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Abstract 

Flight vehicle conceptual design appears to be a promising area for application of the Genetic Algorithm (GA) as an approach 

to help to automate part of the design process. This computational research effort strives to develop a propulsion system design 

strategy for liquid rocket to optimize take-off mass, satisfying the mission range under the constraint of axial overload. The method 

by which this process is accomplished by using GA as optimizer is outlined in this paper. Convergence of GA is improved by 

introducing initial population based on Design of Experiments Technique. 
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1  Introduction1 

Design optimization of liquid rocket propulsion 
system is still a challenging and labor-intensive proc-
ess. There is little published information available on 
propulsion system design codes used in industry (for 
obvious competitive reasons), and many of these 
codes are known to employ the gradient-based 
schemes to optimize the continuous variables. Using a 
Genetic Algorithm (GA) as a non-gradient based 
global search method allows optimization-like tech-
niques to be applied in the conceptual phase of design, 
which traditionally has been dominated by qualitative 
or subjective decision making. Features of the GA 
provide several advantages over the traditional gradi-
ent-based schemes for conceptual design including: 
the ability to combine discrete, integer and continuous 
variables, the population-based search, no requirement 
for an initial design, and the ability to address 
non-convex, multi-modal and discontinuous functions. 
The conceptual design stage of propulsion system is 
crucial to the success of the total design process and 
the resulting vehicle system. It has been estimated that 
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at least 80 percent of a vehicle’s life-cycle cost is 
locked in by the concept that is chosen. 

Liquid Rocket Propulsion Systems (LRPSs) are 
the most popular form of rocket propulsion when 
relatively high specific impulse and high thrust 
level are required. Performance of a liquid rocket 
depends greatly on the continuous variables like 
chamber pressure and oxidizer mass fuel rate; 
however, the integer and discrete variables like the 
number and shape of fuel ports and choice of oxi-
dizer and fuel system, also impact the rocket per-
formance. . A multidisciplinary optimization for ex-
pandable solid launcher are successfully solved by 
GA in Ref.[1]. A comprehensive overview of GA 
applied in propulsion and other aerospace disci-
plines are accounted for in Ref.[2]. Another appli-
cation of GA for hybrid rockets is given in Ref.[3]. 
Most of the published information available on 
propulsion system design consider solid motor siz-
ing considering internal and external ballistics si-
multaneously. 

To date it is not aware of any published appli-
cation of the GA to the liquid rocket propulsion 
system design considering simultaneously internal 
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and external ballistics. This factor has provided 
the motivation for the efforts described in this paper 
in which GA is used to optimize the liquid rocket 
propulsion system considering internal and external 
ballistics simultaneously. 

2  Statement of the Problem 

Liquid propellant rocket engine and propellant 
feed system form the propulsion system. Tandem 
propellant tanks with pressure feed system are se-
lected for this study. A single stage ballistic missile 
capable to deliver a payload of 1000 kg at a mission 
range of 1500 km is considered. The structural mass 
other than propulsion system including rocket cas-
ing, electronic components /actuators, cable net-
work and common mounting parts etc are taken 
from statistical data on similar rocket. The aerody-
namic coefficients are obtained from Ref.[4]. Com-
mercially available LOX/RP-1 is selected as pro-
pellant for propulsion system conceptual design 
problem. 
2.1  Objective selection 

The minimum take-off mass is taken as objec-
tive function. Since vehicle development costs tend 
to vary as a function of gross take-off mass, this 
minimum gross take-off mass vehicle may be con-
sidered as a minimum development cost concept. 

Axial overload constraint is implemented to be 
restrict below 12 g. During launch maneuver, the 
maximum angle of attack is constrained to be below 
8°. Weight to thrust ratio is constrained within al-
lowable limits. 
2.2  Design variables 

Design variables define the design space which is 
explored through optimizer to get the objective func-
tion satisfying all implemented constraints. The design 
variables considered for this study are: combustion 
chamber pressure pc, nozzle exit plane pressure pe, 
case diameter d, thrust F and burning time tk. 

