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To evaluate the performance of ocean-colour retrievals of total chlorophyll-a concentration requires direct com-
parison with concomitant and co-located in situ data. For global comparisons, these in situmatch-ups should be
ideally representative of the distribution of total chlorophyll-a concentration in the global ocean. The oligotrophic
gyres constitute the majority of oceanic water, yet are under-sampled due to their inaccessibility and under-rep-
resented in global in situ databases. The AtlanticMeridional Transect (AMT) is one of only a few programmes that
consistently sample oligotrophicwaters. In this paper,weused a spectrophotometer on twoAMTcruises (AMT19
and AMT22) to continuously measure absorption by particles in the water of the ship's flow-through system.
From these optical data continuous total chlorophyll-a concentrations were estimated with high precision and
accuracy along each cruise and used to evaluate the performance of ocean-colour algorithms. We conducted
the evaluation using level 3 binned ocean-colour products, and used the high spatial and temporal resolution
of the underway system to maximise the number of match-ups on each cruise. Statistical comparisons show a
significant improvement in the performance of satellite chlorophyll algorithms over previous studies, with
root mean square errors on average less than half (~0.16 in log10 space) that reported previously using global
datasets (~0.34 in log10 space). This improved performance is likely due to the use of continuous absorption-
based chlorophyll estimates, that are highly accurate, sample spatial scalesmore comparablewith satellite pixels,
and minimise human errors. Previous comparisons might have reported higher errors due to regional biases in
datasets and methodological inconsistencies between investigators. Furthermore, our comparison showed an
underestimate in satellite chlorophyll at low concentrations in 2012 (AMT22), likely due to a small bias in satel-
lite remote-sensing reflectance data. Our results highlight the benefits of using underway spectrophotometric
systems for evaluating satellite ocean-colour data and underline the importance of maintaining in situ observa-
tories that sample the oligotrophic gyres.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Phytoplankton are an essential component of the ocean, modifying
its biological, chemical and physical environment. The majority of
light absorbed by phytoplankton is transferred to heat, which can mod-
ify the temperature and physical structure of the water column
(Sathyendranath, Gouveia, Shetye, Ravindran, & Platt, 1991; Zhai,
Tang, Platt, & Sathyendranath, 2011), with a smaller component used
in photosynthesis, the conversion of inorganic carbon (carbon dioxide)
to organic carbon. Photosynthesis by phytoplankton is responsible for
roughly half of net primary production on Earth (Longhurst,
ory (PML), Prospect Place, The

. This is an open access article under
Sathyendranath, Platt, & Caverhill, 1995), helping to modulate the
total CO2 concentration in water and its pH, influencing CO2 air-sea
gas exchange, carbon cycling and consequently Earth's climate. Organic
carbon produced by phytoplankton is made available to most marine
species as an energy source, and ultimately, influences global fish
catch (Chassot et al., 2010). In addition to carbon, phytoplankton con-
tribute to the biogeochemical cycling of a variety of climatically-impor-
tant elements, such as silica, nitrate and phosphate. It is for these
reasons phytoplankton are recognised as an Essential Climate Variable
in the implementation plan of the Global Climate Observing System
(GCOS, 2011).

Total chlorophyll-a concentration (hereafter denoted chlorophyll),
refers to the sum of key photosynthetic pigment concentrations includ-
ing:monovinyl chlorophyll-a; divinyl chlorophyll-a; and chlorophyllide-
a (Brotas et al., 2013; Claustre et al., 2004). Partly due to difficulties in
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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measuring phytoplankton carbon biomass, chlorophyll is used as a sim-
ple proxy of phytoplankton biomass (acknowledging biomass-indepen-
dent changes in chlorophyll can occur from variations in light and
nutrients), as it can be routinely estimated in situ (e.g. fluorometrically,
using High Performance Liquid Chromatography (HPLC) or absorption
line height) or through satellite remote-sensing of ocean colour (O′
Reilly et al., 1998). Collectively chlorophyll in phytoplankton cells has a
huge impact on ocean colour, visible from outer space.

Since the launch of the NASA Coastal Zone Color Scanner (CZCS) in
1978, and subsequent ocean-colour satellite missions (e.g. the Ocean
Color and Temperature Sensor (OCTS), the Sea-viewing Wide Field-of-
view Sensor (SeaWiFS) of NASA; the Medium Resolution Imaging Spec-
trometer (MERIS) of ESA; two Moderate Resolution Imaging Spectro-ra-
diometers (MODIS-Aqua and MODIS-Terra) of NASA; and the NASA-
NOAA Visible Infrared Imager Radiometer Suite (VIIRS)), blue-to-green
ratios of water reflectance andmodel-based algorithms have been devel-
oped to derive chlorophyll from satellite ocean-colour data. The synoptic
coverage, quality and continuity of satellite chlorophyll data has led to
many scientific advances (see McClain, 2009, for a review on this topic),
and it is nowwidely regarded as themain source of data for assessing re-
cent and future change in pelagic ecosystems (Siegel & Franz, 2010).

Despite these advances, our understanding of the accuracy and pre-
cision of ocean-colour chlorophyll data has been impeded by the limited
number of, and geographic coverage of, in situ measurements co-inci-
dent with the satellite data (O′Reilly et al., 1998). Relative to other sat-
ellite-derived oceanic variables, such as sea-surface temperature (e.g.
see Table 3 of Merchant et al., 2014), the number of in situ chlorophyll
measurements co-incident with the satellite data is low. In addition to
being limited in number, the distribution of in situ data available is
often biased toward coastal and eutrophic waters, with limited data
available in the remote oligotrophic waters, despite representing the
majority of the surface ocean (Werdell & Bailey, 2005).

The Atlantic Meridional Transect (AMT) is a multidisciplinary pro-
gramme designed to undertake biological, chemical, and physical mea-
surements across a transect of N12,000 km through the centre of the
Atlantic Ocean, ranging from the eutrophic shelf seas and upwelling sys-
tems, to the mid-ocean oligotrophic gyres (Aiken et al., 2000; Robinson
et al., 2006). Established in 1995, the programme is now in its 20th year
(Rees et al., 2015), having completed (to date) 25 cruises. It was origi-
nally conceived to test and ground truth satellite algorithms of ocean
colour (in particular the SeaWiFS sensor; Hooker & McClain, 2000) as
the transect crosses a wide range of ocean provinces and conditions,
and importantly, crosses the sparsely sampled oligotrophic gyres. Mea-
surements collected on AMT have contributed to global bio-optical
datasets used for satellite algorithm development and validation (O′
Reilly et al., 1998;Werdell & Bailey, 2005), and have been used to assess
the performance of satellite ocean-colour chlorophyll retrievals (Aiken
et al., 2009; Brewin et al., 2010; Brewin, Sathyendranath, Jackson, et
al., 2015). AMT is widely recognised as an ideal platform to evaluate sat-
ellite ocean-colour data (Aiken & Hooker, 1997; Hooker & McClain,
2000; Rees et al., 2015).

Traditionally, satellite chlorophyll data has been validated using co-
incident discrete point measurements of chlorophyll, such as that ac-
quired through HPLC or through fluorometric chlorophyll extraction.
When comparing co-incident in situ point measurements with the sat-
ellite data, errors can occur due to vast differences in the observational
scales of the two types of measurements. Discrete in situmeasurements
of chlorophyll typically represent volumes of sea water of the order of
5 l or less, whereas satellite ocean-colour pixels are typically between
1 km and 4 km in size, which if one assumes an optical depth of 10 m
(often much deeper in clear waters), equates to a volume of water in
the region of 1 × 1010 and 16 × 1010 l. Furthermore, the spatial variabil-
ity within a satellite pixel is very difficult to sample using discrete point
measurements.

