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Abstract

Diffraction of incident acoustic and incident electric waves in a transversally isotropic piezoelectric medium at the
boundary of a half-plane absorbent electrode is systematically investigated using the quasi-hyperbolic approximation.
The electrode is assumed to be very thin so that its thickness and stiffness can be neglected. By exact inversion, the explicit
expressions for the scattering waves are obtained. A closed form solution is obtained by applying Laplace transformations
and the Wiener—Hopf technique. By means of the Cagniard—de Hoop method a detailed investigation of the structure of
the electro-acoustic wave is conducted. The mode conversion between electric and acoustic waves, the effect of electro-
acoustic head wave, the Bleustein—Gulyaev surface wave and the structure of the wave in terms of the type of the incident
wave (acoustic or electric) and its angle of incidence are analyzed in detail. It is shown that in piezoelectric materials, absor-
bent electrodes are neither completely opaque nor completely transparent to electric and acoustic waves. The dynamic field
intensity factors at the tip of the electrode are functions of the angle of incidence and time; they are derived explicitly and
discussed through a detailed numerical analysis.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

During recent years, piezoelectric materials have been extensively used as transducers, actuators, sensors,
etc. for active vibration and acoustic control in smart materials and in the technology of structures. In piezo-
electric materials, both electrical and mechanical disturbances are present which can result in a high stress evo-
lution leading to possible fracture. At this point, the analysis of dynamic fracture problems for piezoelectric
materials becomes particularly important. A number of researchers worldwide have contributed to our under-
standing of the dynamic problem. Investigations of piezoelectric materials containing various cracks and elec-
trodes have been undertaken and many analytical and numerical results have been obtained. For example, the
response of piezoelectric materials to impact loadings has been investigated by Parton and Kudryavtsev
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(1988); Li and Mataga (1996a,b); Chen and Meguid (2000); Meguid and Chen (2001); Gu et al. (2002a,b);
Ueda (2003a); Li and Tang (2003); Ing and Wang (2004a,b) and incident waves’ scattering in piezoelectric
materials has been investigated by Narita and Shindo (1998); Shindo et al. (1999); Gu et al. (2002); Ueda
(2003b); Ma et al. (2005); Grigoryan and Melkumyan (2004, 2005a,b). The results presented by Li and Mataga
(1996a) and by Ing and Wang (2004a,b) contained incorrect conclusions and plots and were corrected by the
present author (Melkumyan, 2005a,b).

In all these papers, authors have adopted the quasi-static approximation for piezoelectric materials. The
quasi-static approximation leads to a system of hyperbolic and elliptic partial differential equations, and
the detailed analysis of the transient response in piezoelectric materials using that approximation is not
attainable.

The fully coupled Christoffel-Maxwell and Euler—Maxwell equations are hard to investigate, and as stated
the quasi-static approximation does not allow detailed transient analysis. The situation has been improved by
Li (2000), who proposed the so-called “quasi-hyperbolic approximation” for piezoelectric materials in class
6 mm, which leads to a simple system of equations with preserved hyperbolicity. Based on this approximation,
Li(2001) studied the Sommerfeld problem of diffraction at the boundary of a half-plane, Li et al. (2005) inves-
tigated the scattering of waves by a crack, To et al. (2005) analyzed the scattering of waves by an interfacial
crack, To et al. (2006) solved the problem on interfacial crack propagation in dissimilar piezoelectric materials.
The present author studied the diffraction of nonstationary waves generated by a concentrated force (Mel-
kumyan, 2005¢), investigated dynamic semi-infinite permeable crack’s propagation in piezoelectric materials
(Melkumyan, 2005d) and studied the diffraction of electric and acoustic waves at the boundary of half-plane
permeable crack in piezoelectric materials (Melkumyan, 2006). However, all the studies done so far consider
situations where a crack is present in the media, but the diffraction at the boundary of an electrode which is
embedded into an otherwise continuous piezoelectric medium has not been studied — this is analysed here.

This paper aims to present a systematic transient theoretical and numerical investigation on the diffraction
of electric and acoustic waves at the boundary of a half-plane absorbent electrode. The electrode which is
located at the positive part of the X axis is assumed to be absorbent and very thin, so that its thickness
and stiffness can be neglected. The boundary conditions corresponding to the electrode are:

Plgr = @lsg- =0, W _or =W, 0o+ =0yl for 0 <x < +oo. (1)

The Laplace integral transformations are used to bring the problem to a functional equation which is solved
by applying the Wiener—Hopf technique (Noble, 1958). The solution in the time-space domain is obtained by
using the Cagniard—de Hoop method (Cagniard, 1939; de Hoop, 1960). The structure of the waves and the
dynamic field intensity factors at the electrode tip are derived explicitly and investigated for two wave types,
that is, acoustic or electric and various angles of incidence for each. It is shown that the electro-acoustic head
waves and the Bleustein—Gulyayev surface waves are disturbed by both the electric and the acoustic incident
waves.

