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1. INTRODUCTION

For bounded self-adjoint operators A4 and B in a Hilbert space, Weyl’s
theorem {1] states that o,(4 + B) = o,(4) if B is compact and o, denotes
the essential spectrum of an operator (in this case just the limit-points of the
spectrum). On the other hand it is an immediate corollary of the spectral
theorem that if o,(4 + B) = o,(4) for all bounded self-adjoint operators 4,
then (the self-adjoint) B is compact. Recently there has been much interest
concerning extensions and applications of Weyl’s theorem to unbounded
operators in a Banach space.

The basic contention of this note is that one cannot extend Weyl’s theorem
significantly beyond a (rather strong) relative compactness requirement on the
perturbation B, in general. To this end we shall: (a) exhibit limitations to the
extendability of Weyl’s theorem; and (b) give an analogue of the above-
mentioned corollary of the spectral theorem for non-self-adjoint operators
in Hilbert space.

In Section 2 we make precise the different definitions of the essential
spectrum; in Section 3 we examine the possibility of extending Weyl’s theo-
rem to B which are not relatively compact and show that the approach of
Schechter [2, 3] cannot be pushed further on to 4”-compactness (n > 2), in
general. However, for self-adjoint A this can be done, since then A-bounded-
ness and 4™-compactness for some m > 1 implies A%compactness for any
g > 1, as will be shown in Section 3. In Section 4 we give the generalization
of the above-mentioned corollary of the spectral theorem.

Throughout, all operators are assumed to be densely defined in a Banach
space.
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2. SEVERAL DEFINITIONS OF THE ESSENTIAL SPECTRUM

For self-adjoint operators in a Hilbert space there seems to be only one
reasonable way of defining the essential spectrum o,: the set o, of limit-points
of the spectrum (where eigenvalues are counted according to their multiplicity
and hence infinite dimensional eigenvalues are included); i.e., all points of
the spectrum except isolated eigenvalues of finite multiplicity. Weyl’s
theorem [1] (e.g., [4], p. 367) states that for 4 and B self-adjoint and B
compact, oA + B) = o0,(A) holds. For self-adjoint operators it is easy to
show that oy is the largest subset of the spectrum with this property; this
motivates another definition of the essential spectrum (for an arbitrary
operator); the largest subset of the spectrum remaining invariant under
arbitrary compact perturbations, sometimes denoted as

wd)= () old+B).

B compact

A third way of defining the essential spectrum of arbitrary operators (and
this actually is the most convenient one) is to define it as the complement of
the set of A such that A — A4 has certain Fredholm-properties, as follows. An
operator A is called normally solvable if 4 is closed and R(A) is closed; if in
addition a(4) or B(4) (where o(4) = dim N(4) and B(4) = codim R(4);
here N(4) is the null-space, R(4) the range of A) is finite 4 is called a semi-
Fredholm operator; if both a(4) < o0 and 8(4) < oo A is called a Fredholm
operator; if a(4) = B(A) < oo A is called a Fredholm operator with index
zero (index (4) = «(4) = o(4) — B(A)). Let 4(T)={r|A — T eF;} for
i=1,2,3,4,5 where F, is the set of normally solvable operators, F, the
set of semi-Fredholm operators, F; the set of Fredholm operators, F, the set
of Fredholm operators with index zero, F; the set of Fredholm operators
with index zero where a deleted neighborhood of 0 is in the resolvent set.
We define 0,%(T") to be the complement of 4,(T) in the complex plane. Then
0,%(T) is the essential spectrum of T according to (1) Goldberg [5], (2)
Kato [6], (3) Wolf [7], (4) Schechter [2, 3], (5) Browder [8].

Remarks. We have ¢,/C 6,7 for i <j; for T self-adjoint 0,2 = o,® (0.}
does not contain isolated eigenvalues of infinite multiplicity). Coburn [9]
showed that for T bounded and either hypernormal or Toeplitz, 0,? = ¢,%;
Kato [6, Theorem IV 5.33] observes that T bounded and ¢, countable
implies ¢,2 = 0,5 For non-closed T (which we will not consider in this paper)
a,! is equal to the whole plane (hence this holds for o,? for all 7). Closed T
with empty ¢, are characterized by Kaashoek and Lay [10]. The definitions
of ¢,f are motivated by observing that ¢, = o,, 0,* = w as defined above,
o,® and ¢,? are preserved under compact perturbations, ¢, consists of those A
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for which (A — T) == 0 where y denotes the minimum modulus (see [6]);
o,l, as used in [5], is actually ¢,? since the operators there involve ordinary
derivatives.