Table 1 shows the lower bound and upper 
bound for each design variable. 
2.3  Liquid fueled missile’s mass equation 

The initial take-off mass of a rocket may be 
represented as the sum 

          0 pay d pm m m m= + +              (1) 
Table 1  Ranges of design variables 

Parameter Lower bound Upper bound 

pc / Pa 50 150 
pe / Pa 0.45 0.75 
tk / s 50 150 
d / m 1.0 2.5 

F / kN 200 600 

Mass of “dry” shell md can be expressed as: 
       d ca en t ptm m m m m= + + +            (2) 

where mca is the mass of control apparatus, men is 
the mass of engine, mt is the mass of tail section and 
mpt is the mass of propellant tank. 

In this study masses of the tail and the instru-
ment section are taken from statistical data while 
component weight relationships have been devel-
oped for the propulsion system. 
2.4  Propulsion system component sizing and 

weight relationships 
The propulsion system component weight rela-

tionships are of prime importance for optimization 
procedure. Some empirical relations[5] are also used 
for this purpose. 

The whole mass model depends upon the se-
lected design variables. The expression for throat 
area may be expressed as follows 
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L*=1.143 m for (LOX/RP-1) 

 
Fig.1  Elements of basic cylindrical combustion chamber 
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where pc, Tc  and Lc are the combustion chamber 
pressure, temperature and length respectively. El-
lipsoidal tank end volume is calculated from pro-
pellant volume with 5% additional ullage volume, 
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where r is the radius of tank, re is the maximum ra-
dius of ellipsoidal end. 

Mass of tank with two elliptical ends and a 
cylindrical part 
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where tc is the thickness of the tank, E′is the de-
sign factor, k is ratio of tank radius to ellipsoidal end 
radius.  

Pressurization tank volume 
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where Wg is the the required pressurant weight in 
the propellant tank, Tg and Pg are the required tem-
perature and pressure in pressurant tank. 

Mass of pressurizing spherical storage tank 
 pr p p p2(2π )m r t ρ=  (13) 

where rp, tp and ρp are radius, thickness and density 
of pressurant tank. 

3  Software Algorithm 

A set of design parameters is passed to weight 
and sizing for propulsion system. Fig.2 depicts a block 

diagram of the overall structure of the program and 
many of the components that are sized during this de-
sign process. As shown the entry of the program de-
fines the mission and records the input data. Mission 
definition and input data are used to estimate sizing, 
mass and characteristic performance of the vehicle. 

 
Fig.2  Flow chart of solution strategy 

With the initial estimates of the vehicle char-
acteristics and system design variables, a 2D trajec-
tory is simulated by solving the equations of mo-
tions. Data obtained from the trajectory and initial 
estimates of the system design variables are now the 
primary inputs for the optimizer. GA optimizer is 
used to search for a combination of system design 
variables to minimize the initial take-off mass sub-
jected to mission range and overload constraint. The 
principle outputs are vehicle component weights 
and the optimized system design variables. Linking 
the propulsion system code and trajectory simula-
tion code to the genetic algorithm is done in modu-
lar fashion so that other modules could be later sub-
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stituted for the ones used in the study.  

4  Trajectory Simulation 

Two degree of freedom (2DOF) missile trajec-
tory is simulated using simplified equations of mo-
tion[6], assuming that: 

(1) the rocket motion is symmetrical and takes 
place in a launch plane as shown in Fig.3 

 
   Fig.3  Planar motion of rocket 

(2) the Earth is spherical and non-rotating; and 
no disturbances are included. 

The motion differential equations are 
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where RE is radius of Earth, α is the angle of attack, 
θ is angle of pitch and γ  is the flight path angle. 

A standard flight program US Standard At-
mosphere SA-76 is used during trajectory simula-
tion. The motion equations are modeled and simu-
lated in MATLAB. 

