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Present work compares the mass transfer coefficient (kLa) and power draw capability of stirred tank
employed with Rushton and curved blade impeller using computational fluid dynamics (CFD) techniques
in single and double impeller cases. Comparative analysis for different boundary conditions and mass
transfer model has been done to assess their suitability. The predicted local kLa has been found higher
in curved blade impeller than the Rushton impeller, whereas stirred tank with double impeller does
not show variation due to low superficial gas velocity. The global kLa predicted has been found higher
in curved blade impeller than the Rushton impeller in double and single cases. Curved blade impeller also
exhibits higher power draw capability than the Rushton impeller. Overall, stirred tank with curved blade
impeller gives higher efficiency in both single and double cases than the Rushton turbine
� 2016 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Gas-liquid tanks are widely used in several process industries to
carry out various gas-liquid reactions [36,14]. The characteristic of
fluid dynamics in such tanks is generally understood through the
mechanism of interaction between the two phases (gas-liquid) in
terms of mass transfer. Studies based on gas-liquid phase in stirred
tank were done by several researchers [17,1,30] to predict the mass
transfer coefficient in stirred tank. Mass transfer depends on vari-
ous factors like types and number of impeller, gas superficial veloc-
ity and impeller speed. Researchers have used different models to
predict mass transfer coefficient such as Higbie Penetration model
[13] and surface renewal model [6]. Gimbun et al. [12] used Higbie
and Danckwerts model to predict mass transfer on single impeller
of Rushton and curved blade impeller. Ranganathan and Sivaraman
[30] used two more models apart from above mentioned which are
based on slip velocity (difference of gas velocity and liquid
velocity).

One of the other significant design parameters for a multiphase
stirred tank reactor is the power draw by the agitator which is
affected by the physical properties, operating parameters, and geo-
metrical parameters. It is defined as the amount of energy neces-
sary in a period of time, in order to generate the movement of
the fluid within a vessel by means of mechanical or pneumatic agi-
tation [32]. Economic selection criteria for an impeller are greatly
influenced by the power input for stirred tank application.
Researchers [24,23,32] have proposed different correlations to
quantify the gassed power input (gas-liquid phase) since the power
input is significantly different from gas-liquid phase (gassed condi-
tion) and liquid–liquid phase (ungassed condition).

Impeller types and number plays vital role in mass transfer and
power consumptions in gas-liquid stirred tanks. Study of Rushton
impeller [16,38,21,1] for mass transfer and power input is widely
available in literature, however, study forcurved blade impeller is
found very less in literarure except few studies done by Myers
et al. [27]; Gimbun et al. [12] and Devi and Kumar [7]. In this study,
Rushton and curved blade impeller in single and double case is
being studied in gas-liquid phase taking constant bubble diameter
with Eulerian-Eulerian multiphase model. This study aims in pre-
dicting mass transfer and power draw and comparing with pub-
lished literature.
2. Numerical model

Eulerian-Eulerian multiphase model is used to simulate the
hydrodynamics of flow in this study. The continuous and disperse
phases are treated as interpenetrating media identified by their
local volume fractions. The Reynolds averaged mass and momen-
tum balance equations are solved for each of the phases and are
given as follows:
er, Eng.
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Nomenclature

a interfacial area [L�1]
Cl; C1e; C2e; C3e; rk; re constants [–]
CD drag coefficient [–]
c constant [–]
CkLa, a, b constants [–]
d impeller diameter [L]
db bubble diameter [L]
Dl liquid diffusion coefficient [L2 T�1]
~Fi Coriolis and centrifugal forces [ML T�2]
Flg flow number [–]
Fr Froude number [–]
g
!

acceleration due to gravity [L T�2]
Gkl rate of production of turbulent kinetic energy

[ML�1 T�2]
��I unit tensor [–]
ki turbulent kinetic energy of ith phase [L2 T�2]
K constant in Eq. 14 [–]
K exchange coefficient [ML�3 T�1]
kL mass transfer coefficient [L T�1]
kLa volumetric mass transfer coefficient [T�1]
hkLai average mass transfer coefficient [T�1]
N impeller speed [T�1]
Np0 single phase power number [–]
p pressure [ML�1 T�2]
Pg/P0 relative power draw [–]