One might wish to define the following two subclasses of semi-Fredholm
operators, namely F, the class of semi-Fredholm operators with o(T") < 00
and F, the class of semi-Fredholm operators with B(T") < o, since certain
results can be obtained only for these two subclasses considered separately
(e.g. see Goldberg [5], Kato [6]). Thus one could define ¢,%(T) and o 5(T') as
the complements of

A(Ty={ X —TisinclassF,} or Ad(T)={A|A — Tisof class Fy},

respectively. However, these sets do not satisfy the “symmetry condition”
o(T") = 0(T) (in Banach spaces) or o(T*) = o (T) (in Hilbert spaces)
which seems to be natural and quite convenient. It can be verified that
o (i = 1,..., 5) do satisfy this condition.

If T is not closed, both 7" and (if B is any “reasonable” perturbation) T 4 B
will have o,? = C for 7 = 1,..., 5. For this reason we will restrict ourselves
to closed 7, and B with D(B) D D(T) and such that T 4 B is closed (this
for example is guaranteed if B is T-bounded with relative bound less than
one).

3. WEeyL’'s THEOREM

Weyl’s original theorem states that for bounded self-adjoint operators A4
and B in a Hilbert space, ¢,(4 + B) = 0,(4) for every A4 if B is compact.
As is well known, this result has been extended to arbitrary closed 4 in a
Banach space and B which are A-compact. More precisely, for operators of
this type, Weyl’s theorem is valid for o,%, ¢ = 2, 3, 4, (for i = 2, 3 see Kato [6],
for £ = 4 see Schechter [3]). Under additional assumptions (e.g., if the com-
plement of o,? is connected and neither p(4) nor p(4 + B) is empty, where p
is the resolvent set) Weyl’s theorem holds for ¢ =5 (see Schechter [3],
Browder [8]). Recently Schechter [2, 3] examined whether Weyl’s theorem
can be extended beyond 4-compact perturbations and he found the following
result.

TreorEm S [2, 3. Let B be A*-pseudo-compact and suppose
Ay(A) N 44(A 4- B) is nonempty. Then ¢,5(A) = 0,3(A + B).
Here B is called A%pseudo-compact if any sequence {x,} C D(A2?) with
% | + [| A% | + 1| Bxy || + | BAx, || + | A%, | < M

contains a subsequence {x, } such that {Bx, } converges.
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Remarks. (1) Although stated for the larger class of operators B which
are only A?-pseudo-compact, the hypotheses of Theorem S require that B
be A2-compact, i.e., any sequence {x,} C D(4?) with {ix, || + || A%, || <M
contains a subsequence {x,, } such that {Bx,, } converges. This follows from the
fact that B is A-bounded and 4 is A2-bounded (since D(B) 2 D(4) D D(A4?)
and all three operators 4, B and 4?2 are closed). Therefore it seems that the
class of A2-pseudo-compact operators (and similarly the class of A-pseudo-
compact operators of [2, 3]) is superfluous.

(2) For self-adjoint operators in Hilbert space Theorem S implies: If 4
is self-adjoint, B symmetric, A-bounded with relative bound less than one
and A2%-compact, then ¢,3(4) = ¢,3(4 + B).

(3) Under additional assumptions, similar result for ¢! and o are
obtained in [2, 3]; e.g., replace 3 by 4 in Theorem S.

(4) Theorem S suggests a ‘“‘theorem” of the following form: “Let
44(A) N 44(A + B) be nonempty, B A™-compact for some m =1, 2,....
Then ¢,%(4) = 0,34 + B)”. The following example shows that this cannot
be true (in general) for m > 2: Let 4 and B be the following (matrix-)
operators in 7, ,

01 h
(10

a=p 1 = o ==(7 I

-0
o W

with

D(B) = D(4) = jx = {&x}

i ]fzk—1‘2+ Z lkfzk'2<00§
k=1 k=1

Since 48 = ([° 32]), it is quite easy to see that B is 43-compact; the following
may be calculated: 44(4) = C, 44A + B) = C — {0}. Hence
44(A) N 4,(A + B) is not empty but Ay(A4) 3£ A5(A + B), which implies
¢,3(A) # 0,34 + B). Since A% is A™-bounded for m > 3, this example
serves to negate the above “‘theorem” for all m > 2.

