice exhibited a more rapid turnover, whereas

mature recirculating B cells analyzed from the bone marrow of

Ikk1L/LCd19Cre and control mice had similar rates of turnover

(Figure 2C). Ikk1L/LCd19Cre B cells responded to BAFF, albeit

less effectively than control B cells (Figure 2D). At the bio-

chemical level, splenic B cells from Ikk1L/LCd19Cre mice showed

efficient ablation of IKK1 and impaired, but not absent, cleavage

of p100 (Figure 2E). Moreover, p100 cleavage reached comple-

tion following in vitro BAFF stimulation of Ikk1L/LCd19Cre B cells

(Figure 2E). Altogether, these findings indicate that the loss of

IKK1 imposes a bottleneck at the transitional B cell stage, but

B cells that successfully traverse this stage become long-lived,

mature, recirculating B cells that do not strictly require IKK1 for

tonic BAFF-R signaling. Moreover, the results of the in vitro stim-

ulation assays raise the possibility that another ser/thr kinase can

partially compensate for the loss of IKK1 in the processing of

p100 to generate p52.

Sustained PtdIns(3,4,5)P3 Signaling Restores B Cell
Development in Baff�/� Mice
Since IKK1-dependent signaling events cannot solely account

for BAFF-R function, we sought to identify additional pathways

that may complement IKK1 activity. Several reports have shown

that BAFF-R can engage the PI3K pathway (Henley et al., 2008;

Otipoby et al., 2008; Patke et al., 2006; Woodland et al., 2008).

We confirmed these findings, showing that BAFF induced

rapid activation of Akt (Figure S1A). Addition of the p110d-

specific inhibitor IC87114 blocked Akt activation and impaired
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Figure 1. IKK1-Deficient Mature B Cells Show Normal In Vivo Sur-

vival and BAFF-Mediated Survival In Vitro

(A) Ikk1 deletion was induced in mature B cells by tamoxifen injection of Ikk1L/L

hCD20TamCre+ mice on three consecutive days. Ikk1L/LhCD20TamCre� or

Ikk1+/+ hCD20TamCre+ mice were used as controls (ctrl). Mice were sacrificed

1 week or 2 weeks after the last tamoxifen injection and the percentage of B

cells in the spleen was determined by flow cytometry. Graphs show means +

SD from three independent experiments.

(B) The percentage of YFP+ B cells 7 days after tamoxifen injection was

comparable between CD21intCD23hi follicular B cells and CD21hiCD23int/low

MZ B cells. YFP expression was not detected in non-B cells (B220�). Data
shown are representative of two experiments.
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BAFF-dependent B cell survival (Figure S1B). To address the

physiologic significance of BAFF-dependent PI3K activity, we

bred PtenL/LCd19Cre mice onto the BAFF-deficient background

(PtenL/LBaff�/�Cd19Cre). In PtenL/LBaff�/�Cd19Cre B cells, the

absence of PTEN results in sustained activation of the PI3K

pathway due to impaired hydrolysis of the PI3K lipid product

PI(3,4,5)P3. Consistent with previous reports (Anzelon et al.,

2003; Suzuki et al., 2003), B cell-specific deletion of Pten

resulted in a skewing toward the MZ B cell fate (Figures 3A

and 3B). In contrast, Baff�/� mice exhibited a dramatic

reduction in all peripheral B cell subsets, owing to a block at

the transitional stage of maturation (Figures 3A and 3B). Strik-

ingly, in BAFF-deficient mice lacking expression of Pten, we

observed a significant recovery in B cell maturation with no

apparent bias toward the MZ B cell subset (Figures 3A and

3B). In this regard, the size of the CD21/35hiCD1d+ and CD9+

B cell subsets was comparable in wild-type and PtenL/L

Baff�/�Cd19Cre mice (data not shown). BCR signaling promotes

Baff-r expression (Rowland et al., 2010; Smith andCancro, 2003)

and in turn, BAFF signaling upregulates surface expression of

CD21/35 and CD23 on B cells (Gorelik et al., 2004). Here, we

found that constitutive activation of the PI3K pathway restored

CD21/35, but not CD23, expression in PtenL/LBaff�/�Cd19Cre

splenic B cells (Figure 3C; data not shown). These data indicate

that downstream of BAFF-R signaling, PI3K supports CD21/35

surface expression (Figure 3C), while CD23 expression is upre-

gulated by BAFF-R signaling in a PI3K-independent manner or

is downregulated by elevated PI3K signaling. Consistent with

flow-cytometric analyses, histological staining of spleen sec-

tions from Pten+/+Baff+/+Cd19Cre, PtenL/LBaff+/+Cd19Cre,

Pten+/+Baff�/�Cd19Cre, and PtenL/LBaff�/�Cd19Cre mice

confirmed that PtenL/LBaff�/�Cd19Cre mice did not have an

expansion of MZ B cells as was observed in PtenL/LBaff+/+

Cd19Cre mice, and that the overall splenic architecture in

PtenL/LBaff�/�Cd19Cre mice was similar to that in wild-type

controls (Figure S2A).

Antigen-Specific Immune Responses and Germinal
Center Formation Are Intact in PtenL/LBaff�/�Cd19Cre

Mice
Despite the paucity of mature B cells in mice lacking expression

of BAFF or BAFF-R, small germinal centers (GCs) are formed and

some immunoglobulin G (IgG) is produced (Miller and Hayes,

1991; Rahman et al., 2003; Vora et al., 2003). However, the GC

response is transient, with impaired proliferation and an associ-

ated failure to form mature follicular dendritic cell networks

(Rahman and Manser, 2004; Rahman et al., 2003; Vora et al.,
(C) To study BAFF-mediated survival in vitro, mice were sacrificed after the last

tamoxifen injection, and B cells were purified and stimulated with 10 ng/ml

BAFF. The percentage of viable B cells after 3 days or 5 days in culture was

determined by flow cytometry. Graphs show mean + SD from three

independent experiments.