5  Selection of Encoding for GA 

Selection of the best encoding scheme of the 
GA depends on the nature of the problem undergo-
ing optimization. When first presented to GA, bi-
nary encoding often is used to illustrate the ideas of 
GA and its operators. This might lead to the as-
sumption of binary encoding being the best and 
most convenient encoding method for the optimiza-
tion. According to several authors (Goldberg, 
Wright, Gen and Cheng) the presence of Hamming 
cliffs should be kept in mind when making the 
choice of encoding. Literature seems to agree to 
binary encoding handling Hamming cliffs poorly. In 
Ref.[7] the authors claims that the real-number en-
coding has been widely confirmed to perform better 
than both binary and Gray encoding. On the other 
hand research performed by Goldberg states that the 
decision is far from clear cut[8]. In his work Gold-
berg also give the recommendation of not agonizing 
over the coding, but simply deciding. 

In Ref.[9] the author suggests real-coded GA, 
because it is better suited for the non-linear pro-
gramming problems in view of the efficiency of 
search performance. Making a literature study on 
the choice of encoding seems, to some extend, to be 
a complex task but most of the practitioners of GA 
continually report successes using real genocodes 
(encodings). If the optimization results in being un-
stable, after multiple runs, or if the premature con-
vergence is suspected, the encoding might be the 
cause of this, but there are other factors playing the 
roles. In this study real coded GA is used for opti-
mization. 

6  Genetic Algorithm 

Genetic algorithm (GA) is stochastic global 
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search and optimization method that mimic the 
metaphor of natural biological evolution[10]. GA 
operates on a population of potential solutions ap-
plying the principle of survival of the fittest to pro-
duce successively better approximations to a solu-
tion. At each generation of a GA, a new set of ap-
proximations is created by the process of selecting 
individuals according to their level of fitness in the 
problem domain and reproducing them using op-
erators borrowed from natural genetics. This process 
leads to the evolution of populations of individuals 
which are better suited to their environment than the 
individuals from which they were created, just as in 
natural adaptation[11]. 

In this study, the GA is the controlling routine 
which calls the propulsion and trajectory perform-
ance code as needed. The GA passes down the de-
sign parameters to performance and sizing code 
which gives mass and mass flow rate to trajectory 
simulation that passes back a measure of how well 
the design performed in terms of minimum take-off 
mass of missile achieved. Linking the sizing code 
and trajectory simulation code to the genetic algo-
rithm is done in modular fashion so that other mod-
ules could be later substituted for the ones used in 
the study. 

To get the best results from the genetic algo-
rithm, it is needed to experiment with different 
combinations of GA parameters. Selecting the 
best options for a problem involves trial and error, 
i.e., one of the most important factors that deter-
mine the performance of the genetic algorithm is 
the diversity of the population. If the average 
distance between individuals is large, the diver-
sity is high; and if the average distance is small, 
the diversity is low. Getting the right amount of 
diversity is a matter of trial and error. If the diver-
sity is too high or too low, the GA might not per-
form well. The GA parameters for this study are 
reported in Table 2. 

The controls for the GA used in this study are 
fairly common. Historically GA has been run with 
higher population members to help maintain good 
diversity. Candidate designs violating axial overload 

Table 2  Parameters for genetic algorithm 

Mode/variable Value 

Maximum number of  

generations G 
200 

Population type Double vector 

Selection Stochastic uniform 

Crossover Single point, pc = 0.8 

Mutation Uniform, pm = 0.05 

Fitness scaling Rank 

Reproduction Elite count=2 

Population size 40 

Termination criteria Fitness limit of 13 500 kg 

constraints of 12 g are assigned a zero fitness level, 
so that it will learn not to try these designs in the 
future. 

7  Design of Experiment 

Design of Experiment techniques gives a set of 
experimental points, which allows estimation of the 
model with the maximum confidence by using just a 
fraction of the number of experimental runs[12]. In 
this study, this DoE method is used to introduce 
statistically selected initial population for GA and 
its performance is compared with that of simple GA. 