(5) For self-adjoint operators Theorem S does extend. If 4 is self-adjoint,
D(B) D D(A) and 4,(4) N 4,(4A + B) is nonempty (hence B is A-bounded),
then if B is A?-compact for some real p > 1 it follows that
0,3(4) = 0,34 -+ B). The proof consists of proving that B actually is A4°-
compact. This is a consequence of the following.
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Lemma 3.1, Let A be a self-adjoint operator in the Hilbert space H, E, the
corresponding spectral resolution: let B be A-bounded and such that the restriction
By of B to Hy = (Ey — E_y) H is a compact operator for every positive N.
Then B is f(A)-compact whenever f(A) is a (locally bounded) complex-valued
Junction such that | f(A)[A| — o0 as | A | = o0,

Proor. For bounded 4 and sufficiently large N we have Hy == H; hence
if 4 is bounded, B is compact. In the following we may assume that 4 is
unbounded. Equipped with the inner product

a0y y0r = (f(A) %, f(A) y> + <% )

and the corresponding norm, D( f(A4)) is a Hilbert space and Hy are closed
subspaces. The restriction By of B to H is compact in both the original norm
and in the f-norm || - ;. Since B is A-bounded we have for x € D(4) that

Bt — e 1BE Clids =)
18— Bl = 20 o, < 20 Ty =P+ 1=

as N — oo (here | B — By || is the operator norm of B — By, as an operator
from D(f(A) with the norm || - ||; into H). This implies that B is compact
as an operator from D( f(4)) into H, i.e., B is f(A4)-compact.

TrEOREM 3.2. Let A be self-adjoint, D(B) D D(A) and 4,{A) N 44(A + B)
not empty, and let B be g(A)-compact where g is some locally bounded (measur-
able) function. Then ¢,3(4) = 0,%(4 + B).

Proor. B is clearly A-bounded (from D(B)D D(4) together with
A4(A) N 44(4 4 B) not empty), and that B is 42-compact then follows from
Lemma 3.1 with f(A) = A%, provided that By is compact for all positive N.
The latter may be seen as follows: let {x,} be a sequence in Hy with || x,, || < 1;
then by the spectral theorem:

lg(4) %, [P+l %, [P < sup [g(A) | +1 < Cy,
Ae[-N,N]

so that a subsequence {Bx,,} converges due to the g(4)-compactness of B.
Thus ¢,3(4) = ¢,3(4 + B) by Theorem S.

Extensions of this result to o,? and 0,5 are available under the hypotheses
of [2, 3]. We notice that neither B nor 4 - B are required to be self-adjoint.

4, A CoNvVERSE OF WEYL’s THEOREM

The theorem of v. Neumann [13] (e.g. Riesz-Sz.-Nagy [4], p. 367) is a
converse of Weyl’s theorem and asserts that if two bounded self-adjoint
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operators A and A’ have the same essential spectrum, then there is an
operator A” unitarily equivalent to 4’ such that 4” = 4 — 4" is a compact
operator. As an immediate consequence of this theorem one has the corollary:
If B is self-adjoint and o, (A4) = o,(4 + B) for all bounded self-adjoint
operators A4, then B is compact. This corollary is also an immediate conse-
quence of the spectral theorem for self-adjoint operators; for 4 = 0 one has
o(B) = 0,(0) = {0} and every self-adjoint operator with essential spectrum
{0} is compact. (From this corollary we see that for preservation of the essential
spectrum there is no (general) weaker requirement than compactness; all
weaker requirements must depend on the unperturbed operator, as for
example relative compactness in the case of unbounded operators).

A strict generalization of v. Neumann’s theorem to non-self-adjoint
operators is not possible, since this would imply that from ¢, (B) =0 it
would follow that B is compact; in 4, , B = ([} }]) is certainly not compact
even though ¢,! = -+ = ¢,% = {0}. However the above-mentioned corollary
can be generalized as follows: this possibility was suggested to one of the
authors by P. Rejto.

THeEOREM 4.1. Let B be a bounded operator in a Hilbert space,
o (A) = 0,4{(A + B) for all bounded operators A. Then B is compact. Here
1=2,34 0rS5.

Proor. We write o, for ¢,%. Applying the assumption to 4 = 0, 4 = B*
and 4 = — B* we get:

{0} = 0,(0) = 0,(B) = 0,(B) = 0,(B*) = 0,(B + B¥),
{0} = 0{(B) = 0(— B) = o,(— B¥) = 0,(B — BY).

Hence the bounded self-adjoint operators B + B* and (B — B*) have
essential spectrum {0}. This implies that B 4+ B* and (B — B*) are compact,
hence B is compact.
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