One option to address this mismatch in spatial scales between satel-
lite and discrete point measurements is by using continuous in situ data
collected by a moving ship. Since the 1930′s plankton measurements
have been collected using the Continuous Plankton Recorder towed on
research vessels and voluntary ships, and have been used for compari-
son with satellite ocean-colour data (Batten, Walne, Edwards, &
Groom, 2003; Brewin et al., 2011; Raitsos, Reid, Lavender, Edwards, &
Richardson, 2005). Continuous chlorophyll data derived from a lidar
fluorosensor on a moving research vessel have also been compared
with ocean-colour chlorophyll data over wide spatial scales (Barbini,
Colao, Fantoni, Fiorani, & Palucci, 2003; Barbini et al., 2004). A common
approach to collecting continuous in situ chlorophyll measurments is
through calibrated in vivo fluorescence data collected by sampling sur-
face water from the flow-through system of a moving ship (Lorenzen,
1966). This approach has been used to validate ocean-colour data in
coastal (Folkestad, Pettersson, & Durand, 2007; Harding, Magnuson, &
Mallonee, 2005; Petersen, Wehde, Krasemann, Colijn, & Schroeder,
2008) and shelf regions (Hu et al., 2003, 2005; Zhang et al., 2006), and
has demonstrated the importance of validating a satellite pixel using
multiple samples in heterogeneous conditions (Hu, Nababan, Biggs, &
Muller-Karger, 2004). Yet, this approach has its caveats. For instance,
the fluorescence yield can vary between species of phytoplankton
(Kiefer, 1973b; Strickland, 1968) and within a single species subjected
to different environmental conditions (Kiefer, 1973a; Slovacek &
Bannister, 1973). In vivo fluorescence in surface waters can also be af-
fected by non-photochemical quenching during daytime (e.g. Cullen &
Lewis, 1995). These problems impact the accuracy and precision of the
in situ chlorophyll data, particularly in the oligotrophic gyres (Strass,
1990).

Recently, techniques have been developed to continuously measure
the inherent optical properties of particles in surface sea water sampled
by the flow-through system of a moving ship (Boss et al., 2013;
Dall'Olmo, Boss, Behrenfeld, & Westberry, 2012; Dall'Olmo, Westberry,
Behrenfeld, Boss, & Slade, 2009; Dall'Olmo et al., 2011; Koponen et al.,
2007; Slade et al., 2010; Westberry, Dall'Olmo, Behrenfeld, & Moutin,
2010). Using these techniques, chlorophyll concentration can be esti-
mated with remarkable accuracy and continuously, using particulate
absorption measurements and the line-height of the absorption peak
at red wavelengths (Boss, Collier, Larson, Fennel, & Pegau, 2007;
Dall'Olmo et al., 2012; Davis, Moore, Zaneveld, & Napp, 1997;
Westberry et al., 2010). These techniques have been used to evaluate
ocean-colour data (Brewin, Raitsos, et al., 2015; Werdell, Proctor, Boss,
Leeuw, & Ouhssain, 2013) and have the potential to overcome some of
the caveats of estimating chlorophyll using in vivo fluorescence.

In this paper, we use an optical set-up on two AMT cruises (AMT19
and AMT22) to continuously measure chlorophyll concentration from
the ship's flow-through system. The chlorophyll datasets are then
used to evaluate the performance of satellite chlorophyll algorithms
on different ocean-colour sensors.
2. Methodology

2.1. Statistical tests

To test the performance of satellite chlorophyll algorithmswe used a
series of univariate statistical tests commonly used in comparisons be-
tween modelled and in situ data (e.g. Brewin, Sathyendranath, Müller,
et al., 2015; Doney et al., 2009; Friedrichs et al., 2009), including: the
Pearson correlation coefficient (r); the root mean square error (Ψ);
the average bias between model and measurement (δ); the unbiased
root mean square error (Δ); the slope (S) and intercept (I) of a Type-2
regression; and the percentage of possible retrievals (η). For S and I,
we used Type-2 regression (Glover, Jenkins, & Doney, 2011, MATLAB
function lsqfitma.m). The equations used for each of these statistical
tests are provided in Table 1. All statistical tests were performed in
log10 space, considering chlorophyll is approximately log-normally dis-
tributed in the ocean (Campbell, 1995, see also Fig. 3b).
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Summary of statistical tests used in the study.
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S Slope of Type-2 regressionb CE−I
CM

I Intercept of Type-2 regressionb CE−SCM

η Percentage of possible retrievals NE

NM 100

a C denotes the variable (chlorophyll concentration) andN is the number of sampleswith both estimated andmeasureddata. The superscript E denotes the estimated variable (e.g.using
satellite data) and the superscriptM denotes the measured variable (e.g. measured in situ).

b Type-2 regression between CM and CE (where CE=CMS+ I) was used to derive S and I.
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2.2. Underway optical sampling

AMT19 and AMT22 underway data were collected on board the RRS
James Cook from the 14th of October to the 28th of November 2009, and
the 15th October to the 20th of November 2012, respectively. Both
cruises followed a very similar cruise track, spanning 50°N to 50°S
(Fig. 1).

On both cruises, optical instruments were attached to the ship's
clean flow-through system, continuously pumping seawater from a
nominal depth of about 5 m. The methods of Dall'Olmo et al. (2009),
Slade et al. (2010) and Dall'Olmo et al. (2012) were followed, which in-
volved first passingwater through a Vortex debubbler, then either pass-
ing water directly through the optical instruments (50 min for every
hour) or diverting seawater through a Cole Parmer 0.2 μm-cartridge fil-
ter (for 10min every hour), the later used to provide a baseline for par-
ticulate absorption measurements. Either a WET Labs AC-S
hyperspectral spectrophotometer (hyperspectral between ~400 and
~750 nm, with a spectral resolution of 5 nm and a band pass of
15 nm), or a WET Labs AC-9 (nine wavelengths between 412 and
715 nm, with a band pass of 10 nm) were used to measure spectral ab-
sorption. Spectral particulate absorption (ap(λ)) were calculated by
subtracting the 0.2 μm filtered measurements from the unfiltered
Fig. 1. (a) Cruise tracks for AMT19 (Oct-Nov 2009) and AMT22 (Oct-Nov 2012) for underway
aph(676), derived from the underway optical system (OS) and underway HPLC chlorophyll (
chlorophyll (C) from HPLC and the underway optical system (OS) with latitude for the two
absolute log10-transformed difference between HPLC and OS-inferred chlorophyll.
measurements, providing calibration-independent estimates of ap(λ)
accounting for instrumental drifts and residual calibration errors. Fol-
lowing Dall'Olmo et al. (2009), data were converted into 1-min median
bins. The 1-min binned data were medians of higher frequency data
(~240measurements):when the shipmoves at ~18 kmh−1 (typically),
each 1-min binned average is representative of approximately 0.3 km.
For AMT19, an AC-S was used at the beginning of the cruise but after
13 days the lamp of the attenuation channel (i.e., C-channel) failed,
and an AC9 meter was added to the flow-through system (Dall'Olmo
et al., 2012). As the “band pass” of the AC9 is narrower (10 nm) than
that of the AC-S (15 nm), concurrent AC-9 andAC-S ap(λ) datawere cal-
ibrated to ensure no systematic bias in ap(λ) between instruments (see
Section 2.1.3 of Dall'Olmo et al., 2012, for further details). For AMT22, a
WET Labs AC-S was used during the entire cruise.

For both AMT19 and AMT22, discrete water samples (2 to 4 l) were
collected along the transects from the underway flow-through system.
The water samples were filtered onto Whatman GF/F filters (nominal
pore size of 0.7 μm) and stored in liquid nitrogen. Chlorophyll (C) was
determined after the cruise in the laboratory using HPLC analysis.