(D) Splenic B cells from tamoxifen-treated Ikk1L/LhCD20TamCre+ mice were

stimulated overnight with 25 ng/ml BAFF or incubated in medium alone. p100

cleavage and p52 generation were visualized by western blotting. Absence of

IKK1 in Cre+ cells (YFP+) was confirmed by western blot analysis. Actin was

used as loading control. Data shown are representative of two experiments.
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Figure 2. IKK1 Deletion Early in B Cell Development Results in an Incomplete Block in B Cell Maturation
(A) Graphs show the total cell numbers of B cells (left panel) and B cell subsets (middle and right panels) in spleens obtained from Ikk1L/LCd19Cre+ and control

mice. Ikk1L/LCd19Cre� or Ikk1+/+ Cd19Cre+ mice were used as controls (ctrl). B cell subsets were identified by cell surface markers: B220+, total B cells;

B220+CD21intIgMlow, mature B cells; B220+CD21lowIgMhi, T1 B cells; B220+CD21hiCD23hiIgMhi, T2 B cells; B220+CD21hiCD23int/low, MZ B cells.

(B) B cell maturation in the spleen was analyzed by flow cytometry. Plots are representative of >11 mice analyzed.

(C) Mice were continuously provided BrdU in the drinking water and euthanized after 7, 14, or 21 days of treatment. Cells were harvested from the spleen and the

bonemarrow and stained with a BrdU antibody and for surfacemarkers as follows: (left) splenic follicular (B220+, IgM+, CD23hi, and CD21lo) B cells; (center) bone

marrow B cell progenitors (B220+, IgM�, and IgD�); (right) recirculating mature B cells (B220+, IgD+, and IgMlo) in the bone marrow. Four experimental and

Cd19Cre+ control mice (10–15 weeks old) were used per time point and rates of turnover were calculated by linear regression analysis. Error bars represent SD.

(D) B cells from spleens enriched for mature B cells (CD23+CD43�) or from lymph nodes (LNs; B220+CD43�) were stimulated with 10 ng/ml BAFF and the

percentage of viable cells was determined by flow cytometry after 3 days and/or 5 days in culture. The graph summarizes seven samples for each genotype and

time point. Error bars represent SD.

(E) Left panel: protein lysates from freshly isolated splenic B cells were assayed for p100 cleavage by western blotting. Right panel: p100 processing to p52 in LN

B cells stimulated overnight with 25 ng/ml BAFF versus unstimulated cells.
2003). As in the case of MZ B cell formation, ectopic expression

of Bcl-2 does not rescue theGC response inBaff�/�mice, result-

ing in the accumulation of B cells bearing an immature pheno-

type and disrupted follicular architecture (Rahman and Manser,

2004). Thus, BAFF signaling is critical for the survival of transi-

tional and mature recirculating B cells, and for promoting MZ

and GC B cell differentiation.
Cell Re
Although sustained PtdIns(3,4,5)P3 signaling in Baff�/� mice

lacking Pten allowed for B cell development beyond the transi-

tional stage, we sought to determine whether the mature B cells

found in PtenL/LBaff�/�Cd19Cre mice were functional. To this

end, we immunized PtenL/LBaff�/�Cd19Cre mice and control an-

imals with nitrophenol-keyhole limpet hemocyanin (NP-KLH) in

alum and measured the relative levels of NP-specific serum
ports 5, 1022–1035, November 27, 2013 ª2013 The Authors 1025



Figure 3. Constitutively Active PI3K Restores B Cell Development in Baff�/� Mice

(A) Flow cytometry of B220+ splenic cells from Pten+/+Baff+/+Cd19Cre, PtenL/LBaff+/+Cd19Cre, Pten+/+Baff�/�Cd19Cre, and PtenL/LBaff�/�Cd19Cre mice. Data are

representative of eight mice per group.

(B) Absolute numbers of splenocytes and splenic B220+ B cells (top panel), and splenic B cell subsets (bottom panel). Data are from five experiments with seven

mice per group; small horizontal lines indicate mean.

(C) Expression of CD21/35 on B220+-gated IgMloIgDhi splenic B cells from Pten+/+Baff+/+Cd19Cre, PtenL/LBaff+/+Cd19Cre, Pten+/+Baff�/�Cd19Cre, and PtenL/L

Baff�/�Cd19Cre mice. MFI, mean fluorescence intensity.

(D) ELISA of NP-specific IgM (top) or IgG (bottom) in the sera of Pten+/+Baff+/+Cd19Cre, PtenL/LBaff+/+Cd19Cre, Pten+/+Baff�/�Cd19Cre, and PtenL/LBaff�/�Cd19Cre

mice prior to immunization (day 0), and 7 or 14 days postimmunization with 100 mg NP-KLH in alum.

(E) Flow-cytometric analysis of splenic GC B cells (B220+ gated) from immunized mice (top). The graph summarizes the percentage of B220+GL7+Fas+ B cells

14 days postimmunization (bottom). Error bars represent SEM.

See also Figure S2.
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Figure 4. Upregulation of Activation Markers and Proliferation Are

Restored in Baff�/� B Cells Lacking Pten

(A) Flow-cytometric analysis of CD69 expression on Pten+/+Baff+/+Cd19Cre,

PtenL/LBaff+/+Cd19Cre, Pten+/+Baff�/�Cd19Cre, and PtenL/LBaff�/�Cd19Cre B

cells following stimulation with the indicated mitogens.