2. Problem statement

Consider a transversely isotropic piezoelectric medium of hexagonal symmetry (e.g. 6 mm class), which
contains a half-plane absorbent very thin electrode. A Cartesian coordinate system XYZ is chosen in a way
that the Z axis coincides with the axis of symmetry of the material, and the half-plane 0 < x <+o0, y =0,
—o0 < z < +o0 coincides with the electrode.

The relevant electro-acoustic coupling is between the anti-plane displacement and the in-plane electric field,
ie

u=(0,0,w(x,»,1)), E=(=0¢(x,y,1)/0x,=0¢(x,y,1)/0y,0), (2)

which leads to the coupling between SH acoustic waves and TE electric waves.
Defining ey = ca + ey, e =57 = (enpy) N ca =57 = \Jeufp, Cr=c2/(E—¢2) and Gy =

— 82 o, . . . . . .
cu|l—(1-=Cy) 644‘85“} , where ¢, and ¢, are the velocities of acoustic and electric waves in the piezoelectric mate-

rial respectively and introducing a pseudo-electric potential function
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W(xvyvt) = (P(xvyat) —615Cf8;11W(x,y,t) (3)
the following system of decoupled wave equations (Li, 2000) is obtained:

w  *w 1w o oy My 1%y

- = — = ——=0. 4
0x2 + 2 2o T + W? o “)
The relevant constitutive equations under the quasi-hyperbolic approximation are
. Ow 0 . Ow 0
ze=C44§+€156—f, 0;»2:04454—@15%, (5)
ow 0 ow 0
D —615(1 —Cf)§—811 af D 615(1_Cf)@_811 at (6)

From infinity an acoustic wave w'(x, y,7) and an electric wave y(x, y,7) are incident on the electrode at
arbitrary angles 0, € [0,7/2], 0, € [0,7/2], respectively (see Fig. 1):

w (x,,8) = woG,(t — sa[xcos(0,) + ysin(0,)]); (7)

W, p,0) = Yo Gelt — sefx cos(0,) + ysin(0,))), (8)
where

G0 - [(e@dn G- [ eods o)

2.(1)=0, g/(r)=0, whent<O0. (10)

In Eqgs. (7) and (8), the superscript ““(i)” indicates incident waves and wy, ¥/ are the amplitude of the acous-
tic incident wave and the amplitude of the electric incident wave, respectively.
Now the incident electric potential can be determined from Eq. (3) as follows:

o (x, 3, 1) = Y (x, 3, 1) + ersCrep w (x, 3, 1). (11)
Since the incident waves are known, the total solution w(x,y, ), ¥(x,y, ) can be represented in the form
w(x,p, 0) = w (3,0 + w5, 2,0, Wop,0) =¥V (xy,0 + 9 (x,,0) (12)

where w®, ' represent the scattering waves and are the new unknown functions to be determined (the super-
script “(s)”” indicates scattering wave).

Using Egs. (5)—(8), (11)—(12) the boundary conditions (1) on the electrode can be written in the following
form, where 0 < x < +oo:

electric absorbent
electrode

Fig. 1. Illustration of the acoustic and electric incident waves approaching the electrode.
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W(S) |y:o+ + engfll Crwt |y:0+ = ‘//(S) |y:0* + 61551711 Crwt |y:0* = _w(U |y:0 - elSSfll Crw ‘y:m
W) aw(S) o) aw(s) (13)
P e 2 el (s) — w0
Caq ay |y:04r + €1s ay |y:04r = C4yq ay |y:0’ + €1s ay |y:07’ |y:04r =w |y:07 .

As the scattering waves are produced after the incident wave reaches the electrode, which takes place when
t =0, the following initial conditions apply to the scattering field:

w® (x,,0) = 0,0w (x,,£) /] _y = 0, Y (x,»,0) = 0,00 (x,y,)/3t|,_y = 0 (14)

The radiation and the edge conditions must also be satisfied.
3. Leading to a Wiener—-Hopf equation and its solution

To bring the problem to a Wiener—Hopf equation, divide the piezoelectric medium into two parts: y > 0 and
y <0 satisfying the following contact conditions on the plane y = 0:

w(x,07,1) = w(x,07,7), 0,.(x,07,7) = 06,.(x,07,7) (15)
(P(x70+7t) = (/7(X,O_,t) = (p—(xa t)v D}’(x70+7t) _Dy(xa O_at) = —8|1D+(X7t) (16)
where
@_(x,1) =0, if x>0; D, (x,t) =0, ifx<0. (17)
Applying the following one sided Laplace transform over time ¢
§ 0 . 1 po+Hioo :
ren) = [ peneran s =gz [1 e (18)
and the following two sided Laplace transform over the spatial coordinate x
p {o+ico . 3
n= [ reperian rop =g [ Feoe (19)
co—100

