ACI injury. Overall, those with ACI injury and reconstruction have poor motor control leading to increased rotational loading, a contributing factor to OA. The coupling of medial shear force and valgus collapse put patients at risk for re-injury and results in increased TKA that contribute to OA progression.

180 COMPARISON OF ISOLATED AND COMBINED ORTHOTIC DEVICES ON KNEE LOADING WHILST ASCENDING STAIRS IN PATIENTS WITH MEDIAL KNEE OSTEOARTHRITIS

Y. Al-Zahrani, L. Herrington, A.M. Liu, S.W. Hutchins, R.K. Jones, Univ. of Salford, Salford, United Kingdom

Purpose: Valgus knee braces and lateral wedged insoles are common modalities used in the treatment of medial tibiofemoral osteoarthritis (OA) of the knee joint. Both treatments have been shown to reduce the external knee adduction moment (EKAM) during walking conditions, and more recently during stair ascent and descent. There is evidence suggesting that combining these treatments during walking tasks (by altering the position of the knee joint centre with the knee brace and the orientation of the ground reaction force with a lateral wedge insole) produced a greater overall reduction of the EKAM. Stair ascent is a common and frequent activity in daily living and demands, compared to walking on level ground, a greater range of motion and around six times more load on the knee joint. Therefore, determining whether insoles, braces or a combined approach reduces loads in patients with medial knee OA is warranted. The hypothesis of this study was that a combined orthotic management of a valgus knee brace and lateral wedged insole was better at reducing EKAM than the single treatments alone.

Methods: Participants underwent a 3D kinematic (Qualysis OQUS, Gothenburg, Sweden) and kinetic (AMTI, USA) analysis whilst ascending three stairs in a control shoe, an off-the-shelf lateral wedge insole (Salford Lateral Wedge) inserted bilaterally into the control shoe, an off-the-shelf Ossur UnloaderOne valgus knee brace, both the lateral wedge insole and valgus knee brace combined, in a randomised order. During trials, lateral wedge insoles were inserted into the control shoes and were worn bilaterally and trials were fully randomised with a minimum of three trials per condition. The EKAM was calculated and exported during single support only as this is the phase of the stair cycle where loading is at its maximum. Peak early-single support (0-33%) EKAM; peak mid-single support (34-66%) EKAM; and peak late-single support (67-100) EKAM were extracted along with the knee adduction angular impulse (KAAI) for support phase only. A repeated measures of analysis of variance was undertaken to determine any significant differences at the 95% Confidence interval (p<0.05) between the control shoe and the orthotic conditions.

Results: Seven participants (5 female, 2 male) were radiographically confirmed with medial knee OA. The combination of the valgus knee brace and lateral wedged insole significantly reduced the early-single support EKAM (p = 0.04) compared to the control shoe. However, during mid-single support only the lateral wedge insole reduced EKAM was significantly different (p=0.004) to the control shoe. During late-single support the lateral wedged insole and the combined valgus brace and lateral wedged insole reduced the EKAM significantly in comparison to the control shoe (p = 0.021 and p = 0.033 respectively), with the combined valgus knee brace and lateral wedged insole reducing EKAM significantly in comparison to the valgus knee brace alone (p=0.046). The KAAI was significantly reduced for the insole (p = 0.003) and the combined lateral wedge and valgus knee brace (p = 0.008), with the valgus knee brace bordering significance (p=0.054) in comparison to the control shoe.

Conclusions: Our findings demonstrate that using a combination of an off-the-shelf valgus knee brace and off-the-shelf lateral wedge insole significantly reduces knee loading during stair ascent, during early- and late-single support in comparison to a control shoe. However, it was only during late-single support where the combination was significantly different to the orthotic treatments alone. This initial study supports previous literature on custom designed braces and insoles. Given that adherence to valgus knee braces is a challenge, one potential outcome of this study would be for an individual to wear a lateral wedged insole and use the valgus knee brace at times of heavy activities during the day. Future research investigating beneficial clinical effects are needed.