Pg gassed power input [ML�1]
Qg flow rate [L3 T�1]
~Ri inter-phase forces [ML T�2]
Re Reynolds number [–]
Rep relative Reynolds number [–]
s surface renewal rate [T�1]
Dt impeller thickness [L]
t time [T]
T tank diameter [L]
te contact time [–]
~Ui mean velocity of ith phase [L T�1]
uslip slip velocity [L T�1]
V volume of tank [L3]
vg superficial gas velocity [L T�1]
ml kinematic liquid viscosity [L2 T�1]
w width of blade [L]
ai volume fraction of ith phase [–]
��seff effective stresses [ML�1 T�2]
��slam laminar stress [ML�1 T�2]
��st turbulent stress [ML�1 T�2]
qi density of ith phase [M L�3]
e dissipation rate [L2 T�3]
ll liquid viscosity [ML�1 T�1]
p 3.14 [–]
s torque [ML2 T�2]
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Continuity equation:

@

@t
ðaiqiÞ þ r:ðaiqi

~UiÞ ¼ 0 ð1Þ

al þ ag ¼ 1 ð2Þ

where, qi, ai and ~Ui are density, volume fraction and mean velocity,
respectively, of phase i (l or g).

Momentum equation:

@

@t
ðaiqi

~UiÞ þ r � ðaiqi
~Ui
~UiÞ ¼ �airpþr��seff i þ~Ri þ~Fi þ aiqi~g ð3Þ

where, p is the pressure shared by the two phases and ~Ri is the

inter-phase momentum exchange terms.~Fi , represents the Coriolis
and centrifugal forces applies in MRF (multiple reference frame)
impeller model which is used in this study as impeller model. The
Reynolds stress tensor ��seff i is the laminar and turbulent stresses
and by Boussinesq hypothesis, it is given as

��seffi ¼ aiðllam;i þ lt;iÞðr~Ui þr~UiÞ � 2
3
ai qið ki þ ðllam;i þ lt;iÞr:~Ui

�
��I

ð4Þ
llam;i and lt;i are laminar and turbulent viscosity. ki is turbulent

kinetic energy and ��I is unit tensor.

2.1. Turbulence model

Standard k-e turbulence model [29] with dispersed k-e
multiphase turbulence model is used in this study to simulate
the gas-liquid phase flow as gas is dispersed in continuous liquid.
The governing equations of turbulent kinetic energy, k and
turbulent dissipation rate, e, are solved only for liquid phase as:

@

@t
ðqlalklÞ þr:ðqlal

~UlklÞ ¼ r � al
lt:l

rk
rkl

� �
þalGkl �qlalel þqlal

Y
kl

ð5Þ
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@

@t
ðqlalelÞ þ r � qlal

~Ulel
� �

¼ r:ðal
lt:l

re
relÞ þ al

el
kl

C1eð Gkl

� C2eqlelÞ þ qlal

Y
el

ð6Þ

Turbulent liquid viscosity is given as:

lt:l ¼ qlCl
k2l
el

ð7Þ

Gkl is the rate of production of turbulent kinetic energy.
Q

kl andQ
el represents the influence of the dispersed phase on the contin-

uous phase [8]. Cl, C1e, C2e, C3e, rk and re are constants of standard
k-e model. Their values are 0.09, 1.44, 1.92, 1.2, 1.0 and 1.3
respectively.

2.2. Inter-phase momentum exchange

Only drag force is considered in the present work as other forces
(lift and virtual) have been neglected because of its less signifi-

cance in phase interaction [18]. Hence,~Ri from Eq. (3) reduced only
to drag force as:

~Rl ¼ �~Rg ¼ Kð~Ug � ~UlÞ ð8Þ

K is the liquid-gas exchange coefficient given as:

K ¼ 3
4
qlalag

CD

db
j~Ug � U

 

l
j ð9Þ

db is the bubble diameter and CD is the drag coefficient defined
as function of relative Reynolds number, Rep. The standard formu-
lation of Rep does not account the effect of turbulence on bubble
movement. Hence Rep has been modified to include the effect of
turbulence [17]:

Rep ¼ qlj~Ug � ~Uljdb

ll þ ClT;l
ð10Þ
characteristics of stirred tank with Rushton and curved blade impeller, Eng.
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C is the model parameter introduced to account for the effect of
the turbulence in reducing slip velocity. This parameter is set to 0.3
[17]. Drag coefficient is then calculated using standard correlation
of Schiller and Naumann which is written as:

CD ¼
24 1þ0:15 R e0:687pð Þ

R ep
; Rep 6 1000

0:44; Rep > 1000

8<
: ð11Þ
2.3. Mass transfer model

There are several models available in literature for calculating
local mass transfer co-efficient (kL) but commonly used model
are based on penetration theory and surface renewal model when
the bubble diameter is known. By Higbie [13] penetration theory,
the liquid phase mass transfer coefficient of a bubble with a mobile
surface is represented as

kL ¼ 2ffiffiffiffi
p
p

ffiffiffiffiffi
Dl

te

s
ð12Þ

where te is the contact time and is calculated based on Kol-
mogorov’s Length scale of isotropic turbulence as te ¼

ffiffiffiffiffiffiffiffiffiffi
ml=el

p
; el is

turbulent dissipation rate and ml is the kinematic viscosity of liquid.
So, Eq. (12) becomes as

kpenetrationL ¼ 2ffiffiffiffi
p
p D0:5

l
el
ml

� �0:25

ð13Þ

And this model is denoted as kLpenetration. Refinement of the pen-
etration theory, mass transfer co-efficient, kL, suggested by Danck-
werts [6] is given as kL ¼

ffiffiffiffiffi
Dl
p

s, where s is the surface renewal rate.
This approach assumed that kL is related to the average surface
renewal rate resulting from exposure of the bubble interface to
the turbulent eddies with a variable contact time. Later, Lamont
and Scott [22] assumed that the small-scale turbulent motion,
which extends from smallest viscous motion to inertial ones,
affects the rate of mass transfer and s is calculated based on Komo-
gorov’s theory of isotropic turbulence. Hence, Eq. (12) becomes as

keddy cell
L ¼ K D0:5

l
el
v l

� �0:25

ð14Þ

where, Dl is the diffusion co-efficient and el is the turbulent dissipa-
tion rate in the liquid phase; v l is the liquid dynamic viscosity and
K = 0.4 is model constants. This model is denoted as k eddy cell and
generally referred as eddy cell model. Caderbank [5] further
assumed that the bubble is having a mobile interface and gross
mean flow of liquid relative to the bubble (slip velocity) controls
the renewal of liquid phase and contact time can be expressed in
terms of average bubble size and average slip velocity as

kslip velocityL ¼ 2ffiffiffiffi
p
p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Dluslip

db

s
ð15Þ

uslip can be obtained from phase velocity difference from an
Eulerian-Eulerian two-fluid CFD simulation. And the expression
of this model is denoted as kL

slip velocity. Alves et al. [2] modified
the equation of kL based on bubble rigidity and is denoted as kLrigid.
And this is obtained from the equation proposed by Frossling [10]
based on laminar boundary value theory as

krigidL ¼ c
uslip

db

� �0:5

D2=3
l m�1=6l ð16Þ

where, c is a constant of value 0.6. And volumetric mass transfer
co-efficient (kLa) is the combination of kL and a, where a is the
Please cite this article in press as: T.T. Devi, B. Kumar, Mass transfer and power c
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interfacial specific area and is a function of local volume fraction,
ag and bubble diameter, db. Therefore, a is expressed as

a ¼ 6ag

db
ð17Þ
2.4. Power draw

The power delivered to the fluid is the product of the impeller
speed, 2pN and torque, s. And it is a crucial characteristic of stirred
tank reactors [37]. The prediction of gassed power input, Pg was
calculated from the moment acting on the shaft and impeller.
The calculated torque is related with gassed power input as:

Pg ¼ 2pNs ð18Þ
Ungassed power number, Np0 is generally expressed in terms of

ungassed power input, P0 and is given as below for single Rushton
impeller [4].

Np0 ¼ P0

qlN
3d5 ¼ 2:512

Dt
d

� ��0:195
T0:063 ð19Þ

where ql, N and d are the density of liquid, impeller speed and
impeller diameter respectively. Dt and T are the impeller thickness
and tank diameter. Smith [31] proposed the relative power draw,
Pg/P0, from the measurements of Warmoeskerken and Smith [35]
and Gezork et al. [11] for single Rushton impeller as below:

Pg

Po
¼ 0:18Fr�0:2Fl�0:25g ð20Þ

Fr is the Froude number and is calculated as N2d
g ; g is the gravita-

tional force. Flg is flow number and is calculated as Qg

ND3; Qg is flow
rate. Taghavi et al. [32] suggested a correlation for P0 from experi-
mental observation for dual impellers as:

Po

V
¼ 6� 10�12Re2:921; Re > 104 ð21Þ

They further proposed a correlation of Pg/P0, based on the exper-
imental and simulation results of dual Rushton impeller as:

Pg

Po
¼ 0:19ðFlgÞ�0:28ðFrÞ0:127 w

d

� �0:18 d
T

� ��0:65
ð22Þ

The above correlations of Pg/P0 are based on Rushton impeller
for single (from Eq. (19) to Eq. (20)) and for double (Eq. (21) and
(22)). However, for other impeller types like curved blade impeller
which is used in this study, the following correlation originally
proposed by Hugmark [15] for six blade Rushton impeller is used
in this study and this correlation is reapplied by Moucha et al.
[25] for other impellers as:

Pg

Po
¼ 0:1

N2d4

gwV2=3

 !�0:2
Qg

NV

� ��0:25
ð23Þ

where w and V are the width of blade and tank volume respectively.
The energy per unit mass available in a stirred tank which can be
applied in different types of impeller is given as:

e ¼ Pg

qlV
) Pg ¼ eqlV ð24Þ

So, for other types of impeller Eq. (24) is used to Pg as e varies for
different types of impeller and substituting the value of Pg in
Eq. (23) to get P0 as:

P0 ¼ qlVe

0:1 N2d4

gwV2=3

� ��0:2 Qg

NV

� ��0:25� � ð25aÞ
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Then using the simulated CFD value of Pg from Eq. (18), final
correlation Pg/P0 is calculated for different types of impeller as:

Pg

P0
¼

2pNs 0:1 N2d4

gwV2=3

� ��0:2 Qg

NV

� ��0:25� �
qlVe

ð25bÞ

In this study, Eq. (25b) is used for single and double impeller of both
Rushton and curved blade impeller for comparing Pg/P0 with other
correlations. The global mass transfer co-efficient hkLai for an air-
water stirred tank is given as:
Table 1
Geometrical configurations of Rushton and curved blade impeller.

Case T (m) d (m) N (rpm) vg (m/s) db (mm)

1 0.63 0.21 390 0.0074 5.3
2 0.63 0.21 390 0.0074 5.3
3 0.63 0.21 390 0.0074 5.3
4 0.63 0.21 390 0.0074 5.3
5 0.26 0.086 698 0.003 3.4
6 0.292 0.0973 450 0.0025 2
7 0.292 0.0973 450 0.0025 2
8 0.292 0.0973 450 0.0025 2

Single Impeller D
d=T/3 d=
H=T H
C=T/3 C
b=T/12 C
w=T/2 b=
t=T/10 w

t=

Fig. 1. Types of impeller and schemaic diagram

Please cite this article in press as: T.T. Devi, B. Kumar, Mass transfer and power
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hkLai ¼ CkLa
Pg

V

� �a

vb
g ð26Þ

According to Van’t Riet [33], the values of constant CkLa, a and b
are 0.026, 0.4 and 0.5 respectively obtained from a fit to experi-
mental measurements.

3. Solution domain and boundary conditions

Table 1 shows different geometrical dimensions with different
boundary conditions. Water is filled up to the height of T and 2T
Boundary condition at top surface Impeller Types Impeller No.

Velocity-inlet Rushton 1
Degassing Rushton 1
Velocity-inlet curved blade 1
Degassing curved blade 1
Degassing curved blade 1
Symmetry Rushton 2
Degassing Rushton 2
Degassing curved blade 2

ouble Impeller 
T/3

=2T 
1=T/2
2=(3/2 T)
T/12

=T/2
T/10

m of the stirred tank used in this study.

characteristics of stirred tank with Rushton and curved blade impeller, Eng.
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for single and double impeller case. Gas is supplied to the liquid
through ring sparger which is kept below the impeller. Gas volume
fraction of 1 is provided at sparger inlet. Unstructured grids of
around 270–520 k cells were generated for single and double
impeller stirred tank respectively. Finer grid is employed near
the impeller region so that the strong turbulence of fluid flow
can be addressed accurately. First order differencing discretization
scheme is used to solve the equations of flow, volume fraction and
turbulence. Solution is considered as converged when the volume
fraction has no significant changes after certain iterations and is
achieved when residuals fell nearly below 10�4. Fig. 1 shows the
types of impeller used in this study.