to the wave Eqgs. (4), using Egs. (7)—(12) and the initial conditions Eq. (14) together with the radiation con-
ditions the following system of differential equations is obtained:

i 29
s*C ) (S)*Ca , .
Sy =0, SEEED g =0, (20)
where a({ 52— — (% The single valued branch of the function a(() is defined by the branch

cut { ImC O | eC | > sd} and the condltlon a(0) = s,. Similarly, the single valued branch of the function e({)
is defined by the branch cut {Im{=0,|Re{| > s,} and the condition e(0) =s,.
Expressing the contact conditions (15), (16) via functions w®, ' and w, Y one obtains

Y (x,07, 1) + ersCrep w (x,07,1) = g_(x,1) — o (x,1); (21)
YO (x, 0%, 0) =y (x,07,0); (22)
wi¥ (x, 0", 1) = w® (x,07,0); (23)
aw(S) a!//(S) Cr
ot — o =————D,(x,1); 24
ay y=0 ay |}70 Cf +k§(1 _ Cf) +( ) ( )
ow® ow® es Cr
—ot — - =————5——-D 1), 25
6y |y70 ay |y70 C44 Cy + kg(l — Cf) +(x ) ( )

where k. = /C¢/(e11Caa)e1s is the electro-mechanical coupling coefficient, U(x) is the unit step function,

g () =o_(x,t) — oV (x,1), @V(x,0) = 0V(x,0,0)Ux), ¢V (x,7) = ¢V (x,0,0)U(~x) (26)
and according to Egs. (11) and (7), (8)
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@V (x,0,1) = Y, Gy(t — spxcos 0;) + woeysCrey) Galt — s,xcos0,). (27)
The solution of Eq. (20) which satisfies Egs. (22), (23) and the radiation condition at infinity has the form

WO (v, p) = B(Lp)e ™M, 9Ly, p) = C(¢,p)e ™V, (28)

Applying the integral transformations Egs. (18) and (19) to the boundary conditions Eq. (21)—(25) and
substituting into them Eq. (28) one obtains

1 615 Cf Ai(Cap) C(C p) — _L Cf Di(ap)
e Cr+E(1-Cp) a@) 7 2p Cr+ k(1 - Cr) ()

B(p) = (29)

and the following Wiener—Hopf functional equation

L (-k)G RO, . i
20 Cr + K2(1 - Cy) e(0) Di(L,p) =& (Lp) — V(L p), (30)

where
_ 1 a(d) —ke()
RO= 1)
(Ap(i (C’ )_ l»bOGf(.p) +€15Cf WOGa(p) (32)

p( + s;cosby) e p(C+sac080,)

The function R({) can be factorized using Cauchy type integrals (Gakhov, 1990) by a general procedure
(Achenbach, 1984; Li, 2000). The result is

B  Sbge £ [ ,\/02—s?| do
R(0) = R (OR-(0), R:(0) = s £ %P <n 3 arctan |k =1 P (33)
where sy, is the Bleustein-Gulyaev wave’s slowness (Bleustein, 1968; Gulyaev, 1969; Li, 2001)
Sbge = Cbge - \/ k4) (34)

As sy <s,, from Eq. (34) it follows that cpee < ¢, < ;. Using the factorization (33) and applying the solution
procedure for the Wiener—Hopf equations (Noble, 1958) to Eq. (30) one obtains that

1_k§c§55[ ¥oGi(p) \/m+e1scf woG,(p)  V/si+sac080,| Vs +
1—kl |{+sicosOp R (—secos)  en (+sacosl, R (—=s,cos0,)] R.(() '
%G—Z(p)(l_ R_() m>
p({+sccosby) Vs — L R_(—sicosby)
Lol walp) (RO Jrre)

e p({+sacosl,) Vsi — L R_(—s,c0s0,))"

From Egs. (28), (29) and (35) the unknown functions w(®*, y®* are determined and after inverting the two
sided Laplace transform over the spatial coordinate x one has that

Wok \/m ax ‘Po 615 \/2S[COS(6[/2) ( ) (37)
1 — k2 R_(—sacosf,)"* — k2 Cas R (—s,cos0,) " HIPE

Wy 615Cf /Sy + 8, COS Qa‘][*( ) lpo ZS[ COS(Q[/Z)
¥ _
1 -k en R_(—s,cos0,)" " VoP 1 — k> R_(—s¢cosb;)

Di(tp)=2 (35)

g (p) =

(36)

w®

@ym+

‘(v y,p) =

WS)*()C,)’,P) = Jﬁ‘*(xayﬂp)a (38)

where
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1 {o+ico S0 + Ce —pla(Q)|y|—x{]
P 1 de: 39
(%, 3,p) 2m e ((+sac080,)R,(0)a(l) g >
1 {o+ico s¢ -+ é’e =pla(Q)lyl—x{]
ax - 5 4
i yp) =Gilp) 5 i (CHs0cos0)R, (O)a(() e w0
Jh =G'(p Lo e b d 4l
(X “ p) 2_ {p—ico C+ 53 COS 03)R+(C) Vise = é” ( )
o G 1 o+ico e Ple(Oll—x d 42
¢ (6yp) =G (p) 3 /Co_bo (4 50008 00)R (O)v/se — C ; !