(B) As in (A), expression of CD86.

(C) Purified splenic B cells from Pten+/+Baff+/+Cd19Cre, PtenL/LBaff+/+Cd19Cre,

Pten+/+Baff�/�Cd19Cre, and PtenL/LBaff�/�Cd19Cre mice were stimulated as

indicated. Proliferation was determined at 48 hr by 3H-thymidine incorpora-

tion. All assays were conducted in triplicate and SDs are shown as error bars.

Data are representative of three independent experiments, with two mice per

group per experiment.

(D) Pten+/+Cd19Cre or PtenL/LCd19Cre mature LN B cells were left untreated or

were cultured in the presence of BAFF, and cell viability was assessed by

Annexin V (AnnV) and propidium iodide (PI) staining. The graph shows the

percentage of live (AnnV�PI�) cells at each time point. Data are representative

of three experiments with five mice per group total.

See also Figure S1.

Cell Re
IgM and IgG antibody at 7 and 14 days postimmunization.

PtenL/LBaff�/�Cd19Cre mice produced elevated levels of NP

IgM antibody at 7 and 14 days postimmunization as compared

with Pten+/+Baff�/�Cd19Cre mice, and their responses were

statistically indistinguishable from those of normal Pten+/+

Baff+/+Cd19Cre controls (Figure 3D, top). Consistent with previ-

ously published studies (Anzelon et al., 2003; Suzuki et al.,

2003), PtenL/LBaff+/+Cd19Cre mice displayed a significant reduc-

tion in NP IgG antibodies, likely due to the fact that sustained and

elevated PtdIns(3,4,5)P3 signaling inhibits class switch recombi-

nation by terminating Foxo1-dependent Aicda transcription

(Dengler et al., 2008; Omori et al., 2006) (Figure 3D, bottom).

Correspondingly, in spite of robust antigen-specific IgM produc-

tion, the PtenL/LBaff�/�Cd19Cre mice showed a virtual absence

of NP-specific IgG and resembled PtenL/LBaff+/+Cd19Cre mice

in this respect (Figure 3D).

To confirm that the absence of NP-specific IgG was not due to

defective GC formation in PtenL/LBaff�/�Cd19Cre mice, we

assessed the presence of GCs in immunized control mice

and PtenL/LBaff�/�Cd19Cre mice. Flow-cytometric analysis of

splenocytes from immunized mice showed that unlike Pten+/+

Baff�/�Cd19Cre mice, PtenL/LBaff�/�Cd19Cre mice produced

abundant B220+PNA+GL7+ GC B cells (Figure 3E). In fact, the

PtenL/LBaff�/�Cd19Cre mice harbored a greater percentage of

GC B cells than their normal or PTEN-deficient counterparts. In

addition, staining of spleen sections with B220 and PNA showed

robust GCs in immunized PtenL/LBaff�/�Cd19Cre mice, consis-

tent with flow-cytometric data (Figure S2B). Thus, antigen-driven

B cell responses are recovered in PtenL/LBaff�/�Cd19Cre mice,

whereas repression of class switch recombination remains a

dominant effect of Pten inactivation.

PTEN-Deficient B Cells from Baff�/� Mice Are
Responsive to Extracellular Stimuli and BCR
Engagement
Given the robust in vivo responses of PtenL/LBaff�/�CD19Cre B

cells following immunization, we next sought to determine

whether PtenL/LBaff�/�Cd19Cre B cells display the activation

and proliferative properties of mature B cells responding to spe-

cific stimuli. To this end, purified splenic Pten+/+Baff+/+CD19Cre,

PtenL/LBaff+/+CD19Cre, Pten+/+Baff�/�CD19Cre, and PtenL/L

Baff�/�CD19Cre B cells were cultured in the presence of BAFF,

anti-igM F(ab’)2 (with or without BAFF), agonistic CD40 antibody,

or lipopolysaccharide. Consistent with previous reports (Anzelon

et al., 2003; Suzuki et al., 2003), expression of the activation

markers CD69 and CD86 was augmented on PTEN-deficient B

cells (Figures 4A and 4B). In contrast, expression of CD69 and

CD86 was significantly reduced or absent on B cells from

BAFF-deficient animals following treatment with various stimuli

(Figures 4A and 4B). Notably, constitutive activation of the

PI3K pathway by the loss of PTEN expression in BAFF-deficient

B cells restored B cell responsiveness and induction of CD69

and CD86 expression under all conditions examined. In this re-

gard, PtenL/LBaff�/�CD19Cre B cells resembled control B cells

(Figures 4A and 4B). Consistent with these data, PtenL/LBaff�/�

CD19Cre B cells also proliferated robustly following stimulation

with numerous mitogenic stimuli and were comparable to

PtenL/LBaff+/+CD19Cre B cells (Figure 4C). Since inhibition of
ports 5, 1022–1035, November 27, 2013 ª2013 The Authors 1027



PI3K impairs BAFF-R signaling (Figures S1A and S1B), we also

confirmed that sustained activation of the PI3K pathway in

PTEN-deficient B cells promotes BAFF-induced survival (Fig-

ure 4D). Thus, the competence of B cells from PtenL/LBaff�/�

CD19Cre mice to respond productively to BCR engagement

and costimulation supports the strong antibody responses

in vivo.