To estimate chlorophyll from the underway optical system, data for
ap(λ) were extracted at 650, 676 and 715 nm. The phytoplankton ab-
sorption coefficient at 676 nm (aph(676)) was then estimated using
HPLC data; (b) and (c) show the relationship between co-located (20 min time window)
C), for AMT19 (106 samples) and AMT22 (176 samples) respectively; (d) and (e) show
cruises; (f) shows the relationship between HPLC and OS-inferred chlorophyll; and (g)

Image of Fig. 1
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the line height method of Davis et al. (1997) as modified by Boss et al.
(2007), such that

aph 676ð Þ ¼ ap 676ð Þ− 39=65ap 650ð Þ þ 26=65ap 715ð Þ� �
: ð1Þ

To convert aph(676) into chlorophyll concentrations (C), we extracted
concurrent data on aph(676) from theoptical system to that of the discrete
HPLC chlorophyll data. The aph(676) data were averaged in log10 space
over a 20-min period centered on the time the discrete HPLC water sam-
ples were collected (±10 min), then back-transformed. We then fitted a
non-linear relationship (Bricaud, Babin, Morel, & Claustre, 1995; Bricaud,
Morel, Babin, Allali, & Claustre, 1998) between aph(676) and C, such that

C ¼ Aaph 676ð ÞB: ð2Þ

The parameters A and Bwere determined for each cruise separately,
by fitting Eq. (2) using HPLC chlorophyll and corresponding data on
aph(676) from the optical system. For AMT19, estimates of A and B
were 88 and 1.02 (N = 106), respectively. For AMT22, A and B were
62 and 0.99 (N = 176), respectively. In both cases, the slope of the
power-law function (B) was not significantly different from 1.0, sug-
gesting a linear relationship between aph(676) and C along the two
AMT cruise tracks, in contrast to previous studies using global datasets
(e.g. Brewin, Devred, Sathyendranath, Hardman-Mountford, &
Lavender, 2011; Bricaud et al., 1995, 1998; Werdell et al., 2013). To
abide by the law of parsimony, Eq. (2) was replaced with a linear rela-
tionship between aph(676) and C, such that

C ¼ Aaph 676ð Þ: ð3Þ

The parameter Awas estimated as 80± 2.0 and 69± 1.3 for AMT19
and AMT22 respectively (Fig. 1b and c), where the uncertainties are the
95% confidence intervals of the means. Note that the parameter A is in-
fluenced not only by the chl-specific absorption coefficient at 676 nm,
but also by differences in the optical set-up on the two cruises (e.g. dif-
ferent instruments with different spectral responses). Fig. 1d–g show a
comparison of chlorophyll estimated from the optical set-up (Eq. (3))
with the corresponding HPLC chlorophyll data. The optical set-up is
shown to estimate chlorophyll with very good accuracy along the two
AMT transects. Eqs. (1) and (3) were used to reconstruct chlorophyll
for all ap data collected on AMT19 and AMT22, resulting in 45,171 1-
min binned chlorophyll samples for AMT19 and 34,934 for AMT22.

2.3. In situ hyperspectral radiometry

To aid interpretation of the satellite chlorophyll validation results,
we used in situ above-water hyperspectral radiometry data collected
on AMT19 and AMT22. An above-water Hyperspectral Surface Acquisi-
tion Remote Sensing System (SATLANTIC HYPERSAS) was installed on a
fixed pole on the bow of the ship on both AMT19 and AMT22.
Hyperspectral downwelling irradiance (Es), sky radiance (Li) and
water-leaving radiance (Lt) were recorded at a number of stations
along the AMT track. These stations all occurred around local noon,
where the ship stopped for CTD profiles. On both cruises, the Es sensor
was pointed toward zenith, with the Li and Lt sensors deployed at
fixed angles facing the sky and water respectively (~40° and ~130° re-
spectively from nadir, assuming a horizontal ship). Sensor windows
were regularly cleaned during both cruises with lens paper.

Es, Li and Lt were extracted from the HYPERSAS for a 1-h period over
the duration of each station, using SATLANTIC SatView and SatCon soft-
ware. The HYPERSAS data were processed as follows:

• On each instrument, a shutter closes periodically to record dark
values. The Es, Li and Lt data were first dark corrected, by interpolating
the dark value data in time to match the light measurements for each
sensor, then subtracting the dark values from the lightmeasurements
at each wavelength.
• The Es, Li and Ltwere then interpolated to the same set of wavelengths
(every 3.5 nm from 350–800 nm), which coincides roughly with the
wavelengths of the Es sensor, the instrument with the smallest num-
ber of channels.

• As the three sensors have different integration times and thus collect
data at slightly different time stamps, the Es, Li and Lt data were inter-
polated to the same set of time stamps, which was selected based on
the sensor with the slowest integration time (typcially the Lt sensor).
This resulted in Es, Li and Lt data at the same time and same sets of
wavelengths.

• For each station, only spectra with a sun zenith angle of b60°, an azi-
muth angle between either 100 and 170° (centered at 135° ±35°)
were used (Mobley, 1999). Any spectra with negative values at
443 nm (which can occur when cleaning the sensor) were removed.

• To minimise sun glint contamination we exploited the near-infrared
portion of the Lt reflectance spectrum which, in open ocean waters,
should be close to zero. The statistical distribution of Lt(NIR) data,
where NIR represents the average of Lt in the region 750–800 nm, at
each station was analysed and spectra were only retained in the
lower 5th percentile of Lt(NIR) (Hooker, Lazin, Zibordi, & McLean,
2002).

• Remote-sensing reflectance (Rrs(λ)) was then computed according to
Rrs(λ)=[Lt(λ)−ρLi(λ)]/Es(λ),where ρwas computed for each station
following (Mobley, 2015), using the median wind speed, azimuth
angle, and sun zenith angle over the duration of each station, and as-
suming a viewing angle of 40°.

• Rrs(λ) data in the near-infrared were computed (averaged in the re-
gion 750–800 nm) and subtracted from each spectra, to remove any
additional contamination by sky and sun glint.

• For the remaining spectra at each station, remote-sensing reflectance
ratios (Rrs(443)/Rrs(547) and Rrs(488)/Rrs(547)) were computed. Me-
dian Rrs(443)/Rrs(547) and Rrs(488)/Rrs(547) values were extracted
for each station, after degrading the hyperspectral Rrs data to 11 nm
averages centered on each wavelength, to be consistent with
NOMAD data used to parameterise the NASA OC-series of chlorophyll
algorithms (Werdell & Bailey, 2005). To remove noisy station data and
maximise the consistency of the dataset, only station data were used
where the maximum coefficient of variation of Rrs(443)/Rrs(547)
and Rrs(448)/Rrs(547) was less than 0.15.

• Finally, chlorophyll data from the optical system were extracted for
the same time period at each station (1 h) andmedian concentrations
were computed. This resulted in 8 stations on AMT19 and 22 stations
on AMT22with concurrent in situ Rrs(443)/Rrs(547),Rrs(448)/Rrs(547)
and chlorophyll.
2.4. Satellite ocean-colour datasets

We conducted our ocean-colour evaluation using daily, level 3, 4 km
binned satellite ocean-colour products. The choice to use level 3 (4 km)
ocean-colour products for the evaluation, as opposed to level 2 (1 km)
typically used in satellite validation protocols (Bailey & Werdell,
2006), stems from: (i) the continuous underway sampling method
used allows for many samples to be collected within a 4 kmpixel, to ac-
count for the effects of sub-pixel variability over a larger pixel area; (ii)
themerged ocean-colour products evaluated here aremerged at level 3
rather than level 2; and (iii) in a recent user requirements survey
(Sathyendranath, 2011), it was found that ecosystem modellers and
earth observation scientists using ocean-colour data have a preference
for level 3 products over level 2. Nonetheless, we investigate the impact
of using level 3 data for validation by comparing results with a valida-
tion using level 2 data.

For the AMT19 period (14th of October to the 28th of November
2009), MODIS-Aqua (R2014.0 and R2013.1) and MERIS (processed
with SeaDAS, R2012.1) daily, global, level 3 spectral remote-sensing
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reflectance Rrs(λ) data were downloaded from the NASA website
(http://oceancolor.gsfc.nasa.gov/). Level 3, global, 4 km MERIS ocean-
colour Rrs(λ) products were also produced using the POLYMER atmo-
spheric-correction algorithm (version 3.0; Steinmetz, Deschamps, &
Ramon, 2011) over the AMT19 period. SeaWiFS (R2010.0) level 3,
global, 4 km data were produced at Plymouth Marine Laboratory
(PML), by re-binning Level 2 SeaWiFS data (acquired from NASA)
to a 4 km grid, as the NASA level 3 SeaWiFS products are provided
at 9 km. In addition to single-sensor datasets, we also downloaded
merged ocean-colour products from the European Space Agency
(ESA) Ocean Colour Climate Change Initiative (OC-CCI) over the
AMT19 period. OC-CCI data constitute merged (level 3, 4 km binned)
MERIS (POLYMER), MODIS-Aqua and SeaWiFS products, and are
available at http://www.oceancolour.org/ (Sathyendranath et al.,
2012). Both versions 1.0 and 2.0 of the OC-CCI products were
downloaded and used in the study. Level-2, 1 km MODIS-Aqua
(R2014.0) data were also acquired from NASA for AMT19, for cross-
comparison of Level 2 and Level 3 MODIS-Aqua data. Level 2 data
were processed using standard NASA flags.