In Egs. (39)-(42), subscripts show the type of the incident wave and superscripts show the type of the pro-
duced wave. “a” stands for acoustic waves and ¢ stands for electric waves.

When the electro-mechamcal coupling coefficient k. tends to zero the solution of the problem expressed in
Eqgs. (37)—(42) becomes:

© _ o _ G;(p) /40+1°° e PleQlyl—x{]

w 0, v Yo/ 25, cos(0,/2) 2 o ) CrscosO)va =T d¢. (43)
Egs. (43) demonstrate that if there is no coupling between the electric and elastic fields, the incident acoustic
wave does not interact with the electrode, the incident electric wave diffracts from the electrode and for this
result no acoustic scattered wave is produced. The study of Eqs. (43) shows that the pole at { = —s,cos6, can-
cels the incident electric wave, which means that the absorbent electrode is completely opaque for this incident
wave. In the next sections, it will be shown that the situation is qualitatively different in the case of piezoelec-
tric materials; both acoustic and electric waves interact with the electrode and for neither wave the absorbent

electrode is completely opaque or completely transparent.

4. Exact inversion

In this section, Eqs. (37)—(42) will be converted back to the physical space-time domain by an exact inver-
sion. The exact structure of the wave front will be determined by applying the Cagniard—-de Hoop method
(Cagniard, 1939; de Hoop, 1960) and the Cauchy residual theorem (Gakhov, 1990). Introduce an r,0 coordi-
nate system by the rule x = rcos0, |y| = rsin 6, where 6 € [0, ] and the following functions which are the para-
metric representations of the Cagniard-de Hoop integration contours I'S, I'z, I'::

ae’

((r,0,t) = r ' (—tcos 0 £1iy/£2 — s2r2sin 0),¢ € [s,r, +00); (44)

T

Cac(r, 0,8) = r ! (—tcos O + 4 /s2 28in0),1 € [tae, Sat]; (45)

Golr,0,0) = Lo, 0,0) T ie,t € [tae,sa ) (46)

C(r,0,6) =r ' (—tcos 0 +iy/82 2sin 6), ¢ € [syr, +00), (47)
where

tie = tae(r, 0) = sex + /57 — sly]. (48)

Direct calculations show that the following equalities take place:

oy _ el (rn0.0) 0L e(l(n0.0) e 0y alllr0.1) (49)

o g—s? o B r?— st BG4 ot /82t — 1
From Eqs. (37)~(42) it follows that the solution of the problem w®)(x, y, 1), ¥*)(x, y, ) which represents the
scattering waves in the case of incidence of both acoustic and electric plane waves can be represented as the
sum of the cases when only acoustic plane wave is incidence and when only electric plane wave is incident:
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wls) = w4 wi Yl = P+ y'¥. This fact makes it reasonable to study the cases of incidence of acoustic
and electric plane waves separately. This methodology has been used by many researchers (Li, 2001; Li
et al., 2005; To et al., 2005; Melkumyan, 2006).

4.1. the case of the incident acoustic wave (i.e. wy # 0,9 =0), when 0, < arccos(s,ls,)

In the case of the incident acoustic wave from Eqgs. (37)—(42) it follows that

WO — W()kg \/m G;(P) /gﬁi(>C \/mefp[a(ﬁ)\ylfxﬂ ¢ (50)
L k2 R_(=sacosl,) 2mi Jy i ({4sacosO)Ri(a(l) ™

Yy = wy  e15Cr V/s¢ + 5, c0s 0, G:(p) /C"HOO g Ple@ll—xl dr (51)
‘ 1 - kz e R—(_Sa cos 03) 2mi {o—ico (C + 5, COS 94)R+(C) 50— ¢ ’

where subscripts ““a’ indicate that the incident wave is an acoustic one.

The Cagniard—de Hoop integration contours together with the branch cuts, branch points and poles of the
integrands of Egs. (50), (51) are shown in Fig. 2.

