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a b s t r a c t

High intensity training induces muscle damage in dystrophin-deficient mdx mice, an animal model for
Duchenne muscular dystrophy. However, low intensity training (LIT) rescues the mdx phenotype and
even reduces the level of protein carbonylation, a marker of oxidative damage. Until now, beneficial
effects of LIT were mainly assessed at the physiological level. We investigated the effects of LIT at the
molecular level on 8-week-old wild-type and mdx muscle using 2D Western blot and protein–protein
interaction analysis. We found that the fast isoforms of troponin T and myosin binding protein C as well
as glycogen phosphorylase were overcarbonylated and downregulated in mdx muscle. Some of the
mitochondrial enzymes of the citric acid cycle were overcarbonylated, whereas some proteins of the
respiratory chain were downregulated. Of functional importance, ATP synthase was only partially
assembled, as revealed by Blue Native PAGE analysis. LIT decreased the carbonylation level and increased
the expression of fast isoforms of troponin T and of myosin binding protein C, and glycogen
phosphorylase. In addition, it increased the expression of aconitate hydratase and NADH dehydrogenase,
and fully restored the ATP synthase complex. Our study demonstrates that the benefits of LIT are
associated with lowered oxidative damage as revealed by carbonylation and higher expression of
proteins involved in energy metabolism and muscle contraction. Potentially, these results will help to
design therapies for DMD based on exercise mimicking drugs.
& 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Duchenne muscular dystrophy (DMD) is a lethal inherited neu-
romuscular disease caused by mutations in the DMD gene. A lack
of dystrophin in skeletal muscle of DMD patients causes injuries
through multiple pathogenic mechanisms, including mechanical
weakening of the sarcolemma [1], inappropriate calcium flux [2],
and increased oxidative stress [3].

Physical exercise causes mechanical stress, calcium flux, and
oxidative stress in skeletal muscle [4] and thereby, high intensity
training (forced, above fatigue threshold, and damaging) was used
to injure muscles of dystrophin-deficient mdx mice, an animal

model for DMD [5]. In contrast, low intensity training (LIT)
(voluntary, short, and nondamaging) rescued mdx mice pheno-
types. Improved force output, tetanic tension, and endurance
capacities of mdx muscles were reported after low intensity
swimming [6] and running [7,8]. Another study also showed a
reduction of markers of oxidative stress in mdx gastrocnemius
after low intensity running [9]. This effect of low intensity training
was especially interesting, given the fact that oxidative stress was
thought to play a role in exacerbation of DMD pathology [10].

Oxidative stress is defined as “an imbalance between oxidants and
antioxidants in favor of the oxidants, leading to a disruption of redox
signaling and control, and/or molecular damages” [11]. One of the
most common types of oxidative modification is protein carbonyla-
tion, the introduction of carbonyl groups (C¼O) in a protein [12]. We
chose protein carbonylation as a marker of oxidative stress, because it
is a reliable indicator of oxidative damages [13], suitable for proteomic
analysis [14] and commonly used on mdx muscle [15,16]. Studies
reported an abnormal oxidative stress in skeletal muscle of DMD
patients and mdx mice [17,18]. Indeed, myofibers lacking dystrophin
were highly susceptible to oxidant-induced injury [19] and thus, the
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protein carbonylation level correlated with the degree of the disease
[20]. In the absence of dystrophin, oxidative stress acts together with
mechanical stress to worsen fiber damage [17].

In healthy muscle, physical exercise leads to a production of
oxidants through the mitochondrial electron transport chain [21],
sarcolemmal NADPH oxidase [22], and xanthine oxidase [23]. These
oxidants participate in cell signaling through MAPK and JNK path-
ways [24], leading to muscle adaptation to training (for example,
overexpression of mitochondrial enzymes) [25]. In mdx muscle, this
production of oxidants is known to be abnormally amplified by a
mitochondrial overload of Ca2þ [4] and an overactivation of the
NADPH oxidase 2 [26]. As a consequence, MAPK and JNK signaling
pathways have been shown to be altered [27].