For the AMT22 period (15th October to the 20th of November 2012),
MODIS-Aqua (R2014.0 and R2013.1) and VIIRS (R2014.1) daily, global,
level 3 spectral remote-sensing reflectance Rrs(λ) data were
downloaded from the NASA website (http://oceancolor.gsfc.nasa.gov/).
OC-CCI version 1.0 and 2.0 data were also acquired for AMT22, with ver-
sion 2.0 downloaded from the OC-CCI website (http://www.oceancolour.
org/) and version 1.0 produced at Plymouth Marine Laboratory for the
study, noting that the publicly available OC-CCI version 1.0 dataset ends
in July 2012. Table 2 highlights the satellite datasets used in this study.

2.5. Satellite and in situ match-up procedure

The following procedure was implemented to ensure high quality
match-ups between Level 3 satellite Rrs(λ) and in situ chlorophyll data.

• To minimise effects of sub-pixel variability on the validation, satellite
Rrs(λ) data were matched in time (same day of year) and space
(latitude and longitude, closest 4 km pixel) with the in situ chlo-
rophyll data for AMT19 and AMT22. When one or more in situ
samples were matched to the same satellite pixel, the in situ chlo-
rophyll concentrations were averaged (using log10 transforma-
tion) and considered as a single match-up. Only samples were
used where there were N5 in situ data points within a satellite
pixel (Fig. 2a), and where the standard deviation of the in situ
log10(C) measurements was less than 0.1 (~95 percentile of
data, see Fig. 2b).

• To test for homogeneity of the region surrounding the satellite
match-up, eight other satellite pixels surrounding the centre
pixel (total of 9, 3×3) were also extracted from the satellite
data. The coefficient of variation (median coefficient of variation
for Rrs bands between 412 and 555 nm) for each box of nine pixels
was then computed. Match-ups were excluded if the coefficient
of variation was N0.15 (Fig. 2c, similar to Bailey & Werdell,
2006, acknowledging that they used 5×5 km level 2 data) and
when b50% of the pixels were available in the surrounding region.

• Finally, the average solar zenith angle for the in situ chlorophyll
data within each satellite match-up was computed, using the
time and location of in situ data collection. To minmise the time
difference between satellite and in situ data collection, only
match-ups with a solar zenith angle b90° were used (Fig. 2d),
meaning that only underway data collected during daylight
hours were used in the study. Regarding this latter point, the
time difference between satellite and in situ data will vary de-
pending on satellite overpass time, which is different for each sat-
ellite. For merged products, this becomes more complicated to
compute, as a merged product contains a combination of infor-
mation from different satellite sensors, that collect data at

http://oceancolor.gsfc.nasa.gov
http://www.oceancolour.org
http://oceancolor.gsfc.nasa.gov
http://www.oceancolour.org
http://www.oceancolour.org


Fig. 2. The satellite and in situmatch-up procedure using OC-CCI v2.0 data for AMT19 and the OCI chlorophyll algorithm. (a) Step 1: histogram of the number of in situ data points within a
4 km satellitematch-up pixel, showing the threshold of 5 sampleswith data included in purple and excluded in green. (b) Step 2: histogramof the standard deviation of the in situ log10(C)
measurements within each satellite pixel, showing the threshold of 0.1 (~95 percentile of data) with data included in purple and excluded in green. Step 3: (c) histogram of the median
coefficient of variation for Rrs bands between 412 and 555 nm, for a box of nine pixels (with ≥50 % coverage) surrounding the satellitematch-up pixel. Match-upswere excluded (green) if
there was a coefficient of variation N0.15 (Bailey &Werdell, 2006). Step 4: (d) histogram of solar zenith angles for remaining data, match-ups were excluded (green) with a solar zenith
angle greater than 90°, and hence remainingmatch-ups were collected during daylight hours. (e) Scatter plot of satellite and in situmatch-ups showing samples before (green) and after
(purple) applying quality control (Steps 1–4).
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slightly different periods of the day. By eliminating data collected
during the night, and considering the satellite overpass times of
SeaWiFS, MODIS-Aqua, VIIRS and MERIS vary between around
±2.5 h local noon, the maximum time difference between in
situ and satellite data used for a match-up is not likely exceed
~8 h.

Fig. 2a–e illustrate the satellite match-up procedure used on OC-CCI
v2.0 data for AMT19 using the OCI chlorophyll algorithm (see following
section for description of OCI algorithm). The percentage of match-up
data retained following application of the quality control step was
~32% for this example (Fig. 2). For the level 2 match-ups, the same
exact procedure was used, with the only difference being that match-
ups were kept where there were N3 in situ data points within a satellite
pixel (rather than N5 for the level 3 data), to account for the fact that the
level 2 pixels are smaller in size. We also computed the time difference
between satellite overpass and in situ data collection for the level 2 data.

2.6. Ocean-colour chlorophyll algorithms

The satellite chlorophyll (C) algorithms incorporated into the
comparison are described in this section. Each algorithm uses
Rrs(λ) as input, and was applied to satellite Rrs(λ) to compute
chlorophyll.

2.6.1. OC-series
The NASA OC-series of algorithms refer to a series of polynomial,

band-ratio chlorophyll algorithms (O′Reilly et al., 2000) that relate the
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log-transformed ratio of blue to green remote-sensing reflectances (X)
to the chlorophyll concentration (C). For the NASA OC4 algorithm, X is
computed as

X ¼ log10 max Rrs 443ð Þ;Rrs 490ð Þ;Rrs 510ð Þ½ �=Rrs 555ð Þf g: ð4Þ

Depending on the band set of the satellite, and onwhether amax-
imum band-ratio (maximum of 2 or 3 pairs of wavebands as in Eq.
(4)) or a single band-ratio algorithm is used, X can be computed in
different ways. Table 3 shows the band-ratio algorithms used in
this study, their identifier, their associated satellite datasets, the
wavebands used to compute X, and whether the algorithm was con-
sidered as the standard algorithm for the associated satellite dataset
(see also Table 2). Once X is known, chlorophyll (C) can be estimated
according to:

C ¼ 10 q0þq1Xþq2X
2þq3X

3þq4X
4ð Þ; ð5Þ

where q0, q1, q2, q3 and q4 are empirical coefficients that vary accord-
ing to the particular OC band-ratio algorithm used (see Table 3).