Changing the integration contours in Egs. (50), (51) from the Bromwich paths to the contour
Iy + T, + T+ for wd* and to the contour I'; + I'! for ", taking into consideration the poles and
changing the variable of integration using Eqs. (44)—(49) the following expression for w(® is obtained:

K s?cos’ 0, — s? G

(s) 1) = —wU(0, —0 £
w, (X;yv ) wo ( )l_k: S%ge —SéCOS2 03,

(t — sa[xcos B, + |y| sin 6,])

t
+/ Ga(t - T)Wfli)?(x7y7 T) df7 (52)
0
where
2
®) _ wok, /sy + 5,080,
Waé (x7y7 t) - 1 _ ki R_(—Sa . Ha)
X lRe s +&@ U(t —sar)  Ularccos(se/sa) — 0)
T (G (0) +sac08 0)R.(E) (1) | /22 — 5212 -
—Lae(t) = s Ut — tae) — U(t — sa7)
K ; 53
Gl T s cos )R Gl 1 10)| 2R (53)

and the following expression for lﬁ(as> (x,y,1):

(O

=== branch cut
—— integration contour

@  Dbranch point

O pole

Fig. 2. Cagniard-de Hoop contours, branch cuts, branch points and poles in the case of incident acoustic wave.
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t
lp;S)(x7y7 1) :/0 2 (f— r)zpaé (x,y,7)dr, (54)
where
s Vs + s, c0s 0, se+ L0 (0) s
tpg(;)(x,y, = wo  e;sCr v/sp + s, c080 IR Ut — s, (55)

1—k2 &1 R_(—s.cos0,) e (L5 (r,0,0) +5sac08 0)R (L (1) | /2 =527

The structure of the electro-acoustic waves corresponding to this case, which is obtained from the analysis
of Egs. (52)—(55) is shown in Fig. 3 where the following seven wave zones appear:

. incident acoustic wave zone

. acoustic wave scattering zone

. acoustic wave reflection zone

. acoustic wave refraction zone

. electric wave scattering zone

. electro-acoustic head wave zone
. undisturbed zone

~N N AW~

4.2. The case of the incident acoustic wave (i.e. wy # 0, Yo =0), when 0, > arccos(s,s,)

Undertaking the analysis using method similar to the one described in the previous case, it is found that

2 2 _ 2 2
U0, — 0) wok,  \/s; — s2cos? 0, G

W 3,0) = s s e s, O~ lreos & bl sin.)
+ /Ot G, (1t — r)ngs)(x,y7 7)dr; (56)
VO (eyt) = — Ularccos (sas,'c0s0,) — 0] wy  e1sCr /57 — s2cos? 0,
a e(s, cos 0,) 1—k en  R(sacos0,)
X Gyt — [e(sa 08 0,)[y] + sax cos 0,]) + /0 [ Gt — 1Y) (x,,7) dr, (57)

where wgi) (x,y,t) is defined in Eq. (53) and x//;;) (x,y,t) is defined in Eq. (55).

Fig. 3. The structure of the waves in the case of the incident acoustic wave when 6, < arccos(s/ss).
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The structure of the electro-acoustic waves corresponding to this case [Egs. (56), (57), (53) and (55)] is
shown in Fig. 4, where the following nine wave zones appear:

1. incident acoustic wave zone

2. acoustic wave scattering zone

3. acoustic wave reflection zone

4. acoustic wave refraction zone

5. electric wave scattering zone

6. electro-acoustic head wave zone
7. electric wave reflection zone

8. electric wave refraction zone

9. undisturbed zone

4.3. The case of the incident electric wave (i.e. wy =0, Yy # 0) for any 0,

In the case of the incident electric wave from Egs. (37) and (38), it follows that

‘ , , foioo —pla0)lyl—x]
W (x, 9, p) = I/ i e1s 2s,c0s(0¢/2) Gl({n) / Vs + (e e (58)
1— ke C44 R,(—Sg cosS 9@) 27 Zo—ico (C -+ s, COS 0/)R+(C)a(éj)
(5)+ Wo  V2sicos(0,/2) G,(p) / coioe e Ple@)bl=x] d
=— : ; 59
Vi x.p) 1— kﬁ R_(=s¢cosOp) 2mi [ ino ({4 sec0s00)R (V5o —C ‘ (59)

where subscripts “¢”’ indicate that the incident wave is an electric one.
Further analysis similar to the one conducted in the previous two cases leads to the following expression for
the displacement w'” (x, y, £):

Y, e sgsin(6,) Ularccos(s, s, cosby) — 0]

(s) _ b
W (x’y7 t) - 1 — ki 6'44 R(S[ COS 0[) a(s[ COS 0[)
t
X G(t — [a(secos O0p)|y| + sexcos 0y]) + / Gt — ‘C)WE? (x,y,7)dr, (60)
0
where

Fig. 4. The structure of the waves in the case of incident acoustic wave when 60, > arccos(sy/ss).
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(s) lﬁo e1s /28y COS(94/2) l Se+ C: (t) U(l — Sal")
Ws (x7y7 t) Re (C:(l‘) + 5,c08 0/)R+(C:(I)) /12 —Sil"z

1o K Cas R_(—sicosl) | m
—§¢r — Cac(t)