PI3K-Driven B Lymphomagenesis Is Unperturbed in the
Absence of BAFF
We recently reported a model of spontaneous B cell lymphoma

in mice harboring B cell-specific deletion of genes encoding

PTEN and SHIP phosphatases (Miletic et al., 2010). This model

demonstrated not only enhanced survival of PtenL/LShipL/L

CD19Cre lymphoma cells in the presence of BAFF but also a pro-

liferative response to BAFF. Moreover, PtenL/LShipL/LCD19Cre

lymphoma B cells continued to expand upon adoptive transfer

into sublethally irradiated Baff�/� recipients. Here, we sought

to determine whether BAFF is required for B lymphoma initiation

as well as progression in PtenL/LShipL/LCD19Cre mice. To this

end, we crossed PtenL/LShipL/LCD19Cre mice onto the Baff�/�

background (PtenL/LShipL/LBaff�/�CD19Cre). B cell development

in PtenL/LShipL/LBaff�/�CD19Cre mice was comparable to that

observed in BAFF-expressing PtenL/LShipL/LCD19Cre mice,

with B cell numbers similar to those found in wild-type controls

(Figures 5A and 5B). Strikingly, PtenL/LShipL/LBaff�/�CD19Cre

mice developed lethal lymphoma with onset and penetrance

similar to those observed in BAFF-sufficient PtenL/LShipL/L

CD19Cre mice (Figure 5C). Moreover, the lymphoma cells that

expanded in PtenL/LShipL/LBaff�/�CD19Cre mice were pheno-

typically similar (B220loCD5+CD11b+) to lymphoma B cells

from PtenL/LShipL/LCD19Cre mice (Figure 5D). Collectively, these

data indicate that BAFF is not required for B lymphomagenesis

when PI3K signaling is highly dysregulated.

Augmented PI3K Signaling by BAFF-R Does Not Affect
the Noncanonical NF-kB Pathway and Promotes Mcl-1
Function
To determine whether there is biochemical crosstalk or synergy

between the PI3K and NF-kB pathways downstream of BAFF-R,

we examined p100 expression and p52 generation in

Pten+/+Cd19Cre and PtenL/LCd19Cre B cells. Freshly isolated B

cells from both mouse lines exhibited similar amounts of p100

and the p52 cleavage product, indicating similar in vivo re-

sponses to endogenous BAFF (Figure 6A). Accordingly, expo-

sure to BAFF in vitro resulted in efficient conversion of p100 to

p52 in control and in PTEN-deficient B cells (Figure 6A). Induction

of p100 by BCR stimulation was also similar in control and PTEN-

deficient B cells, indicating that canonical NF-kB signaling was

not augmented by heightened activation of the PI3K pathway.

BAFF has been characterized chiefly as a prosurvival factor.

The targets of BAFF-dependent survival have yet to be identified,

but we focused on the prosurvival Bcl-2 family member Mcl-1,

which is regulated primarily in a posttranslational manner that

requires PI3K signaling and has previously been implicated in

BAFF-R signaling (Maurer et al., 2006; Woodland et al., 2008).

Mcl-1 is phosphorylated by GSK-3b, leading to degradation of

Mcl-1. The loss of Mcl-1 is countered by Akt-mediated phos-
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phorylation and subsequent inactivation of GSK-3b (Maurer

et al., 2006). To examine this regulatory cascade, we measured

levels of pAkt (Ser473), pGSK-3b (Ser9), and Mcl-1 in freshly

isolated splenic B cells from Pten+/+Baff+/+Cd19Cre, PtenL/L

Baff+/+Cd19Cre, Pten+/+Baff�/�Cd19Cre, and PtenL/LBaff�/�

Cd19Cre mice. Both PtenL/LBaff+/+Cd19Cre and PtenL/L

Baff�/�Cd19Cre B cells showed elevated levels of phosphory-

lated Akt as well as phosphorylation of GSK-3b on inhibitory

serine 9, the site that is phosphorylated by Akt, as compared

with control Pten+/+Baff+/+Cd19Cre or Pten+/+Baff�/�Cd19Cre B

cells (Figure 6B). Consistent with these results, we also found

elevated levels of Mcl-1 in both PtenL/LBaff+/+Cd19Cre and

PtenL/LBaff�/�Cd19Cre B cells (Figure 6B). It is possible that

some of these differences reflect the altered distribution of B

cell subsets between these strains (Figures 3A and 3B). Never-

theless, PtenL/LBaff�/�Cd19Cre mice displayed reduced total

splenic B cell numbers but a similar subset distribution

compared with normal Pten+/+Baff+/+Cd19Cre control mice (Fig-

ures 3A and 3B).

Mcl-1 promotes cell survival through the direct binding and

sequestration of the proapoptotic BH3 family member Bim

(Maurer et al., 2006). Correspondingly, we found an elevated

amount of Bim associated with Mcl-1 in Pten-deficient B cells

as compared with control B cells (Figure 6C). Together, these

data suggest that activation of PI3K downstream of BAFF-R

may promote B cell survival in part via maintenance of Mcl-1

expression and sequestration of Bim by Mcl-1.

BAFF-R Signaling Employs both the IKK1 and
CD19/PI3K Pathways
Although it is known that PI3K is activated in B cells downstream

of BAFF-R, how PI3K is recruited to BAFF-R remains unclear.

Unlike noncanonical NF-kB signaling, which has been shown

to be dependent upon TRAF3 for activation downstream of

BAFF-R (Rickert et al., 2011), we found that Akt activation was

not affected in a positive or negative manner in mice lacking

TRAF3 in B cells (Traf3L/LCd19Cre; Figure 7A). Thus, while

TRAF3 ablation permits BAFF-independent B cell survival

(Gardam et al., 2008; Xie et al., 2007), this effect is apparently

not due to augmented PI3K signaling.