2.6.2. OCI
The band-difference algorithmof Hu, Lee, and Franz (2012)was also

tested in this study. This algorithmhas been found to performwell in ol-
igotrophic environments (b0.25 mg m−3 Hu et al., 2012; Brewin,
Raitsos, Pradhan, & Hoteit, 2013; Brewin, Raitsos, et al., 2015). The ap-
proach uses a Colour Index (denoted here as ξ), based on a band-differ-
ence between remote-sensing reflectance in the green part of the visible
spectrum and a base-line formed linearly between the blue and red
wavebands, such that:

ξ ¼ Rrs 555ð Þ−0:5 Rrs 443ð Þ þ Rrs 670ð Þ½ �: ð6Þ

Chlorophyll is then related to ξ using the following equation:

C ¼ 10AþBξ; ð7Þ

where A=−0.4909 and B=191.659. Since Eq. (7) was designed
specifically for waters with low chlorophyll (≤0.25 mg m−3), at higher
chlorophyll concentrations (N0.3 mg m−3) a standard band-ratio algo-
rithm (e.g. OC4 for SeaWiFS) is used (Eqs. (4) and (5)), whereas for
chlorophyll concentrations between 0.25 and 0.3 mg m−3, a combina-
tion of Eq. (7) and a standard band-ratio algorithm is used to allow a
smooth transition between algorithms. For OC-CCI data, the OCI algo-
rithm is expressed as

C ¼
10AþBξ if 10AþBξ

h i
≤0:25 mg m−3

α 10 q0þq1Xþq2X
2þq3X

3þq4X
4ð Þh i

þ 1−αð Þ 10AþBξ
h i

if 0:25b 10AþBξ
h i

≤0:3 mg m−3

10 q0þq1Xþq2X
2þq3X

3þq4X
4ð Þ if 10AþBξ

h i
N0:3 mg m−3;

8>>><
>>>:

ð8Þ

where α serves to provide a linear transition from Eq. (7) to Eq.
(5) as chlorophyll increases from 0.25 to 0.3 mg m−3, with q0=
0.3272, q1=−2.9940, q2=2.7218, q3=−1.2259 and q4=−0.5683.
The α parameter is computed as α=(10A+Bξ−0.25)/(0.3−0.25).
Whereas we used the OC series of algorithms (OC4, OC4E, OC3M-
547 and OC3V) as the standard algorithm for the NASA, ESA and
OC-CCI datasets, we acknowledge that NASA are now processing
ocean-colour datasets using the OCI algorithm as the standard al-
gorithm of choice, in addition to the standard OC-series of
algorithms.

2.6.3. GSM
The semi-analytical Garver-Siegel-Maritorena (GSM) model, initial-

ly developed by Garver and Siegel (1997) and later updated by



Fig. 3. Normalised frequency distribution of in situ chlorophyll samples (normalised by
maximum value) from (a) the NASA NOMAD version 2.0 dataset (both HPLC and
fluorometry chlorophyll), (b) the global ocean (estimated from an annual 2005 OC-CCI
composite of chlorophyll), (c) the optical system on AMT19 (45,171) and (d) the optical
system on AMT22 (34,934).
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Maritorena, Siegel, and Peterson (2002), was also used in this study.
GSM is based on an underlying bio-optical model, where

Rrs λð Þ ¼ ∑
2

i¼1
gi

bbw þ bbp λ0ð Þ λ
λ0

� �−γ

bbwþbbp λ0ð Þ λ
λ0

� �−γþaw λð Þ þCa�ph λð Þþadg λ0ð Þ exp −Sdg λ−λ0ð Þ� �

2
64

3
75
i8><

>:

9>=
>;
0:5238;

ð9Þ

λ0 = 443, and gi, γ, Sdg and aph⁎(λ) are predefined input parameters
(Maritorena et al., 2002). The value 0.5238 represent a conversion
from below-water (Rrs(λ,−0)) to above-water remote-sensing reflec-
tance (Rrs(λ)). Using non-linear optimisation, the GSMmodel retrieves
simultaneous estimates of chlorophyll (C), absorption by combined de-
trital and dissolvedmatter at 443 nm (adg(λ0)) and particle backscatter-
ing at 443 nm (bbp(λ0)) from Rrs(λ). This method was designed to
estimate chlorophyll independent of influence from adg(443) and
bbp(443), and output chlorophyll is constrained to lie within the range
that was used to parameterise the model (0.01bCb64 mg m−3).

2.7. OC-CCI algorithm intercomparison

In addition to testing standard satellite chlorophyll products (Table
2), we also conducted a chlorophyll algorithm comparison. For this
comparison, we chose to use the OC-CCI dataset given an increase in
data coverage, and consequently satellitematch-ups, typically observed
when using merged ocean-colour products (Brewin, Raitsos, et al.,
2015; Maritorena, Fanton d'Andon, Mangin, & Siegel, 2010; Racault et
al., 2015).

To rank algorithm performancewe used the classificationmethod of
Brewin, Sathyendranath, Müller, et al. (2015), which scores algorithm
performance by comparing each statistical test (r, ψ, δ, Δ, S, I and η) of
an algorithm with the average values of all algorithms, to determine
whether the statistic in question is significantly worse (0 points), simi-
lar (1 point) or better (2 points) than the average of all algorithms. All
points for each statistic are then summed to give a total score, which
is normalised to the average score of all algorithms. A score of one indi-
cates the performance of an algorithm is average with respect to all al-
gorithms tested, a score greater than one indicates algorithm
performance is better than average, and a score less than one indicates
algorithm performance is worse than average. Using the method of
bootstrapping (Efron, 1979; Efron & Tibshirani, 1993), involving ran-
dom re-sampling with replacement to create ~1000 new datasets of
the same size as the original dataset but not identical to it and re-run-
ning the classification (Monte-Carlo approach), the stability of the scor-
ing system and the sensitivity of the scores were tested using
confidence intervals on the classification output. For further details on
this approach, the reader is referred to Section 4 of Brewin,
Sathyendranath, Müller, et al. (2015).

3. Results and Discussion

3.1. AMT chlorophyll distribution

The most well-known and accepted bio-optical datasets, designed
for evaluating satellite ocean-colour data, is the NASA bio-Optical Ma-
rine Algorithm Data set (NOMAD), developed and updated by NASA
(Werdell & Bailey, 2005). A tradition of outstanding support has been
established at NASA to deal with queries and comments from NOMAD
users, and to integrate bio-optical data from a variety of campaigns
into this unique dataset, including some earlier AMT cruises.

Notwithstanding the remarkable efforts by NASA to produce this
dataset, when comparing the normalised frequency distribution of in
situ chlorophyll samples in NOMAD (Fig. 3a, Version 2.0 ALPHA) with
that from the global ocean (Fig. 3b, estimated from an annual 2005
OC-CCI composite of chlorophyll), it is clear that oligotrophic waters
(with low chlorophyll concentrations) are under-represented. This is
likely a reflection of oligotrophic waters being generally less accessible,
and hence under-sampled, when compared with coastal and eutrophic
waters. In contrast, the distribution of in situ chlorophyll samples in
AMT19 and AMT22 (Fig. 3c and d) are more in-line with that from the
global ocean (Fig. 3b), with a slight bias towards the oligotrophic re-
gions, emphasising the value of data collected on AMT for assessing sat-
ellite chlorophyll algorithms designed for application in the global
ocean.

3.2. Relationship between in situ reflectance ratios and chlorophyll

Relationships between in situ reflectance ratios derived from the
HYPERSAS and in situ chlorophyll from the optical system are plotted
in Fig. 4a and b. Data from both AMT19 and AMT22 stations show
close resemblance with standard relationships between maximum
blue-green band reflectance ratios (OC3M-547) and chlorophyll (Fig.
4a). Systematic biases (δ) between in situ chlorophyll and chlorophyll
estimated from the HYPERSAS data, using the OC3M-547 algorithm,
are negligible (Fig. 4b), suggesting no biases should be observed be-
tween satellite estimates of chlorophyll based on reflectance ratios,
using standard algorithms like the OC3M-547, and in situ chlorophyll.

3.3. AMT19

3.3.1. Standard algorithms AMT19
The number of match-ups collected on AMT19, for MERIS, MODIS-

Aqua and OC-CCI V1 and V2 data vary between 139 and 413 (Fig. 5). It
is worth noting that for SeaWiFS, in October 2009 (during AMT19)

Image of Fig. 3


Fig. 4. Relationships between in situ reflectance ratios derived from the HYPERSAS and in
situ chlorophyll from the optical system, at stations along the AMT19 and AMT22
transects. (a) Shows the maximum band-ratio of max[Rrs(443),Rrs(488)]/Rrs(547)
plotted as a function of chlorophyll, with the OC3M-547 algorithm overlain. (b) Shows a
scatter plot of chlorophyll estimated from the HYPERSAS using the OC3M-547 algorithm
against in situ chlorophyll from the underway optical system. Blue statistics refer to
AMT19 data and red AMT22.
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therewere various spacecraft and communication issueswhich resulted
in many days of missing observations, and hence there are less match-
ups (56, see Fig. 5). The high number of match-ups obtained on a single
AMT cruise (~45 days long) illustrates the benefits in using continuous
along-track flow-through spectrophotometric systems to maximise the
number of point-to-point comparisons between in situ and satellite
data. Furthermore, the large number of match-ups obtained using
merged ocean-colour products (401 and 413 for OC-CCI V1 and V2),
during the period in whichMERIS, MODIS and SeaWiFS were operating,
illustrates the improvement in spatial coverage obtainedwhenmerging
ocean-colour data from different platforms, as compared with single
sensor data.