(Cae(t) + Sy COS 0()R+(€ae(t) + 10)

U (arccos(sy/s,) — 0)
a T

Re

U(t — tee) — U(t — su1)
\/82r? — 1 }, (61)

and to the following expression for the potential 1//25) (x,y,1):

(¥ Y U606 B , /t e
Yy (xy,0) = I~ & R(—s,cos0y) Gy(t — se[xcos O, + |y| sin 0/]) + A Gi(t — Yy, (x,,7)dr, (62)
where
w<8)( t) l/lo 25y COS(Q(/z) 1 . Sy + C:(t) U([ - s[r) (63)
5 X5 Vs = - — .
6 (XY 1 —k* R_(—s¢cosly) m (L5 (1) + 50008 00)RL(C (1) | /72 = 22

The structure of the electro-acoustic waves corresponding to this case [Eqgs. (60)—(63)] is shown in Fig. 5
where the following nine wave zones appear:

. incident electric wave zone

. acoustic wave scattering zone

. acoustic wave reflection zone

. acoustic wave refraction zone

. electric wave scattering zone

. electro-acoustic head wave zone
. electric wave reflection zone

. electric wave refraction zone

. undisturbed zone

O 01N LB W~

Fig. 5. The structure of the waves in the case of incident electric wave.
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5. Discussion
5.1. Mode conversion and reflection coefficients

It can be seen from Egs. (52)—(57) and (60)—(63) which represent the electro-acoustic waves in piezoelectric
material that both the incident acoustic and the incident electric waves can produce scattering, as well as
reflected and refracted waves of both types. To examine the mode conversion in this problem, the following
reflection coefficients in the case of the incident acoustic wave are introduced:

R: =Amplitude of the reflected acoustic wave/Amplitude of the incident acoustic wave, (64)
R! =Amplitude of the reflected electric wave/Amplitude of the incident acoustic wave, (65)
and the following reflection coefficients in the case of the incident electric wave
R} =Amplitude of the reflected acoustic wave/Amplitude of the incident electric wave, (66)
R, =Amplitude of the reflected electric wave/Amplitude of the incident electric wave. (67)
From Egs. (52)—(57) and (60)—(63) it follows that if 0, < arccos(s,/s,), then
K s2cos’0, —s?

R =——¢ R =0; 68
‘ 1 -k s3y —s2cos?0,” 7 (68)

if 0, > arccos(s,/s,), then

R K 57 — 52 cos? 0, R 1 1 e5Cp \/s] —s2cos?0, (69)

a1 k> R(sacosO,)s,sin0,”  ~*  e(sycos0,) 1 —k> &1 R(sacosl,)
for any 0,
R 1 es sesin(6;) 1 R — 1 1 (70)

T kﬁ Cas R(sycos 0;) a(s;cos )’ ° 1 ke2 R(—s;cos )’

From Egs. (64)—(70), it follows that the incident electric wave always produces reflected waves of both
types, and the incident acoustic wave does not produce any reflected electric wave if 6, < arccos(s/s,). Egs.
(64)—(70) prove that the absorbent electrode is neither completely transparent nor completely opaque for
acoustic and electric waves, because each of these waves is partially reflected and partially transmitted to
the other side of the electrode. If e;s — 0, then from Egs. (68)—(70) it follows that R} — 0, Rf1 — 0, R} — 0,
R} — —1 so that the incident acoustic wave is not reflected at all, while the incident electric wave is fully reflect-
ed. Thus, if no coupling is present between the electric and acoustic fields the absorbent electrode is completely
transparent for the acoustic waves and is completely opaque for the electric waves.

5.2. Dynamic field intensity factors

Analyzing Egs. (50), (51), (58), (59) and using Egs. (5) and (6) one obtains that on the half-plane y =0,
x <0 the components aJ(;), el Ef), D)(,S) vanish, meanwhile for the case of the incident acoustic wave

vz 2

lim \/2nx0§;‘) (x,40,¢) =0; (71)

x—+0

. K /sy +s,cos0

lim v2mre® (x, 40, 1) = F e aC8 % (1) 72
XLI};IO TDCC}Z (X, ) ) + 1— kﬁ R,(—Sa cos 04) /(d( )a ( )

(1- Cf)kz + Cr V/sp + 5a€08 0,

lim V2D (x, £0,7) = (1); 73
lim V2rxD[? (x, 0, 1) = F woers - R,(—sacosea)’(“()’ (73)
. . Cr v/s¢ + s, cos 6

lim V2IE® (x, 40, 1) = T w23t VT 5O, ) 74
Jim VIR (6, £0,1) = F wo = == 1 (1), (74)
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and for the case of the incident electric wave

lim v2 a 9(x, £0,1) =0; (75)
x—+0
L 2sycos(0,/2)
1 / :|: = l/jo —615 ¢ y M
vi{l ? (xa Oa t) + 1 k2 644 R,(—S[ cos 0[) /{Z(t)v (76)
1 — C)k? 4 Cy /25, cos(0,/2)
1i D/ + !,00811 ( f)Ke . .
lim v2 Or £0,8) = F 5 c. R (=5 cos ;) 2(1); (77)

