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1. INTRODUCTION 

For bounded self-adjoint operators A and B in a Hilbert space, Weyl’s 
theorem [1] states that a,(A + B) = o,(A) if B is compact and u, denotes 
the essential spectrum of an operator (in this case just the limit-points of the 
spectrum). On the other hand it is an immediate corollary of the spectral 
theorem that if a,(A + B) = u,(A) for all bounded self-adjoint operators A, 
then (the self-adjoint) B is compact. Recently there has been much interest 
concerning extensions and applications of Weyl’s theorem to unbounded 
operators in a Banach space. 

The basic contention of this note is that one cannot extend Weyl’s theorem 
significantly beyond a (rather strong) relative compactness requirement on the 
perturbation B, in general. To this end we shall: (a) exhibit limitations to the 
extendability of Weyl’s theorem; and (b) give an analogue of the above- 
mentioned corollary of the spectral theorem for non-self-adjoint operators 
in Hilbert space. 

In Section 2 we make precise the different definitions of the essential 
spectrum; in Section 3 we examine the possibility of extending Weyl’s theo- 
rem to B which are not relatively compact and show that the approach of 
Schechter [2, 31 cannot be pushed further on to P-compactness (n > 2), in 
general. However, for self-adjoint A this can be done, since then A-bounded- 
ness and P-compactness for some m > 1 implies &-compactness for any 
Q > 1, as will be shown in Section 3. In Section 4 we give the generalization 
of the above-mentioned corollary of the spectral theorem. 

Throughout, all operators are assumed to be densely defined in a Banach 
space. 
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2. SEVERAL DEFINITIONS OF THE ESSENTIAL SPECTRUM 

For self-adjoint operators in a Hilbert space there seems to be only one 
reasonable way of defining the essential spectrum u,: the set od of limit-points 
of the spectrum (where eigenvalues are counted according to their multiplicity 
and hence infinite dimensional eigenvalues are included); i.e., all points of 
the spectrum except isolated eigenvalues of finite multiplicity. Weyl’s 
theorem [I] (e.g., [4], p. 367) states that for A and B self-adjoint and B 
compact, u,(A + B) = u&4) holds. For self-adjoint operators it is easy to 
show that UC is the largest subset of the spectrum with this property; this 
motivates another definition of the essential spectrum (for an arbitrary 
operator); the largest subset of the spectrum remaining invariant under 
arbitrary compact perturbations, sometimes denoted as 

w(A) = 0 u(A + B). 
B compact 

A third way of defining the essential spectrum of arbitrary operators (and 
this actually is the most convenient one) is to define it as the complement of 
the set of A such that X - A has certain Fredholm-properties, as follows. An 
operator A is called normally solvable if A is closed and R(A) is closed; if in 
addition a(A) or /3(A) ( w h ere a(A) = dim N(A) and p(A) = codim R(A); 
here N(A) is the null-space, R(A) the range of A) is finite A is called a semi- 
Fredholm operator; if both or(A) < 00 and p(A) < co A is called a Fredholm 
operator; if a(A) = /l(A) < co A is called a Fredholm operator with index 
zero (index (A) = K(A) = a(A) - @(A)). Let Ai = (A 1 X - T EF~} for 
i = 1,2, 3,4,5 where F1 is the set of normally solvable operators, F, the 
set of semi-Fredholm operators, F3 the set of Fredholm operators, F4 the set 
of Fredholm operators with index zero, F5 the set of Fredholm operators 
with index zero where a deleted neighborhood of 0 is in the resolvent set. 
We define u,‘(T) to be the complement of d,(T) in the complex plane. Then 
U>(T) is the essential spectrum of T according to (1) Goldberg [S], (2) 
Kato [6], (3) Wolf [7], (4) Schechter [2,3], (5) Browder [8]. 

REMARKS. We have a,‘6 usj for i <j; for T self-adjoint ue2 = ue5 (u,l 
does not contain isolated eigenvalues of infinite multiplicity). Cobum [9] 
showed that for T bounded and either hypernormal or Toeplitz, ae4 = ue5; 
Kato [6, Theorem IV 5.331 observes that T bounded and ue2 countable 
implies ue2 = a, 6. For non-closed T (which we will not consider in this paper) 

ut? 1 is equal to the whole plane (hence this holds for u,~ for all i). Closed T 
with empty uas are characterized by Kaashoek and Lay [IO]. The definitions 
of u,i are motivated by observing that ue5 = ut, ue4 = w as defined above, 
ues and u,a are preserved under compact perturbations, u,l consists of those h 
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for which r(x - T) = 0 where y denotes the minimum modulus (see [6]); 

=e > 1 as used in [S], is actually ue2 since the operators there involve ordinary 
derivatives. 