With the exception of SeaWiFS, which as mentioned was suffering
from spacecraft and communication issues, the standard algorithms
perform remarkably well in statistical tests for all satellite datasets on
AMT19, with correlation coefficients (r) ranging from 0.867 to 0.979,
and root mean square errors (ψ) ranging from 0.105 to 0.186 (Fig. 5).
In particular, standard algorithms on MERIS data processed with POLY-
MER and MODIS-Aqua (both R2013.1 and R2014.0), perform remark-
ably well (ψ ranging from 0.105 to 0.121, Fig. 5). Standard algorithms
on OC-CCI V1 and V2 also perform well (ψ ranging from 0.140 to
0.152 and r from 0.955 to 0.960, Fig. 5), though with a slightly higher
ψ compared with MERIS processed with POLYMER and MODIS-Aqua
data, likely due to the inclusion of SeaWiFS in the merged dataset,
which performed less accurately in the AMT19 comparison (Fig. 5).
3.3.2. Algorithm comparison AMT19
Results from the AMT19 chlorophyll algorithm comparison, using

OC-CCI V2 data, are shown in Fig. 6. In general, all algorithms are
found to perform well, with correlation coefficients (r) greater than
0.95 and ψ values ranging from 0.091 to 0.160. The band ratio algo-
rithms (OC2S, OC3S and OC4) show slightly larger variability at low
chlorophyll concentrations (b0.05 mg m−3) and tend to deviate from
the 1:1 line, when comparedwith OCI andGSM algorithms. TheGSMal-
gorithmhas a lower unbiased rootmean square error (Δ) than the band
ratio algorithms (OC2S, OC3S and OC4), however, it tends to underesti-
mate chlorophyll at higher concentrations (N0.2mgm−3), as illustrated
by a negative bias (δ=−0.100) and a slope lower than one (S=0.835).

According to the Brewin, Sathyendranath, Müller, et al. (2015)
points classification (see bar chart in Fig. 6), and froma visual inspection
on the scatter plots in Fig. 6, the OCI algorithm is found to out-perform
other algorithms on AMT19 OC-CCI V2 data. The algorithm has the
highest correlation coefficient (r), lowest Δ and Ψ, and a slope (S)
close to one. In fact, the OCI root mean square error is remarkably low
(Ψ=0.091), suggesting a ~9% average error on log-transformed OC-
CCI chlorophyll for AMT19.
3.4. AMT22

3.4.1. Standard algorithms AMT22
The number of match-ups collected on AMT22, for MODIS-Aqua,

VIIRS and OC-CCI V1 and V2 data vary between 155 and 167 (Fig. 7).
For the OC-CCI data (V1 and V2), fewer match-ups are available when
compared with AMT19, as only MODIS-Aqua data is included in the
merged product. This is because MERIS ceased to operate in April
2012 and SeaWiFS in December 2010. Both OC-CCI datasets (V1 and
V2) also use the earlier version of MODIS-Aqua reprocessed data
(R2013.1). Furthermore, both OC-CCI datasets band-shift and bias-cor-
rect the R2013.1MODIS-Aqua data to be representative of, and consistent
with, SeaWiFS data, so are not exactly the same as MODIS-Aqua R2013.1
data. The VIIRS data is found to have the highest number of match-ups
(167) when compared with the other satellite datasets for AMT22.

Consistent with AMT19 data (Fig. 5), standard algorithms perform
well in statistical tests for the AMT22 data, with r ranging from 0.972
to 0.978, and Ψ ranging from 0.155 to 0.214 (Fig. 7). However, in con-
trast with AMT19 (Fig. 5), there appears to be a negative bias in all sat-
ellite estimates of chlorophyll at low concentrations (b0.2 mg m−3).
This underestimate (negative δ) also occurs at higher concentrations
in the R2013.1 MODIS-Aqua data and the OC-CC1 V1 and V2 data, but
is less evident in MODIS-Aqua R2014.0. Considering both OC-CCI ver-
sions use the MODIS-Aqua R2013.1 reprocessing, it is not surprising
that results are more consistent with MODIS-Aqua R2013.1 rather
than R2014.0 (Fig. 7). The systematic bias is also evident in the VIIRS
data at low chlorophyll (b0.1 mg m−3), but not at higher concentra-
tions. Considering this chlorophyll validation constitutes one of the
first independent validations of VIIRS chlorophyll in open ocean oligo-
trophic waters, the performance of VIIRS in the statistical results is
very encouraging (r=0.978 andΨ=0.182), in agreement with valida-
tion results from VIIRS in other regions (e.g. Kahru, Kudela, Anderson,
Manzano-Sarabia, & Mitchell, 2014).

3.4.2. Algorithm comparison AMT22
The AMT22 chlorophyll algorithm comparison, using OC-CCI V2

data, is shown in Fig. 8. Consistent with AMT19, all algorithms have
high correlation coefficients (rN0.95) and low unbiased root mean
square errors (Δ ranging from 0.129 to 0.153). However, the systematic
bias observed using standard algorithms onOC-CCI V2 (Fig. 7) is evident
in all satellite algorithms at low concentrations (b0.2mgm−3), with all
algorithms seen to underestimate chlorophyll. With the exception of
OC2S, all algorithms also underestimate chlorophyll at higher
concentrations.

In contrast to results from AMT19 (Fig. 6), the Brewin,
Sathyendranath, Müller, et al. (2015) points classification (see bar
chart in Fig. 8) suggests the band-ratio algorithms (OC4, OC3S and
OC2S) have the highest performance, followed by the OCI and GSM al-
gorithms. The systematic bias observed (underestimate in chlorophyll)
is most striking in the GSM algorithm (Fig. 8), and almost disappears in
the OC2S, which is seen to perform best in the algorithm comparison
(Fig. 8). In the following section we consider the reasons for the ob-
served bias between satellite and in situ AMT22 chlorophyll data.

3.4.3. Bias in satellite and in situ chlorophyll on AMT22
There are three possible causes of the observed bias (δ) in satellite

and in situ chlorophyll on AMT22: (i) a positive bias in the in situ chlo-
rophyll measurements; (ii) a change in the relationship between Rrs
and chlorophyll in the Atlantic between AMT19 (2009) and AMT22
(2012); and (iii) a bias in the satellite Rrs data causing a negative bias
in satellite chlorophyll estimates.

The in situ chlorophyll measurements from the optical system on
AMT22 were carefully calibrated with 176 concurrent HPLC measure-
ments and found to be in excellent agreement (Fig. 1). The relationship
between HPLC chlorophyll (C) and aph(676) from the optical system
was found to be slightly different on AMT22 when compared with

Image of Fig. 4


Fig. 5. Scatter plots of satellite and in situ chlorophyll match-ups collected on AMT19, for a variety of satellite datasets and standard (blue-green band-ratio) NASA algorithms. Solid line
refers to 1:1 line, and dashed line a Type-2 regression.
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AMT19 (Fig. 1). If we use the AMT19 relationship between C and
aph(676) (Fig. 1b) on AMT22 data, in situ chlorophyll increases further,
as opposed to decreasing to be more in line with the satellite data. The
normalised frequency distribution of in situ chlorophyll samples on
AMT22 is also in good agreement with AMT19 (Fig. 3c and d), with
the peak of this distribution actually slightly lower on AMT22
(~0.07mgm−3) than AMT19 (~0.09mgm−3), which again is inconsis-
tent with there being a positive bias in the in situ AMT22 chlorophyll
data, assumingAMT19 chlorophyll is correct and considering the similar
cruise tracks and time of year (Fig. 1a). Therefore, it is unlikely that the
observed bias (δ) in satellite and in situ chlorophyll on AMT22 is related
to a positive bias in the in situ chlorophyll.