Downstream of the BCR, PI3K p110d can act on membrane

substrates via p85a-mediated recruitment to the transmem-

brane adaptor CD19 as well as to the cytosolic adaptor BCAP

(Baracho et al., 2011; So and Fruman, 2012). To determine

whether CD19 may also act as a coreceptor for BAFF-R

signaling, we treated Cd19+/+ and Cd19�/� (aka Cd19Cre/Cre)

splenic and lymph node (data not shown) B cells with BAFF

and examined them for phosphorylation of CD19 on the p85-

binding sites Y513 and Akt S473. We found that BAFF-R binding

induced robust phosphorylation of CD19 (Y513) and that expres-

sion of CD19 augmented Akt activation (Figure 7B). Impaired

BAFF-R signaling correlated with reduced survival of Cd19�/�

B cells cultured in the presence of BAFF (Figure 7C). Together,

these results indicate that CD19 is a critical component of

BAFF-R signaling that may recruit PI3K to BAFF-R in a manner

analogous to its role in BCR signaling.

In agreement with earlier findings, Cd19�/� mice displayed a

modest reduction in mature B cells and a near absence of MZ
hors



Figure 5. Lymphoma Development in PtenL/LShipL/LCd19Cre Mice Occurs in a BAFF-Independent Manner

(A) Flow-cytometric analysis of B220+-gated splenic cells from Pten+/+Ship+/+Baff+/+Cd19Cre, Pten+/+Ship+/+Baff�/�Cd19Cre, PtenL/LShipL/LBaff+/+Cd19Cre, and

PtenL/LShipL/LBaff�/�Cd19Cre mice. Data are representative of two independent experiments with at least two mice per group.

(B) Absolute numbers of splenocytes and splenic B cells (n = 3 mice per group; small horizontal lines indicate mean).

(C) Kaplan-Meier survival curve of Pten+/+Ship+/+Baff+/+Cd19Cre (n = 7), PtenL/LShipL/LBaff+/+Cd19Cre (n = 6), and PtenL/LShipL/LBaff�/�Cd19Cre (n = 9) mice.

(D) Expansion of B220�/lowCD19+ lymphomaB cells in peripheral blood of Pten+/+Ship+/+Baff+/+Cd19Cre, PtenL/LShipL/LBaff+/+Cd19Cre, and PtenL/LShipL/LBaff�/�

Cd19Cre mice as determined by flow cytometry at the indicated time points. Data shown are from two representative animals for each group. The PtenL/LShipL/L

Baff+/+Cd19Cre animal shown in the bottom row died before 9 months of age.
B cells (Figure 7D). However, unlike Baff�/� mice, the T2 popula-

tion was unaffected (Figures 3A, 3B, and 7D, top). Thus, to deter-

mine whether BAFF-R may differentially utilize the IKK1 and

CD19/PI3K pathways in transitional, mature, and MZ B cell sub-

sets, we generated mice lacking both CD19 and IKK1 in B cells
Cell Re
(Ikk1L/LCd19Cre/Cre). Strikingly, these mice exhibited a strong

block in peripheral B cell maturation that was comparable to

that observed in Baff�/� mice (Figures 3A, 3B, and 7D, bottom).

Indeed, Ikk1L/LCd19Cre/Cre B cells were nonresponsive to BAFF

stimulation in vitro (Figure 7C). These findings suggest that the
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Figure 6. Augmented PI3K Signaling by

BAFF-R Does Not Affect the Noncanonical

NF-kB Pathway and Promotes Mcl-1

Function

(A) Pten+/+Baff+/+Cd19Cre and PtenL/LBaff+/+

Cd19Cre B cells were left untreated or were

cultured in the presence of BAFF or anti-igM

F(ab0)2 fragments. Activation of noncanonical NF-

kB was determined by western blotting with anti-

bodies against p100/p52. Membranes were strip-

ped and reprobed for actin as a loading control.

(B) Western blots of protein lysates from freshly

isolated Pten+/+Baff+/+Cd19Cre, PtenL/LBaff+/+

Cd19Cre, Pten+/+Baff�/�Cd19Cre, or PtenL/LBaff�/�

Cd19Cre splenic B cells probed with pAkt1 (S473),

GSK-3b (S9), Mcl-1, or Akt1 antibodies.

(C) Pten+/+Cd19Cre and PtenL/LCd19Cre B cells

were left untreated or were treated with BAFF.

Lysates were generated and Mcl-1 was immuno-

precipitated. Immunoprecipitates were resolved

by SDS-PAGE and membranes were probed with

antibodies against Bim and Mcl-1.
IKK1 andCD19/PI3K pathways act in parallel tomediate BAFF-R

signaling in newly formed B cells.

DISCUSSION

It has been shown in numerous studies that BAFF depletion

causes the rapid loss of transitional, mature, and GC B cells.

BAFF-R signaling via thenoncanonical NF-kBpathway is thought

to occur similarly in these B cell subsets. Early studies showed

that fetal-liver-derived B cells from Ikk1�/� mice presented a

block at the late transitional (T2) B cell stage (Kaisho et al.,

2001), but we found that Ikk1 inactivation in early B cells resulted

in only a partial block at the T2 stage. This apparent discrepancy

might be explained by the recent discovery of a role for IKK1 in

early B cell generation, and perhaps a greater dependence on

IKK1 activity for fetal- versus bone-marrow-derived B cells (Bal-

khi et al., 2012). BrdU-labeling studies revealed that splenic B

cells bearing a mature phenotype exhibited a higher turnover in

Ikk1L/LCd19Cre mice, suggesting that they were relatively short-

lived. However, turnover of mature recirculating B cells in the

bone marrow of Ikk1L/LCd19Cre mice was unaffected by the

loss of IKK1, consistent with results obtained from the inducible

loss of IKK1 using the hCD20TamCre system.Onepossible expla-

nation for these findings is that inhibitory p100 accumulates in

transitional B cells and descendant mature B cells in the spleens

of Ikk1L/LCd19Cre mice, predisposing them to apoptosis and

failed entry into the long-lived mature recirculating B cell pool.