Optimal design of experiments is formed using 
the following process. Lower and upper bound 
ranges of all design variables (factors) are divided 
into 16 equal levels forming a large pool of candi-
date set. An initial starting design of 40 (equal to 
population size) test points is chosen at random 
from the set  of  def ined candidate  points ,  m 
additional points chosen from the candidate set are 
added to the design randomly and m points are de-
leted from the design optimally, i.e., to minimize the 
prediction error variance (PEV). If the resulting de-
sign is better than the original, it is kept. This proc-
ess is repeated until either (a) the maximum number 
of iterations is exceeded or (b) a certain number of 
iterations have occurred without appreciable change 
in the optimality value for the design. 

A useful measure of the quality of an ex-
periment design is its prediction error variance 
(PEV). V-optimal designs of experiments mini-
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mizes the average PEV, to obtain accurate predic-
tion. The V-optimality value is calculated using 
the formula 

 1
eff c c

1 ( )j j
j

V
nc

−′ ′= ∑ x X X x         (16) 

Where xj are rows in the regression matrix, Xc is the 
regression matrix of all candidate set points, and nc 
is the number of candidate set points. 

For this study, model based calibration toolbox 
of MATLAB is used to generate V-optimal design of 
experiments. These selected designs as shown in 
Fig.4, act as initial population of GA instead of 
randomly generated first population. This method-
ology resulted in decreasing the average number of 
generations required for convergence from 76 to 46 
only. 

 
Fig.4  Optimal design of experiments (40 designs) as initial 

population for GA 
 

8  Performance Results 

GA performance for two different cases men-
tioned above is compared. The first case is based on 
simple GA with randomly created initial population. 
The second case is based on GA with its initial 
population created through V-optimal experimental 
design technique. 

With the design problem and parameters com-
pletely defined, the two cases are executed (ten 
times each) until the minimum take-off mass is 
achieved. The comparison of overall performance of 
these two cases is illustrated in Table 3. 

The most significant contribution is the drastic 
reduction in number generations required for con-
vergence when GA is initialized with V-optimal de-
sign. The proposed scheme is especially beneficial 

Table 3  Performance comparison 

Parameter 
Case-1 
(GA) 

Case-2 
(GA+DoE) 

Mean generations 76 46 

Min generations 9 13 

Max generations 140 124 

 Std deviation of gen 43 35 

Number of exact Analysis 
(mean) 

3 040 1 840 

for complex non-linear optimization problems 
without the expense or effort of an enumerative 
search strategy. The number of generations needed 
to converge reflects the performances of these two 
cases in Fig.5 and Fig.6. 

 
Fig.5  Case-1: performance of GA with random initial 

population 

 
Fig.6  Case-2: performance of GA with initial population    

created from optimal design of experiments 
 

Propulsion system design problem is posed to 
GA optimizer and it is successfully solved under the 
given conditions and constraints. 

The optimal design is achieved after 46 gen-
erations. The optimal design variables and trajectory 
results are shown in Table 4. Trajectory simulation 
plots are presented in Fig.7. 
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Table 4  Optimum results 
Design 
variable 

pc /Pa pe/Pa tk/s d/m F/kN

Value 112 0.71 103 1.12 301 

Performance 
variable 

m0/kg mp/kg md/kg m /( kg·s-1) υo 

Value 13 500 10 125 2 325 98 0.44 

υo = weight to thrust ratio 

 
Fig.7  Trajectory performance of optimal design  

9  Conclusions 

A method of optimization using G A as opti-
mizer for conceptual design of liquid rocket propul-
sion system are demonstrated in this paper. The op-
timization procedure is accompanied with a calcula-
tion of point mass trajectory. The method described 
in this paper provides the designer with a simple 
and powerful approach to the preliminary design. 
Simple analytical expressions are used for propul-
sion system sizing, which can be easily replaced by 
highly accurate code with more capabilities. 

It is found that the genetic algorithms can be 
used to solve complex system design objective func-
tions if genetic algorithm parameters are chosen to 
induce sufficient randomness. Performance en-
hancement by introducing Design of Experiments 
based initial population resulted in exciting gains in 
terms of improved convergence and much lower 
computational time. 
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