Boundary condition plays a crucial role in numerical simulation
especially in case where more than one phase is included. Velocity
inlet has been assumed at ring sparger [28]. The top surface, which
is open to atmosphere, the boundary conditions should satisfy that
the gas should escape from the computational domain and liquid is
not allowed to escape. Researchers have used various boundary
conditions such as walls [34]; velocity-inlet [12,32] and pressure-
Table 2
Prediction of kL and comparison with results of Ranganathan and Sivaraman [25] (bold).

Case kL � 10�3ðms�1Þ
CFD

Penetration Eddy Cell

1 1.574 0.558
2 1.574 0.558
3 1.528 0.542
4 1.552 0.55
5 1.196 0.424
6 1.616 0.573
7 1.574 0.558

0.968 0.341
8 1.552 0.55

Fig. 2. Distribution of kLa for single (a) Rushton (c

Please cite this article in press as: T.T. Devi, B. Kumar, Mass transfer and power c
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outlet [19,9]; pressure-inlet and degassing condition [20,26] which
is achieved through user defined functions (UDF).

4. Result and discussion

Mass transfer coefficient and power draw will be presented in
this section.

4.1. Prediction of mass transfer coefficient (kLa)

Global hkLai is being predicted by using criteria given by on
Van’t Riet [33]. The comparison of predicted average kL for different
model with literature result is given in Table 2. Penetration and slip
velocity model predicts higher kL values than the other two meth-
ods in all cases. Eddy cell model and slip velocity models are fair
agreement with the experimental and simulated results of litera-
ture and these two models can be considered as the acceptable
model for the estimation of kL. Penetration and eddy cell model
does not give the significant difference of kL for single and double
Experimental [2]

Slip velocity Rigid

1.138 0.216
1.132 0.214
0.828 0.157
0.730 0.138
1.578 0.299
1.148 0.218
2.411 0.457 0.319
0.275 0.052
2.138 0.405

ase 2) and (b) Curved blade impeller (case 4).

haracteristics of stirred tank with Rushton and curved blade impeller, Eng.
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in case of Rushton and curved blade impeller. Variation of kL is pre-
dicted in different boundary conditions.The analysis of local distri-
bution kLa is more important for understanding the phase
interaction process in gas-liquid stirred tank efficiency than the
global hkLai especially in case when more than one impeller is
used. The comparison of distribution of kLa for different models
for double Rushton and curved blade impeller is shown in
Figs. 3a and 3b.

The prediction of local kLa by penetration model is observed
higher than other models (Figs. 2 and 3). Predicted kLa by penetra-
tion and eddy cell models are based on dissipation rate and kLa by
these two models were observed distributing throughout the tank
while in case of slip velocity and rigid model which are based on
velocity of gas and water were observed with obstruction by the
Fig. 3a. Distribution of kLa for dou

Fig. 3b. Distribution of kLa for double

Please cite this article in press as: T.T. Devi, B. Kumar, Mass transfer and power
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baffles near the tank wall. The formation of negative pressure zone
is observed just above the impeller (upper impeller in case of dou-
ble impeller). The lower impeller does not form such negative pres-
sure zone (dead zone) because of the influence of the flow
circulation generated by the upper impeller (Figs. 3a and 3b). The
magnitude of local kLa is found slightly higher (around 5%) in case
of double Rushton impeller than the curved blade impeller and this
finding is in agreement with Gimbun et al. [12,39]. However, Gim-
bun et al. [12] argued that this lower value of kLa in curved blade is
attributed to several factors and the efficiency of stirred tank was
characterized with energy efficiency based on relative power draw
rather than kLa which is based on too many processes of interfacial
fluid particles. The predicted local kLa is found higher (around 6%)
in curved blade impeller than the Rushton impeller in single
ble Rushton impeller (case 7).

Curved blade impeller (case 8).

characteristics of stirred tank with Rushton and curved blade impeller, Eng.
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impeller stirred tank. The Bakker’s [3] study shows that predicted
kLa is same for both multiple Rushton and curved blade impeller
in the superficial gas velocity for up to 0.01 m/s and significantly
increases the predicted kLa by curved blade impeller beyond this
limit. In this study, the superficial gas velocity is within 0.01 m/s
(0.0024–0.0074 m/s) and, hence, no such significant difference is
predicted between double stirred tank with Rushton and curved
blade impeller. The global volumetric kLa predicted based on Eq.
(26) is shown in Table 3. The predicted kLa is appeared higher in
curved blade than the Rushton impeller in double (15.21%) and
in single (6.09%) impeller stirred tank.