The lack of a role for IKK1 inmature B cell survival is consistent

with our previous observation of intact B cell maturation and sur-

vival in knockin mice expressing a mutant IKK1 molecule that

cannot be phosphorylated by NIK (IKKAA) (Mills et al., 2007). In

contrast, the IKKAA mice exhibit a complete block in GC B cell
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differentiation (Mills et al., 2007), suggest-

ing that BAFF-R/NIK/IKK1 signaling may

be important for priming the survival and

differentiation pathways that are set in
place after antigen encounter. Expression of a constitutively

active form of IKK2 or disruption of NIK degradation also allows

for BAFF-independent B cell maturation (Sasaki et al., 2006,

2008). Elevated NIK activity has been shown to activate the

canonical NF-kB pathway as well as the noncanonical pathway

(Zarnegar et al., 2008a). Thus, the B cell phenotypes observed

in mice expressing constitutively active IKK2 or NIK may have

similar biochemical underpinnings in abnormally augmenting

canonical NF-kB-dependent gene transcription.

Given that inactivation of the noncanonical NF-kB pathway is

insufficient to explain the biologic effects of BAFF depletion on

mature B cells, we focused on the PI3K pathway, which has pre-

viously been implicated in BAFF-R function (Baracho et al.,

2011). The PI3K pathway servesmultiple functions in cell growth,

proliferation, survival, and differentiation. Correspondingly,

BAFF stimulation also primes B cells for cell-cycle entry and

protein synthesis (Huang et al., 2004; Patke et al., 2006). These

effector pathways likely account, in part, for the observed

defects in the MZ and GC B cell compartments in mice bearing

defects in PI3K/Akt signaling (Calamito et al., 2010; Clayton

et al., 2002; Zhang et al., 2012).

Themajority of studies of PI3K function in B cells have focused

on BCR-induced PI3K activity, including the recruitment of CD19

as a coreceptor. In this regard, inactivation of CD19 or p110d

yields similar defects in the generation ofMZ,B-1, andGCBcells

(Clayton et al., 2002; Engel et al., 1995; Okkenhaug et al., 2002;

Rickert et al., 1995); however, dual ablation of p110a/d leads to

a nearly complete block in B cell development at the pro-B cell

stage (Ramadani et al., 2010). Here, we show that CD19 contrib-

utes to BAFF-mediated survival, consistent with BAFF-induced

CD19 phosphorylation and Akt activation. Intriguingly, this

finding suggests that BAFF-R employs signaling components



Figure 7. BAFF-Induced Signaling Is Atten-

uated in B Cells Lacking Expression of CD19

(A) Western blots of protein lysates from Traf3+/+

Cd19Cre or Traf3L/LCd19Cre splenic B cells treated

for the indicated time points with BAFF were pro-

bed with pAkt1 (S473) or tAkt1 antibodies.

(B) Western blots of protein lysates from Cd19+/+

orCd19�/� splenic B cells treated for the indicated

time points with 25 ng/ml BAFF were probed with

pCD19 (Y513), CD19, pAkt1 (S473), or tAkt1

antibodies.

(C) Cd19+/+ or Cd19�/� LN B cells were left un-

treated or were cultured in the presence of

25 ng/ml BAFF and the percentage of viable cells

was determined by flow cytometry after 3 days

and/or 5 days in culture (left panel). Graphs sum-

marize data from three individual mice in technical

triplicates per genotype. LN B cells from Ikk1L/L

Cd19Cre/Cre (IKK1 and CD19 double-deficient) and

control mice were treated with 10 ng/ml BAFF or

were cultured in medium alone, and cell viability

was assessed 3 days later (right panel). Graphs

summarize results from three independent exper-

iments with seven control samples and three

Ikk1L/LCd19Cre/Cre samples in total. These mea-

surements were part of the experiments described

in Figure 2C; therefore, results shown for

Ikk1L/LCd19Cre/Cre samples can be directly com-

pared with the Ikk1L/LCd19Cre/+ samples shown in

Figure 2C. Error bars represent SD.

(D) Total splenic B cell numbers and cell numbers

of the indicated B cell subsets from Cd19�/� and

control mice are shown in the top panel. B cell

subsets were defined as in Figure 2A. Analysis of

total cell numbers for Ikk1L/LCd19Cre/Cre and con-

trol mice is shown in the bottom panel. These mice

were analyzed in parallel with mice presented in

Figure 2A; therefore, results shown for Ikk1L/L

Cd19Cre/Cre mice can be directly compared with

data from the Ikk1L/LCd19Cre/+ mice shown in

Figure 2A.
associated with the BCR in a ‘‘coreceptor’’ capacity. This asser-

tion is supported by the recent work of Schweighoffer et al.

(2013), who reported a role for Syk in BAFF-R signaling. Findings

that BAFF activates Btk also support the possible linkage of the

BCRandPtdIns(3,4,5)P3 signaling downstreamof BAFF-R (Shin-
Cell Reports 5, 1022–1035, No
ners et al., 2007). Thus, previous studies

showing that the BCR is required for

continued B cell survival may have

incorporated homeostatic signaling by

BAFF-R (Lam et al., 1997).