It is possible a change in the relationship betweenRrs ratios and chlo-
rophyll along the Atlantic Meridional Transect occurred between
AMT19 (2009) and AMT22 (2012). In fact, there is evidence of changes
in the relationship between phytoplankton size structure, inferred from

Image of Fig. 5


Fig. 6. Comparison of different chlorophyll algorithms applied to OC-CCI V2 data with in
situ chlorophyll from AMT19. NASA band-ratio algorithms include OC4, OC3S and OC2S;
OCI refers to the band-difference algorithm of Hu et al. (2012); and GSM the semi-
analytical algorithm of Maritorena et al. (2002). Solid line refers to 1:1 line, and dashed
line a Type-2 regression. The bar chart at the top of the figure shows ranking of
algorithms based on the objective classification of Brewin, Sathyendranath, Müller, et al.
(2015) for AMT19 OC-CCI V2 match-up data.
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phytoplankton pigment analysis, and chlorophyll concentration along
the AMT transect between 2003 and 2010 (Agirbas et al., 2015).
Chlorophyll algorithms, that empirically relate chlorophyll to changes
in reflectance, implicitly assume a fixed relationship between phyto-
plankton community structure and chlorophyll (Dierssen, 2010;
IOCCG, 2014). Modifications in this relationship will likely impact the
performance of these empirical algorithms when applied to satellite
Rrs data. However, in situ Rrs and chlorophyll from both AMT19 and
AMT22 stations show close resemblance with standard empirical rela-
tionships between maximum blue-green band reflectance ratios and
chlorophyll (Fig. 4). Therefore, it is unlikely that any change in the rela-
tionship between Rrs and chlorophyll between cruises is responsible for
the observed bias (δ) in satellite and in situ chlorophyll on AMT22.

The most likely cause of the observed bias (δ) in satellite and in situ
chlorophyll on AMT22 is a bias in the satellite Rrs data, causing a nega-
tive bias in satellite chlorophyll estimates. It is well known that the
MODIS-Aqua sensor, now in its 14th year of operation, has been
degrading and requires ongoing calibration and reprocessing (Meister
& Franz, 2014). In particular, the blue channels (412 nm and 443 nm)
require the largest corrections, are the most difficult to calibrate due
to their degradation pattern, and require the largest vicarious calibra-
tion (NASA, 2015). The OC3M-547 results on AMT22 show significant
improvements between the R2013.1 and R2014.0 reprocessing (Fig.
7), with a decrease in the root-mean square error (Ψ) relative to the
R2013.1 reprocessing, emphasising the great work NASA are doing to
correct for MODIS-Aqua Rrs degradation.

Issues with MODIS-Aqua degradation patterns at blue channels
(412 nm and 443 nm) impacting chlorophyll retrievals are further
emphasised when assessing the OC-CCI AMT22 algorithm comparison
results (Fig. 8). The OC2S algorithm is found to perform best according
to the Brewin, Sathyendranath,Müller, et al. (2015) points classification
on AMT22. It has the highest r and lowestΨ andΔ, and the smallest bias
(δ). Of all algorithms tested in the comparison, this is the only chloro-
phyll algorithm that does not use the 412 nm and 443 nm bands (see
Table 3), utilising only the 490 nm and 555 nm bands. When applying
the OC2M-547 algorithm to AMT22 MODIS-Aqua R2014.0, which uses
the 488 nm and 547 nm bands, Ψ decreases (Fig. 9) relative to the
OC3M-547 algorithm. The OC3M-547 algorithm uses in addition to
the 488 nm and 547 nm band the 443 nm band, especially in oligotro-
phic waters as the 443 nm band generally has a higher signal. Issues
with MODIS-Aqua degradation patterns at blue channels (412 nm and
443 nm) also explain the large bias in GSM for OC-CCI on AMT22 rela-
tive to AMT19 (Figs. 6 and 8). The GSM is the only algorithm in the com-
parison that uses the entire spectrum to estimate chlorophyll, including
both the 412 nm and 443 nm channel. Furthermore, as the non-linear
minimisation used in the version of the GSM algorithm tested is based
on a minimisation to the absolute values of the reflectance spectrum,
the 412 nmwaveband has the highest weighting as its signal is general-
ly the highest of all wavelengths in the oligotrophic waters sampled by
AMT. The impact of MODIS-Aqua degradation at blue channels on GSM
chlorophyll has been reported elsewhere (Maritorena et al., 2010), and
illustrates the importance ofweighing theminimisation ofmodel-based
algorithms such as GSM according to the uncertainty in Rrs data
(Maritorena et al., 2010).

Given this is one of the first validations of VIIRS chlorophyll in oligo-
trophicwaters, it is difficult to ascertain the cause of the low chlorophyll
bias seen in Fig. 7. Future validation exercises are required to continue
monitoring the performance of VIIRS in oligotrophic waters and ascer-
tain the causes of any such bias.

3.5. Comparison of level 2 and level 3 match-ups

To investigate the impact of using level 3 rather than level 2 data for
validation along the AMT cruise track, level 3 results are compared with
a validation using level 2 data for MODIS-Aqua R2014.0 on AMT19 data
in Fig. 10. In general, there is very good agreement between the level 2
and 3 data as indexed by similar results in statistical tests (Fig. 10),
supporting the level 3 match-up analysis conducted in this study.
Even when only including level 2 data within ±3 h of the satellite
data, statistical tests do not improve relative to those using the level 3
data. Considering level 3 (4 km) data are aggregates of level 2 (1 km)
data, and that more in situ measurements are likely to be included in a
level 3 match-up when compared with a level 2 match-up, one may
have expected the random component of the error (Δ) be lower for
the level 3 data which was not observed, except when comparing
with the ±3 h level 2 match-ups (see Fig. 10). This may be related to
the inclusion of procedures such as the homogeneity test, designed to
remove noisy level 2 match-ups. Furthermore, although fewer in situ
measurements are included in a level 2 match-up compared with a
level 3 match-up, we set a minimum criteria of three 1-min bins for a
level 2 match-up, meaning a substantial number of in situ measure-
ments (minimum of 3×240=720) were still used, covering a signifi-
cant area in a 1 km pixel (3×0.3 km= 0.9 km, assuming the ship was
moving at ~18 km h−1).

In order to ensure good quality satellite and in situ level 3match-ups,
we have applied a series of procedures building on earlier studies based

Image of Fig. 6


Fig. 7. Scatter plots of satellite and in situ chlorophyll match-ups collected on AMT22, for a variety of satellite datasets and standard (blue-green band-ratio) NASA algorithms. Solid line
refers to 1:1 line, and dashed line a Type-2 regression.
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on level 2 data and discrete point match-ups (Bailey & Werdell, 2006),
that we have adapted for use with in situ underway and satellite level
3 data. However, there may be cases where some of these procedures
require further adaptation, or may no longer be needed. For instance
take the homogeneity test, when using a 3 × 3 box of pixels on 4 km
level 3 data (area of 144 km2), in certain environments (e.g. productive
or shelf regions), heterogeneity may be due to real oceanographic fea-
tures such as fronts that could be inadvertently excluded using this
test. Furthermore, when averaging many continuous underway mea-
surements within a 4 km satellite pixel, sub-pixel variability will be
accounted for, so the homogeneity test may no longer be needed. Of
course this assumes there is enough underway measurements within
a pixel to capture the sub-pixel variability, and that the ship track ade-
quately covered the pixel. Future validation efforts using flow-through
measurements should focus on these types of considerations, and
build on the procedures suggested here.