One might wish to define the following two subclasses of semi-Fredholm 
operators, namely F, the class of semi-Fredholm operators with a(T) < CO 
and FB the class of semi-Fredholm operators with p(T) < co, since certain 
results can be obtained only for these two subclasses considered separately 
(e.g. see Goldberg [5], Kato [6]). Thus one could define oeCL(T) and c,~(T) as 
the complements of 

d,(T) - (A ( X - T is in class Fa) or d,(T) = {X 1 X - T is of class F,}, 

respectively. However, these sets do not satisfy the “symmetry condition” 
a,(T’) = o,(T) (in B anach spaces) or a,(T*) = u,(T) (in Hilbert spaces) 
which seems to be natural and quite convenient. It can be verified that 
u,i (i = l,..., 5) do satisfy this condition. 

If T is not closed, both T and (if B is any “reasonable” perturbation) T + B 

will have uei = C for i = I,..., 5. For this reason we will restrict ourselves 
to closed T, and B with D(B) r> D(T) and such that T + B is closed (this 
for example is guaranteed if B is T-bounded with relative bound less than 
one). 

3. WEYL’S THEOREM 

Weyl’s original theorem states that for bounded self-adjoint operators A 
and B in a Hilbert space, u,(A + B) = u,(A) for every A if B is compact. 
As is well known, this result has been extended to arbitrary closed A in a 
Banach space and B which are A-compact. More precisely, for operators of 
this type, Weyl’s theorem is valid for uei, i = 2,3,4, (for i = 2,3 see Kato [6], 
for i = 4 see Schechter [3]). Under additional assumptions (e.g., if the com- 
plement of ut is connected and neither p(A) nor p(A + B) is empty, where p 
is the resolvent set) Weyl’s theorem holds for i = 5 (see Schechter [3], 
Browder [S]). Recently Schechter [2, 31 examined whether Weyl’s theorem 
can be extended beyond A-compact perturbations and he found the following 
result. 

THEOREM S [2, 31. Let B be A2-pseudo-compact and suppose 

44 n 4A + B) is nonempty. Then U&~(A) = ue3(A + B). 

Here B is called A2-pseudo-compact if any sequence {x~} C D(A2) with 

II xn II + II Ax, II + II Bxn II + II BAG II + II A2xn II G ~4 
contains a subsequence {xn,} such that {Bx,~} converges. 
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REMARKS. (1) Although stated for the larger class of operators B which 
are only A2-pseudo-compact, the hypotheses of Theorem S require that B 
be A2-compact, i.e., any sequence {x,} C D(A2) with /i x, 11 + !{ A2x, // < M 
contains a subsequence (x,,> such that {Bx,,) converges. This follows from the 
fact that B is A-bounded and A is A2-bounded (since D(B) 1 D(A) 1 D(A2) 
and all three operators A, B and A2 are closed). Therefore it seems that the 
class of A2-pseudo-compact operators (and similarly the class of A-pseudo- 
compact operators of [2, 31) is superfluous. 

(2) For self-adjoint operators in Hilbert space Theorem S implies: If A 
is self-adjoint, B symmetric, A-bounded with relative bound less than one 
and A2-compact, then ae3(A) = ae3(A + B). 

(3) Under additional assumptions, similar result for uG4 and oe5 are 
obtained in [2, 31; e.g., replace 3 by 4 in Theorem S. 

(4) Theorem S suggests a “theorem” of the following form: “Let 
d,(A) n A,&4 + B) b e nonempty, B Am-compact for some m = 1,2,.... 
Then ae3(A) = ue3(A + B)“. The following example shows that this cannot 
be true (in general) for m > 2: Let A and B be the following (matrix-) 
operators in /, , 

A== 

with 

01 
10 

0 

02 
10 

0 
03 
10 

0 n 
= 10’ il I) B=([-Y 

D(B) = D(A) = 1% = %J / 2 I t2k--1 I2 + 2 IM2k I2 
k=l k=l 

< 

-?Z 
I) n ’ 

cc . 
I 

Since A3 = ([E $I), it is quite easy to see that B is A3-compact; the following 
may be calculated: d,(A) = C, d,(A + B) = C - (0). Hence 

44) n 44 + B) is not empty but d,(A) f d,(A + B), which implies 
U&~(A) f u,~(A + B). Since A3 is Am-bounded for m > 3, this example 
serves to negate the above “theorem” for all m > 2. 