To further evaluate the PI3K pathway in

BAFF-R signaling, we performed gain-of-

function studies by inactivating Pten in B

cells. This alteration is similar to that

achieved by expressing constitutively

active PI3K (p110), in that PTEN loss

leads to the sustained presence of

PtdIns(3,4,5)P3. We previously showed

that PTEN loss leads to the preferential
expansion of the MZ and B-1 B cell compartments, and comple-

ments CD19 deficiency (Anzelon et al., 2003). Here, we show that

loss of PTEN supports B cell maturation and function in BAFF-

deficient mice. Interestingly, the distribution of peripheral B cell

subsets in PtenL/LBaff�/�Cd19Cre mice is more similar to that
vember 27, 2013 ª2013 The Authors 1031



observed in wild-type animals than to that found in PtenL/LBaff+/+

Cd19Cremice, suggesting that PTEN loss does notmask residual

B cell defects in Baff�/� mice. Moreover, unlike ectopic Bcl-2

expression (Rahman and Manser, 2004; Tardivel et al., 2004),

the partial rescue of the BAFF defect is not confined to enhanced

B cell survival, but also extends to B cell differentiation and anti-

gen-dependent responses. That said, a full restoration of the

mature recirculating B cell pool is not observed in PtenL/LBaff�/�

Cd19Cre mice, likely reflecting the importance of IKK1 activity at

the transitional B cell stage. This hypothesis is further supported

by the phenotype of Cd19Cre/CreIkk1L/L double-deficient mice,

underscoring a synergistic relationship between CD19/PI3K

and IKK1 signaling.

BAFF induces the transcription of the prosurvival factors A1,

Bcl-xL, and Pim2 (Enzler et al., 2006; Hatada et al., 2003; Hsu

et al., 2002). Consistent with the role of BAFF in generating T2

B cells, early studies of Bcl-xL
�/� mice revealed a reduced per-

centage of IgM+IgD� B cells (Motoyama et al., 1995). However,

the B cells that overcome this bottleneck exhibit normal survival

as mature recirculating cells (Motoyama et al., 1995), which may

be similar to the phenotype we observed in Ikk1L/LCd19Cre mice.

Although Pim2�/� andNF-kB2�/�B cells showed similar defects

in BAFF-mediated survival in vitro (Enzler et al., 2006), inactiva-

tion of all three Pim genes resulted in only a subtle defect in

peripheral B cells in younger mice (Mikkers et al., 2004). Induc-

tion of A1 transcription by BAFF is not strictly correlated with

increased protein expression (Hatada et al., 2003). Moreover,

A1 represents a quartet of highly similar genes, one of which

(A1a) has been shown to be dispensable for BAFF-mediated sur-

vival, suggesting that A1 induction by BAFF may not be critical

(Hatada et al., 2003).

Mcl-1 has been linked to BAFF signaling (Giltiay et al., 2010;

Woodland et al., 2008), but it is not a transcriptional target of

NF-kB. Mcl-1 protein is extremely labile and earlier studies

have shown that it is essential for early B cell generation (Opfer-

man et al., 2003). More recently, Vikstrom et al. (2010) demon-

strated that Mcl-1 is essential for GC and, to a lesser extent,

follicular B cell survival. By contrast, loss of Bcl-xL is inconse-

quential for GC B cell differentiation and survival (Vikstrom

et al., 2010). We show that PTEN loss promotes Mcl-1 expres-

sion, likely due to inactivation of GSK-3 by Akt and resultant

disruption of GSK-3-dependent Mcl-1 degradation (Maurer

et al., 2006). Thus, our data suggest that Mcl-1 regulation is an

important target of PI3K-mediated survival in mature B cells.

Inhibition of the PI3K pathway is of broad interest for applica-

tions in oncology, including the treatment of B cell malignancies.

The first-in-class small-molecule inhibitor GS-1101, which is

selective for p110d, has met with considerable success in the

clinic and is now entering phase 3 clinical trials for the treatment

of B cell chronic lymphocytic leukemia. In addition, phase 2 trials

are under way for the use of GS-1101 in the treatment of indolent

B-NHL (follicular lymphoma, small lymphocytic lymphoma,

lymphoplasmacytoid lymphoma, and MZ lymphoma). The

efficacy of these inhibitors is largely attributed to the inhibition

of BCR-mediated signaling. However, our findings suggest a

reappraisal of themolecular basis of these BCR-targeting strate-

gies to take into account the consequences of impaired BAFF-R

signaling that may nonetheless be acting through the BCR com-
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plex. As such, BAFF-depletion regimens may be effective in

combined therapies with small-molecule inhibitors targeting

BCR signaling. Based upon the mouse lymphoma studies

presented here, we would also predict that BAFF-depletion

therapy would not be effective in lymphoma cases where PI3K

signaling is elevated.

EXPERIMENTAL PROCEDURES

Mice

hCD20TamCre animals (Khalil et al., 2012) were intercrossedwith mice carrying

the rosa26-flox-STOP-YFP allele (Srinivas et al., 2001), in which YFP is

expressed upon Cre activation. Ikk1L/LCD20TamCre and control animals

were injected i.p. with 1 mg tamoxifen (Sigma-Aldrich) + 10% ethanol in olive

oil on three subsequent days. PtenL/LCd19Cre mice (Anzelon et al., 2003) were

crossed to Baff�/� (Schiemann et al., 2001) mice to generate a mouse line with

B cell-specific deletion of Pten and absence of Baff expression in all tissues

(PtenL/LBaff�/�Cd19Cre). Ikk1L/L and Cd19Cre mouse lines were intercrossed

to obtain IKK1-deficient mice (Ikk1L/LCd19Cre) and IKK1 and CD19 double-

deficient mice (Ikk1L/LCd19Cre/Cre). All animals were maintained in the animal

facility of the Sanford-BurnhamMedical Research Institute (SBMRI). All proto-

cols were approved by the Institutional Animal Care and Use Committee at

SBMRI and were carried out in accordance with institutional guidelines and

regulations.