© V2s,cos(0,/2)
lim v2 E )(x,+0,1) = :tl//O—R (5005 07)

x—+0

1e(0), (78)
where
— V7R [ @)= e w0 = VTR [ (-0 e (1)

From Eqgs. (71)—(78), it follows that in the case of the incident acoustic wave

K (0,,1) = (wor/52)F @ (0,) 1 (2); (80)
a a a 4 a
KR (0a,1) = (woersy/5a) ) (0)7a (1) Ki(0a,1) = (WO;f\/s:)F(;(ea)xa(t), (81)
and in the case of the incident electric wave
K000 = (22 \/_>F£”(96)x4(t); (52)
KR (0,1) = (e /SOF (007 Ky (00, ) = (Wron/s0F R (00) (), (83)
where
S¢ s/s 1 + cos@
Oa ke, 84
( ) 1 - k2 —sucos0,) (84)
a (1 - Cp)k + Cy /sis;' +cos 0, (a) Sy \/ses71 4 cos 0,
FU eakl: FO 0, ke, ) = Cp 200~ 721 85
( s) l—k2 R_(—sicos0y) = B\t Cr R_(—s,cos0,)’ (85)
2005(05/2)
Op, ke, 86
( ok ) 1 —k2 —sy cosé)é) (86)
O (0, k.5 = (1 —Cf)k§+Cf V2cos (0,/2) FO (0, 1.5 = V2cos(0,/2) (87)
P, (1—k)C  R_(=secosly)’ ~F \""" s, R_(—s;cos0,)"

From Egs. (71) and (795), it follows that stresses have no singularity at the tip of the absorbent electrode
regardless of the type of the incident wave (electric or acoustic). This behavior of the absorbent electrode is
unique and qualitatively different from the behaviors of both permeable cracks and conductive cracks (Mel-
kumyan, 2006; Li et al., 2005).

Egs. (79)—(87) show that all the intensity factors have the same structure: they can be expressed as a product
of two functions the first one of which depends on the coefficients of the piezoelectric material and the angle of
incidence, while the second one depends on the time and the function representing the incident wave.

From Egs. (80)—(83) it also follows that
KO (00,1) _ Kp)(02,0) _ K (00,1) _ wo ers 2,(0)

&

KOW0,t)  KO0,0)  KO(0,,1) o en 2(0)

;L(Qa7857ke,sa/S[), (88)

where
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1+ 5,5, cos O, R_(—s;cosby)
V2cos(0,/2) R (—sacos0,)

The relationships in Eq. (88) show that the dynamic field intensity factors corresponding to the cases of the
incident acoustic wave and the incident electric wave are proportional. This fact can be important in further
applications, since it enables prediction of the intensity factors for the case of the incident electric wave, if they
are known for the case of the incident acoustic wave and vice versa.

Figs. 6-12 show the variations of the phase functions which describe the behavior of the corresponding
intensity factors, and the variation of the universal function A versus angles of incidence and versus the elec-
tro-mechanical coupling coefficient. The correspondence between the line styles and the values of k. are shown
in Fig. 6a and it is the same in all the (a) parts of Figs. 6 —12. The correspondence between the line styles and
the values of the angle of incidence are shown in Fig. 6b and it is the same in all the (b) parts of Figs. 6-12.

From Figs. 6-8a, it follows that in the case of the incident acoustic wave the intensity factors have different
values when 0, = 0°, however all of them monotonically tend to zero when 6, — 90°. Figs. 9-11a demonstrate
that contrary to the case of the incident acoustic wave, in the case of the incident electric wave the intensity

/’L(Ha,ez,kc,Sg/Sa) = Cf (89)

a 3 b
..... —_— k=00
.. ———- k=03
eesmion (il
| o k=09
F;‘“' P;m)
15 E
1
05 p=r = —rmmm
phomm oo TS

35 ---n--

25

(a) (
E,G . E,ﬂl

0.5

Fig. 7. The function F g) (a) versus 0, for various values of k., (b) versus k. for various angles of incidence 6,.
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Fig. 8. The function F §§> (a) versus 0, for various values of k., (b) versus k. for various angles of incidence 6,.

3.5

Fig. 9. The function FE”) (a) versus 0, for various values of k., (b) versus k. for various angles of incidence 0,.

factors vary monotonically from one nonzero value to another nonzero value when the angle of incidence 6,
increases from zero to 90°.