We aimed to clarify how low intensity training improved mdx
phenotypes despite an abnormal oxidative environment. Thus, we
investigated, for the first time, the effects of low intensity training at
the protein level. Protein downregulation has been previously reported
in nonexercised mdx muscle [28]. Our first hypothesis was that over-
carbonylated proteins in nonexercised mdx muscle would be also
downregulated and would lose protein-protein interactions, since
carbonyl adducts target proteins for proteasomal degradation [29] and
potentially affect interactions between proteins [30]. Our second
hypothesis was that low intensity training would rescue proteins
impaired in nonexercised mdx muscle, because physical exercise upre-
gulates antioxidant defenses [31] and stimulates muscle plasticity [32].

We performed an extensive proteomic study on gastrocnemius
muscle of 8-week-old mdx mice using 2D electrophoresis, known
for its excellent reproducibility [33] and its reliability in skeletal
muscle protein analysis [21,34,35]. Carbonylated proteins were
detected by 2D carbonylated protein Western blot, protein expres-
sion was measured by 2D-PAGE, and protein–protein interactions
were assessed by Blue Native PAGE (BN-PAGE). Detected proteins
were identified by mass spectrometry.

Here we show that in nonexercised mdx muscle, proteins from
muscle contraction and glycogen metabolism were both over-
carbonylated and downregulated. Also, two complexes composed
of ATP synthase subunits were absent. In exercised mdx muscle,
these proteins were less carbonylated and higher expressed, and
the ATP synthase complex was restored. Specifically, expression of
the slow isoforms of the muscle contraction proteins troponin T
and myosin binding protein C (MyBP-C) was increased, while
carbonylation and expression level of fast isoforms were restored
to the level of exercised wild-type mice. Thus, we demonstrated
that the benefits of LIT are associated with lower carbonylation
and higher expression of proteins involved in energy metabolism
and muscle contraction.

Materials and methods

Animals

Eight-week-old male mdx mice with C57BL/6 background and
age-matched wild-type C57BL/6 male control mice were used in
this study. All experimental protocols were approved by The
Experimental Animal Care and Use Committee of the National
Institute of Neuroscience, National Center of Neurology and
Psychiatry (NCNP), Tokyo, Japan.

Low intensity training protocol

Mice underwent training when they reached 4 weeks old.
According to previously described protocol [7], mice were intro-
duced into a tank filled with water (maintained at 3571 1C) to a
depth enough to allow them to swim. Animals completed a 4 week
program, in which they exercised 4 days (Monday, Tuesday,

Thursday, and Friday) in a week for 30 min per day. A rest was
given the three other days. Animals were not forced to move and
were free to stand by at will.

Physiological tests

For serum creatine kinase measurement, blood was taken from
the tail artery and centrifuged at 3000g for 10 min. Creatine kinase
was assayed with the Fuji Drychem system (Fuji Film Medical Co. Ltd,
Tokyo, Japan) as previously described [36]. Grip strength of both
forelimb and hind limb was assessed by a grip strength meter, to
determine the effects of LIT on whole body musculature of the mice
(MK-380M; Muromachi Kikai), as previously described [37].

Then, mice were sacrificed by cervical dislocation. Gastrocne-
mius muscles were dissected and flash-frozen for histology or
stored at �80 1C for 2D electrophoresis, Western blot, and PCR
analysis. We assessed the effects of LIT on gastrocnemius, a muscle
predominantly activated during swimming exercise [38].

Hematoxylin and eosin (H&E) staining

Frozen gastrocnemius muscles were cut in 20 mm sections
using a cryostat and stained using Harris H&E as previously
described [37].

Protein sample preparation for 1D and 2D carbonylated protein
Western blot or Western blot

Muscles were homogenized using a lysis buffer made of 8 M urea,
2 M thiourea, 4% (w/v) Chaps, 12 ml/ml Destreak (Invitrogen, Carlsbad,
CA), and clarified by centrifugation. Protein concentration was
determined by the Bradford method (Bio-Rad Life Science, Hercules,
CA). Twenty micrograms of proteins were prepared according to the
Millipore protein oxidation detection kit instructions for 1D carbo-
nylated protein Western blot, or prepared for classical Western blot.
For 2D carbonylated protein Western blot, 200 mg of proteins was
diluted in a rehydration solution made of 8 M urea, 1 M thiourea, 2%
(w/v) Chaps, 12 μl/ml Deastreak, 0.5% (v/v), IPG buffer (GE Healthcare,
Tokyo, Japan), and 0.001% of Coomassie blue, for a final volume of
250 ml. Then, they were charged on 13 cm (carbonylated protein
Western blot) IGP strips, pH 3–10 Non Linear, overnight at room
temperature, and isofocused with IPGphor (GE Healthcare) at the
following profile: 500 V at 500 V/h, 1000 V in gradient at 1000 V/h,
6000 V in gradient at 20,000 V/h, and 6000 V at 12,000 V/h. After
that, strips were prepared as previously described [39]. Briefly, strips
were incubated for 20 min in derivatization solution (10 mM DNPH,
2 M HCl) and washed for 10 and 30 min in neutralizing solution (2 M
Tris, 30% (v/v) glycerol).