181 FUNCTIONAL RECOVERY AFTER TOTAL JOINT REPLACEMENT IN HIP OSTEOARTHRITIS: COMPARISON BETWEEN ANTEROLATERAL MINI-INVASIVE VERSUS POSTERIOR APPROACH

P. Ormotti, P. Martz, D. Laroche, J-F. Maillefert, E. Baulot. Dijon Univ. Hosp., Dijon, France

Purposes. One of the difficulties in evaluating functional recovery after total hip replacement (THR) in hip osteoarthritis lies in the fact that surgeries, used these criteria to identify responders and nonresponders. The aim of the study was to compare functional recovery after THR according to two different surgical approaches not only from a conventional clinical perspective but also with regard to a quantified gait analysis.

Methods. Prospective pilot study comparing two THR approaches at short and medium terms: mini-invasive antero-lateral Rottinger approach vs. posterior ‘Moore’ approach in 25 patients suffering from hip osteoarthritis. Functional evaluation were performed using WOMAC questionnaire, Harris Hip Score and the Postel Merle d’Aubignes scores and 3D gait analysis including standard gait parameters, hip kinematics angles and postural analysis.

Results. The effect size (>1) was high for both surgical approaches but statistically greater improvement in PMA was noted at D45 and D180 in favour of the RoA group. The 3D gait analysis at D180 did not reveal any difference between groups for the standard gait parameters. All of the patients had significantly increased their gait speed at 6 months (0±0.9 m/s after THR). This improvement was induced by increased stride length, since step frequency was identical (data not shown). The only significant difference between groups for kinematics angles was greater hip abduction in the MoA group at 6 months (p=0.024), which was not noted at baseline (p=0.14). Maximal hip extension seemed to be greater in both groups after THR, but the difference did not reach statistical significance. A greater improvement in postural stability was also detected in this group.

Conclusion. This study is the first to compare two specific references surgical approaches in term of functional recovery using validated subjective questionnaires and innovative 3D gait parameters. These results suggested that the Rottinger approach procured in terms of effect size faster clinical recovery than the Moore approach and better postural stability at 6 months for hip osteoarthritis patients. This postural gain might be explained by better preservation of the muscles involved in the pelvis stability in the standing position.

182 TOTAL HIP REPLACEMENT NONRESPONDERS WITH HIGH BASELINE CLINICAL SCORES HAVE SIMILAR GAIT IMPAIRMENT AS THOSE WITH LOW BASELINE CLINICAL SCORES

K.C. Foucher, G. Waldman. Rush Univ. Med. Ctr., Chicago, IL, USA

Purpose: It is known that not all patients respond to total hip replacement (THR). We recently reported significant gait impairment in THR nonresponders compared to responders, but also noted considerable variability in the nonresponders’ preoperative clinical scores. Preoperative scores indicated that some nonresponders were apparently quite well-functioning even before THR; in these cases the importance of a nonresponder designation is unclear. The purpose of this study was to investigate whether or not there are objective functional differences, measurable through gait analysis, between THR nonresponders with high vs. low preoperative clinical scores.

Methods: We used an IRB-approved repository to identify subjects with gait data and Harris Hip Scores (HHS) that was collected before primary unilateral THR and > 6 months postoperatively (mean follow-up 15±9 mo). At each visit, 2-8 gait trials were collected at a range of self-selected walking speeds. Our variables of interest here were the walking speed, dynamic sagittal plane hip range of motion and the peak external moments in the sagittal, frontal, and transverse planes at each subject’s normal speed. We adapted OMERACT-DARSI response criteria for use with the HHS, using published data comparing HHS and WOMAC preoperatively, then used these criteria to identify responders and nonresponders. As previously reported, 18 of the 128 THR subjects identified were nonresponders. We formed two groups of nonresponders based on whether or not each subject’s preoperative HHS was ≥ 80. This score is typically considered to represent a “good” postoperative outcome. We used t-tests to compare gait variables before and after surgery for the two groups.