From the dependences of the phase functions F® , F b and F® & on the electro-mechanical coupling coefﬁ-
cient k., shown in Figs. 6-8b it follows that all of them depend on k. monotonlcally The functions F @ and F
monotonically tend to infinity when k tends to one, contrary to F which tends to zero when k., — 1. Based
on the fact that F® ¥ vanishes and F¥ b %) have finite limits when k tends to zero, from Egs. (80) and (81) it
follows that in the case of incident acoustlc wave all the 1nten81ty factors vanish when the electro-mechanical
coupling coefficient tends to zero. Figs. 9-11b show that F and F g) tend to infinity when the electro-mechan-
ical coupling coeflicient tends to one, contrary to F Wthh tends to zero when k. — 1. From Eqgs. (82), (83)
and Figs. 9-11b it follows that K’ and K vanish, wh11e KD and K have nonzero limits in the case of inci-
dent electric wave when k. — 0.

Fig. 12 shows the dependence of the universal function / [defined in Egs. (88) and (89)] on the angle of inci-
dence when 0, = 0, and on the electro-mechanical coupling coefficient. From Fig. 12a it follows that 1 mono-
tonically decreases when the incidence angle increases and tends to zero when the front of the incident wave
becomes parallel to the electrode. As well as this, Fig. 12b shows that 4 monotonically increases when k.
increases and has nonzero finite limits when k., — 0 and k. — 1.
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Fig. 11. The function F, (El) (a) versus 0, for various values of k., (b) versus k. for various angles of incidence 6,.
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6. Conclusion

Diffraction of incident acoustic and incident electric waves in a transversally isotropic piezoelectric medium
at the boundary of a half-plane absorbent electrode is systematically investigated using the quasi-hyperbolic
approximation. The electrode is assumed to be very thin so that its thickness and stiffness can be neglected. By
exact inversion, the explicit expressions for the scattering waves are obtained. A detailed analysis of the struc-
ture of the waves has shown that the incident acoustic wave can produce electric scattering waves, reflected
and refracted electric waves and electro-acoustic head waves and vice-versa: the incident electric wave can pro-
duce acoustic scattering waves, acoustic reflected and refracted waves and electro-acoustic head waves due to
the electro-acoustical coupling present in the piezoelectric materials. It is shown that the incident acoustic
waves produce reflected and refracted electric waves if and only if the angle of incidence is greater than arc-
cos(sy/ss), while the incident electric waves produce reflected and refracted acoustic waves for any angle of inci-
dence. The reflection coefficients of the acoustic and the electric waves are derived explicitly. The solution has
shown that the absorbent electrode is neither completely transparent nor completely opaque for both the elec-
tric and acoustic waves when the electro-mechanical coupling coefficient is not equal to zero.

Exact analytical transient expressions for the dynamic field intensity factors are obtained and expressed in
explicit forms for both cases of incident acoustic and incident electric waves. It is proved that the dynamic
stress intensity factor is equal to zero regardless of the type of the incident wave (electric or acoustic) and
its angle of incidence. This is contrary to the case of diffraction by a permeable or conductive crack for which
both the stress intensity factor and the electric displacement intensity factor are not equal to zero (Melkum-
yan, 2006; Li et al., 2005). It is shown that all the intensity factors have the same structure: they can be
expressed as a product of two functions the first one of which depends on the coefficients of the piezoelectric
material and the angle of incidence, while the second one depends on the time and the function representing
the incident wave. When the electro-mechanical coupling coefficient vanishes the incident acoustic wave does
not interact with the electrode, so that all the intensity factors become equal to zero. The diffraction of the
incident electric wave at the boundary of the absorbent electrode takes place regardless of the electro-mechan-
ical coupling coefficient; however when the electro-mechanical coupling coefficient vanishes, the diffraction of
the electric wave does not lead to nonzero intensity factors in the elastic field.

It is shown that the angles of incidence of the acoustic and electric waves have great impact on the intensity
factors in both acoustic and electric fields. All the intensity factors are monotonically dependent on the cor-
responding angles of incidence. In the case of the incident acoustic wave all the intensity factors vanish when
the angle of incidence tends to 90° and have a nonzero limit when it tends to zero. Meanwhile, in the case of
the incident electric wave all the intensity factors, except the stress intensity factor (identically equal to zero),
have nonzero limits when the angle of incidence tends to zero or to 90°.

It is proved that the intensity factors generated by the incident acoustic wave are proportional to the cor-
responding intensity factors generated by the incident electric wave. The universal function of their ratios 2 is
determined in the exact explicit form and further analyzed. From this analysis it is shown that 4 monotonically
decreases when the angle of incidence increases and tends to zero when the incident wave’s front becomes par-
allel to the electrode; A monotonically increases when k. increases, and A has nonzero finite limits when k. — 0
and k. — 1. A detailed numerical analysis is presented for all intensity factors and for 4 which describes the
influences of the angle of incidence and of the electromechanical coupling coefficient.
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