4.2. Prediction of power draw

The power draw of gassed condition with respect to the
ungassed condition is of important factor to be analyzed for under-
standing the power draw characteristic in gassed condition. Here,
relative power draw (ratio of gassed power input to ungassed
power input) is generally introduced to analyze the efficiency.
The predicted Pg/P0 is shown in Table 4 for different cases. Curved
Table 3
Prediction of hkLai.

Case Pg/V
(watt/m3)

Van’t Riet Eq. (26)
hkLai (1/s)

% efficient hkLai of Curved
blade over Rushton impeller

1 2706.12 0.0528

Single Double 
0

4

8

12

16
(Case 2,4,7,8)

6.09 %

15.21 %
2 1224.34 0.0384
3 2126.38 0.0479
4 1432.65 0.0409
5 707.57 0.0197
6 789.25 0.0187
7 1372.69 0.0234
8 2073.74 0.0276

Table 4
Predictions of Pg/P0.

Cases

1 2 3

Present work 0.96 0.43 0.75
Gimbun et al. [12] 0.38
Myers et al. [27]
Eq. (20) 0.42
Eq. (22)
Eq. (25) 0.87 0.39 0.77

1 0.91 1.19 1.14

0
1
2
3
4
5
6
7

Single
Rushton

Correlation
for Single
Rushton

Single
Curved
blade

impeller

Correlatio
for Sing
Curved
blade

impelle
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at
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e 
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w
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Fig. 4. Relative power draw capability with respect to the s
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blade predicts higher power draw as compared with Rushton
impeller. Double impeller also gives higher power draw than the
single impeller. The predicted results are in good agreement with
published literature. Pg/P0 is also affected by the imposing bound-
ary condition such as the velocity-inlet boundary condition over-
predicts Pg/P0 than the degassing boundary condition.

The capability of power draw with reference to the single Rush-
ton is shown in Fig. 4. Higher power draw capability is predicted by
curved blade (34% in double and 16 % in single case) than the Rush-
ton impeller. Double impeller predicts higher power draw capabil-
ity (70–80 %) than the single impeller. Correlation of Pg/P0
applicable for different types of impeller estimates in good agree-
ment with other correlation and with predicted results.

Efficiency of a stirred tank in gas-liquid system can be
expressed in terms of energy efficiency and is the qualitative func-
tion of power draw and mass transfer rate in the system (Ener-
gy = power draw/mass transfer rate). Power draw is taken as the
relative power draw; and mass transfer rate as global kLa achieved
from Eq. (26) in Table 3. Energy is expressed as efficiency number
which is shown in Table 5 for different cases of stirred tank. So, at
4 5 6 7 8
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Table 5
Overall efficiency of Curved blade over Rushton impeller.

Case Efficiency
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the same amount of mass transfer capability to be achieved, the
efficiency of a stirred tank can be understood from the power draw
capability of the system. Hence, in this study also, there is no sig-
nificant difference of mass transfer in Rushton and curved blade
impeller predicted; however, there is great difference in power
draw capability much higher by the curved blade than the Rushton
impeller. The efficiency or energy efficiency is being shown in the
Table 5, indicates that overall efficiency higher in the case of
curved blade impeller (8.14% more efficient in single and 21.93%
in double impeller) than the Rushton impeller.

5. Conclusion

Boundary condition plays important role to correctly predicting
the fluid flow characteristics in stirred tank when more than one
phase is involved. It is ascertained that degassing boundary condi-
tion predicts acceptably accurate results than the commonly used
velocity-inlet condition. Among different mass transfer models,
eddy cell model and slip velocity models predict the mass transfer
coefficient in acceptable ranges. Higher power draw capability is
predicted by curved blade than the Rushton impeller, which is
16% and 34% more in single and double impeller. Double impeller
predicts higher power draw capability (70–80%) than the single
impeller. In order to achieve the same mass transfer coefficient,
curved blade impeller exhibits higher efficiency (8.14% more effi-
cient in single and 21.93% in double impeller) than the Rushton
impeller. Therefore, it has been concluded in this study that curved
blade has more gas dispersion capability than the Rushton impeller
even though both produces same amount of mass transfer rate.
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