(5) For self-adjoint operators Theorem S does extend. If A is self-adjoint, 
D(B) 1 D(A) and d,(A) n &(A + B) is nonempty (hence B is A-bounded), 
then if B is AP-compact for some real p > 1 it follows that 
u,3(A) = oe3(A + B). The proof consists of proving that B actually is A2- 
compact. This is a consequence of the following. 
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LEMMA 3.1. Let A be a self-adjoint operator in the Hilbert space H, E,, the 

corresponding spectral resolution: let B be A-bounded and such that the restriction 

B, of B to HN = (EN - E+) H is a compact operator for every positive N. 
Then B is f (A)-compact whenever f (A) is a (locally bounded) complex-valued 

function such that 1 f (h)/h ( -+ CO as / h 1 -+ CO. 

PROOF. For bounded A and sufficiently large N we have HN := H, hence 
if A is bounded, B is compact. In the following we may assume that A is 
unbounded. Equipped with the inner product 

(~9 ~)r = (f (4 x>f WY) + (~3 Y> 

and the corresponding norm, D( f (A)) is a Hilbert space and HN are closed 
subspaces. The restriction B, of B to HN is compact in both the original norm 
and in the f-norm /j * Ill. Since B is A-bounded we have for x E D(A) that 

II B - BN IIf = ~2% ‘;;l,; - < sup WI Ax II + II x II) 
x’H1; (llf (4 X /ia + iI X i12)112-+o 

as N+ co (here /I B - B, IIf is the operator norm of B - B, as an operator 
from D( f (A) with the norm ]I * /If into H). This implies that B is compact 
as an operator from D( f (A)) into H, i.e., B is f (A)-compact. 

THEOREM 3.2. Let A be selfadjoint, D(B) 1 D(A) and d,(A) f~ d,(A + B) 

not empty, and let B be g(A)-compact where g is some locally bounded (measur- 
able) function. Then oG3(A) = ue3(A + B). 

PROOF. B is clearly A-bounded (from D(B) 3 D(A) together with 
d,(A) n d,(A + B) not empty), and that B is AZ-compact then follows from 
Lemma 3.1 with f (X) = h2, provided that BN is compact for all positive N. 
The latter may be seen as follows: let {xn} be a sequence in HN with I/ X, /I < 1; 
then by the spectral theorem: 

II g(A) xn II2 + II x, II2 <nE~;Nl I g(X) I2 + 1 < C, , 

so that a subsequence (Bx,$} converges due to the g(A)-compactness of B. 
Thus u,~(A) = oe3(A + B) by Theorem S. 

Extensions of this result to ae4 and ue5 are available under the hypotheses 
of [2, 31. We notice that neither B nor A + B are required to be self-adjoint. 

4. A CONVERSE OF WEYL'S THEOREM 

The theorem of v. Neumann [13] (e.g. Riesz-Sz.-Nagy [4], p. 367) is a 
converse of Weyl’s theorem and asserts that if two bounded self-adjoint 



126 GUSTAFSON AND WEIDMANN 

operators A and A’ have the same essential spectrum, then there is an 
operator A” unitarily equivalent to A’ such that A”’ =: A - A” is a compact 
operator. As an immediate consequence of this theorem one has the corollary: 
If B is self-adjoint and o,(A) = ae(A + B) for all bounded self-adjoint 
operators I-1, then B is compact. This corollary is also an immediate conse- 
quence of the spectral theorem for self-adjoint operators; for A = 0 one has 
a,(B) = a,(O) = (0) an every self-adjoint operator with essential spectrum d 
(0) is compact. (From this corollary we see that for preservation of the essential 
spectrum there is no (general) weaker requirement than compactness; all 
weaker requirements must depend on the unperturbed operator, as for 
example relative compactness in the case of unbounded operators). 

A strict generalization of v. Neumann’s theorem to non-self-adjoint 
operators is not possible, since this would imply that from u,(B) = 0 it 
would follow that B is compact; in 8, , B = (c i]) is certainly not compact 
even though ucl = a.- = up 5 = (0). However the above-mentioned corollary 
can be generalized as follows: this possibility was suggested to one of the 
authors by P. Rejto. 

THEOREM 4.1. Let B be a bounded operator in a Hilbert space, 
uei(A) = oei(A + B) f or all bounded operators A. Then B is compact. Here 
i = 2, 3, 4, or 5. 

PROOF. We write U, for u,i. Applying the assumption to A = 0, A = B* 
and A = -B* we get: 

(0) = u,(o) = u,(B) = u,(B) = o,(B*) = u,(B + B*), 

(0) = u,(B) = ue( - B) = u,( - B*) = o,(B - B*). 

Hence the bounded self-adjoint operators B + B* and i(B - B*) have 
essential spectrum (0). This implies that B + B* and i(B - B*) are compact, 
hence B is compact. 
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