3.6. Performance of satellite chlorophyll algorithms

Table 4 compares statistical results (r and Ψ) of standard satellite
chlorophyll algorithms (see Figs. 5 and 7) derived in this study with
those from previous studies, that used global datasets of discrete point
measurements (either usingHPLC or fluorometry derived in situ chloro-
phyll). In this comparison, we excluded the results of SeaWiFS from
AMT19 (Fig. 5), considering the low number of match-ups (N=56) rel-
ative to other sensors and the fact that SeaWiFS was suffering from var-
ious spacecraft and communication issues during this period.

Statistical results from our study show an improvement in the per-
formance of satellite chlorophyll algorithms over previous studies. The
average correlation coefficient (r=0.880±0.029, Table 4) reported in
previous studies is significantly lower than the average values reported
here (r=0.961±0.033, Table 4), and the average root mean square
error reported in previous studies (Ψ=0.337±0.056, Table 4) is great-
er than twice that reported here (Ψ=0.157±0.033, Table 4), and sig-
nificantly higher.

The better performance of satellite chlorophyll data from AMT19
and AMT22 could be due to the AMT cruise occurring at a specific
time of year, whereas global datasets of discrete point measurements
include data from a variety of locations at different times of year, and
hence are likely to include a wider range of variability in optical proper-
ties for a given trophic environment. For instance, depending on loca-
tion, variability in the ratio of CDOM to chlorophyll and backscattering
to chlorophyll are likely to change with season, whichwill impact satel-
lite chlorophyll retrievals. It could also be that the AMT datasets used

Image of Fig. 7


Fig. 8. Comparison of different chlorophyll algorithms applied to OC-CCI V2 data with in
situ chlorophyll from AMT22. NASA band-ratio algorithms include OC4, OC3S and OC2S;
OCI refers to the band-difference algorithm of Hu et al. (2012); and GSM the semi-
analytical algorithm of Maritorena et al. (2002). Solid line refers to 1:1 line, and dashed
line a Type-2 regression. The bar chart at the top of the figure shows ranking of
algorithms based on the objective classification of Brewin, Sathyendranath, Müller, et al.
(2015) for AMT22 OC-CCI V2 match-up data.

Fig. 10. Scatter plots of satellite and in situ chlorophyll match-ups collected on AMT19, for
MODIS-Aqua R2014.0 and using level 3 (L3) and level 2 (L2) datasets and the OC3M-547
algorithm. Solid line refers to 1:1 line, and dashed line a Type-2 regression. Level 2 data
within ±3 h of the satellite data and related statistical tests are shown in purple.
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here aremore inclusive of the oligotrophicwaters relative to other glob-
al datasets (Fig. 3),where algorithmperformancemay improve. In addi-
tion, it maybe that these algorithms perform better in the Atlantic
waters, relative to other oceans. Better performance in our study may
also be related to minimising the methodological variability which is
Fig. 9. Scatter plots of satellite and in situ chlorophyll match-ups collected on AMT22, for
MODIS-Aqua R2014.0 using the OC3M-547 and OC2M-547 algorithms. Solid line refers
to 1:1 line, and dashed line a Type-2 regression.
inherent in global HPLC datasets, when combining observations from
many different investigators (Claustre et al., 2004).

Notwithstanding the aforementioned reasons, it is worth considering
the advantages of the continuous spectrophotometric sampling used in
this study, relative to traditional comparisons using discrete point mea-
surements. The underway optical system is automated and thus produces
highly-consistent datasets and introduces very little human error, unlike
HPLC or fluorometry, where uncertainties can occur from the moment
water enters a Niskin bottle on the CTD to the final pigment extraction
and quantification. These automatic measurements can be easily collected
for long time periods and over vast areas of the ocean, resulting in large
datasets for satellite validation at a fraction of the cost of HPLC methods.
Comparing continuous ACS 0.2 μm filtered measurements with unfiltered
measurements provides estimates of ap(λ) accounting for instrumental
drifts, residual calibration errors and biofouling. The use of absorption
line height on ap(λ) data to estimate chlorophyll is remarkably accurate
when carefully compared with discrete HPLC measurements not just
along the AMT cruise track (Fig. 1b and c), but also in other oceans (Boss
et al., 2013; Dall'Olmo et al., 2009; Werdell et al., 2013; Westberry et al.,
2010), and using phytoplankton cultures (Roesler & Barnard, 2013).

One of the most important characteristics of underway optical data is
the feasibility to integrate many observations collected over a satellite
pixel, to quantify and account for sub-pixel variability. This is very difficult
to do using discrete measurements of HPLC, fluorometry or filter-pad aph
measurements. These underway optical systems are simply better suited
to evaluate satellite observations, when compared with discrete point
measurements.

Despite the benefits of using underway optical systems for satellite
validation, there are some caveats. It is vital that these systems are
deployed on clean and well-maintained flow-through systems, to
ensure the optical sensors are sampling uncontaminated seawater
unaffected from biota growing in the ship's plumbing system. The
tubing and instruments used should be cleaned and regularly checked
for fouling. As highlighted in Fig. 1, the relationship between ACS
derived aph(676) and chlorophyll was different between cruises,
suggesting it is important to collect discrete HPLC samples in the same
range of conditions sampled by the optical underway system. Differ-
ences may be caused by either: i) changes in the chlorophyll specific
absorption coefficient, for instance, from modifications in community
structure; and ii) differences in the optical set-up used, for instance,
from different instruments with different spectral responses.

Ships underway water intake is typically at a nominal depth of 5 m.
In very clear waters the satellite signal can be representative of a water
layer as deep as 40m.Ocean-colour algorithms can therefore be affected
by vertical variations in chlorophyll (Stramska & Stramski, 2003). Con-
sidering the agreement between satellite and in situ chlorophyll demon-
strated here this is unlikely to have had significant impact on our results.
Finally, there may be artificial effects on optical properties from
pumping water. To quantify such effects, comparisons should be made
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with discrete in situ optical measurements (Dall'Olmo et al., 2012;
Westberry et al., 2010). To harness the benefits of underway optical
sampling, it is important that the community establishes rigorous pro-
tocols to ensure data consistency, compatibility and accuracy.

4. Summary

We used an optical set-up to continuously measure absorption by
particles on two AMT cruises (AMT19 and AMT22). Continuous esti-
mates of in situ chlorophyll concentration on the two AMT cruises
were computed from the optical set-up using a calibration between co-
incidentmeasurements of HPLC chlorophyll and absorption by particles
in the red portion of the visible spectrum. The chlorophyll distribution
of the two resulting in situ datasets (AMT19 and AMT22) were found
to be similar to that observed in the global ocean, with a slight bias to-
wards the under-sampled oligotrophic gyres. The two in situ datasets
were used to evaluate the performance of satellite chlorophyll algo-
rithms applied to different level 3 binned ocean-colour datasets.

Statistical comparisons between in situ measurements co-incident
with the satellite data indicate the performance of satellite chlorophyll
algorithms is better than that described in previous studies. We find
that the rootmean square error between satellite and in situ chlorophyll
data to be on average, less than half that reported previously using glob-
al datasets. We hypothesise that this improvement is due to the under-
way spectrophotometric sampling method being better suited to
evaluate satellite observations, when compared with discrete point
measurements and in vivo fluorescence (Werdell et al., 2013). We ob-
served a bias (underestimate) in satellite chlorophyll at low concentra-
tions on the AMT22 cruise for some satellite algorithms. This was likely
due to a small bias in satellite remote-sensing reflectance data, consid-
ering the relationship between chlorophyll and in situ remote-sensing
reflectance on AMT22 was found to follow a standard relationship,
and no biases were observed in the in situ chlorophyll data. Our results
support the use of underway optical systems for evaluating satellite
ocean-colour data, and emphasise the benefits ofmaintaining in situ ob-
servatories in oligotrophic regions, such as the AtlanticMeridional Tran-
sect. These have implications for the validation of recently-launched
and future ocean-colour missions (e.g. the ESA Ocean and Land Colour
Instrument (OLCI) on-board Sentinel-3, NASA's Pre-Aerosol Clouds
and ocean Ecosystem (PACE)mission, and the Japan Aerospace Explora-
tion Agency (JAXA) Second generation GLobal Imager (SGLI) on-board
the Global Change Observation Mission - Climate (GCOM-C)).
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