Histology

Spleens were embedded in Tissue-Tek O.C.T. (Sakura Finetek) and frozen

at �80�C. Acetone-fixed sections were blocked for 1 hr with 1% BSA + 5%

fetal bovine serum (FBS) in PBS and stained with a combination of various

antibodies (Moma-1-bio, CD3-APC, B220-PE, B220-FITC, and PNA-FITC)

for 2 hr at room temperature or overnight at 4�C, and streptavidin-Cy3 was

added in a second staining step. Images were acquired on a Zeiss Axio

ImagerM1 microscope (Zeiss).

Flow Cytometry and Antibodies

Single-cell suspensions were prepared, counted, and stained with antibodies

according to standard procedures. The following antibody clones were

obtained from eBioscience: CD3 (145-2C11), IgM (II/41), IgD (11-26), CD19

(ID3), B220 (RA3-6B2), CD11b (M1/70), CD43 (S7), CD21 (4E3), CD23

(B3B4), CD4 (GK1.5), and CD8 (53-6.7). Biotinylated reagents were detected

with streptavidin conjugated to a fluorescent marker (BD Biosciences). All

data were collected on a FACSCanto flow cytometer (BD Biosciences).

Immunizations and ELISA

Mice were immunized i.p. with 100 mg NP-KLH precipitated in alum (Imject;

Pierce), and serum was collected 0, 7, and 14 days postimmunization. Costar

EIA/RIA plates (Corning) were coated with 10 mg/ml NP23-BSA (Biosearch

Technologies) in PBS containing 0.05% sodium azide. Following blocking

with 0.25% BSA in PBS, serial dilutions of the indicated serum samples

were added. Alkaline phosphatase-labeled anti-mouse IgM or IgG antibody

(Southern Biotech) and p-nitrophenylphosphate substrate (Sigma-Aldrich)

were used for colorimetric detection at 405 nm using an ELx808 plate reader

with KC4 software (BioTek Instruments).

Cell Culture, Survival, and Proliferation Assays

B cell purification and in vitro stimulation were performed as previously

described (Miletic et al., 2010). For survival assays, purified splenic or lymph

node B cells were plated at a concentration of 13 106 cells/ml in 10% media.

Survival was determined by flowcytometry analyzing the forward-scatter/side-

scatter properties of the cells or by using the AnnV-FITC Apoptosis Detection

Kit (BioVision) according to the manufacturer’s instructions. For inhibition of

PI3K p110d, cells were pretreated with 10 mM IC87114 in DMSO (ICOS).

Immunoblotting and Immunoprecipitations

Purified B cells were stimulated with 1 mg/ml anti-igM F(ab0)2 or with 25 ng/ml

BAFF for the indicated time points, and then lysed on ice with RIPA buffer
hors



(PBS, 1%NP40, 0.5% deoxycholate, 0.1% SDS, 10mMEDTA) supplemented

with a protease inhibitor cocktail (Boehringer Mannheim), 10 mM sodium fluo-

ride, and 1 mM Na3VO4, and phenylmethanesulfonylfluoride. Equal protein

amounts were resolved on 10% Bis-Tris gels (Bio-Rad or Invitrogen) followed

by western blotting for the indicated proteins. Antibodies raised against total

IKK1, phospho-Akt (S473), total Akt, p100/p52, phospho-CD19 (Y513), total

CD19, phospho-GSK-3b (S9), actin, and Bim were obtained from Cell

Signaling Technology. Anti-Mcl-1 was purchased from Rockland Immu-

nochemicals. Primary antibodies were detected using horseradish peroxi-

dase-labeled donkey anti-rabbit (Jackson Immunoresearch) or anti-mouse

antibodies (Amersham).

For coimmunoprecipitation, B cells were lysed in lysis buffer for 20 min on

ice. Clarified lysates were incubated with 2 mg anti-Mcl-1 or control IgG anti-

bodies overnight at 4�C. Protein A/G beads (GE Healthcare) were added for

1 hr at 4�C. Immunoprecipitates were washed as described previously (Maurer

et al., 2006) and western blotting was performed as described above.

BrdU Incorporation

Mice were provided 0.5 mg/ml BrdU (Sigma) + 2% sucrose in drinking water

for up to 21 days. Bone marrow and splenic cells were isolated on days 7,

14, and 21, and stained with antibodies as indicated. After surface staining,

the cells were fixed with BD Cytofix/Cytoperm (BD Biosciences) and permea-

bilized with permeabilization buffer (eBioscience), followed by permeabiliza-

tion with 0.1% Triton X-100 (Sigma), a second fixation, and DNase (Sigma)

treatment. The cells were then stained with an BrdU antibody (Invitrogen).

Software and Statistical Analysis

Gimp (GNU Image Manipulation Program) and GraphPad Prism (GraphPad

Software) were used for image editing and statistical evaluation, respectively.

The significance of observed differences was evaluated by unpaired t test. The

obtained p values are indicated as follows: ***p < 0.001, **p < 0.005, *p < 0.05.

SUPPLEMENTAL INFORMATION

Supplemental Information includes two figures and can be found with this
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