Electrophoresis and immunoblotting

Proteins were separated in SDS-PAGE gels (12% (v/v) polyacry-
lamide). For each condition, two gels were performed in parallel,
one for colloidal blue staining of total proteins and the other one
for electroblotting onto nitrocellulose membrane. After blocking,
membranes were incubated with corresponding antibody (see
supplementary material and methods) and developed using an
Amersham ECL Plus Western blotting detection system. Films were
digitized with Epson GT-X900 scan and densitometric analyses
were performed using ImageJ software (developed by U.S. National
Institutes of Health and available at http://imagej.nih.gov/ij/).

Protein sample preparation for Blue Native PAGE

For sample preparation, muscles were homogenized using a
BN-lysis buffer (20 mM Tris-HCl, 137 mM NaCl, 0.2 mM EDTA,
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10% (v/v) glycerol, protease inhibitor cocktail, 1% digitonin,
adjusted to pH 7), as previously described [40] and centrifuged
at 600g at 4 1C for 10 min to remove tissue debris. Supernatants
were dialyzed overnight in a 10,000 MWCO dialysis cassette
(Thermo Fisher Scientific Inc., Waltham, MA, USA) with 0.3%
digitonin in BN-lysis buffer. Protein quantification was performed
using the Bradford method (Bio-Rad protein assay) with BSA as a
standard.

Blue Native PAGE

Samples of 200 mg of proteins were homogenized using a
NativePAGE sample preparation kit (Invitrogen, Carlsbad, CA,
USA), according to the instructions of the manufacturer, but
without digitonin. Proteins were separated in a first dimension
in a 4–15% acrylamide-bisacrylamide gel, incubated for 15 min at
room temperature in SDS sample buffer made of 12.5 mM Tris, 4%
(w/v) SDS, 20% (w/v) glycerol, and 0.02% (w/v) bromophenol blue,
reincubated for 20 min in the same SDS sample buffer, boiled at
100 1C, and then separated in second dimension in 12% (v/v)
polyacrylamide SDS-PAGE gel and stained by Coomassie blue.

Data acquisition and analysis of Western blots and Blue Native PAGE

For 2D carbonylated protein Western blot, spots were quanti-
fied by densitometry in nitrocellulose membranes using ImageJ
software. Spots were normalized with corresponding Coomassie
blue values. These are reported in Supplementary Table 2.

In-gel digestion, mass spectrometry protein identification, database
searches

All the following step were performed by the “Plateforme de
protéomique de l’Université Paris-Descartes 3P5” (France) and
described in detail in the supplementary material and methods. The
identity of detected proteins is reported in Supplementary Table 1.

Coimmunoprecipitation

Coimmunoprecipitation was performed using Novex Dyna-
beads protein G immunoprecipitation kit (Life Technologies Japan
Ltd., Tokyo, Japan) according to the manufacturer’s instructions.
Corresponding antibody was used to detect the prey protein in
Western blotting, depending on the bait antibody [41].

Fig. 1. Profile of 8-week-old wild-type and mdx mice after 4 weeks of swimming exercise. H&E staining of gastrocnemius muscle (A), serum creatine kinase concentration
(B), and grip strength (C) from 8-week-old wild-type and mdx mice, nonexercised (Non) or after 4 weeks of swimming exercise, 1 h (Ex 1h) or 2 days (Ex 2d) after the last
session. nPo0.05, nnPo0.01, nnnPo0.001 means a significant difference between two groups. n ¼ 4 to 6 per group. Scale bar represents 100 mm.
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Sample preparation for PCR

Total RNAwas extracted frommuscles using TRIzol (Invitrogen). One
microgram of total RNA template was used for PCR with a QuantiTect

reverse transcription kit (Qiagen, Crawley, UK), according to the
manufacturer’s instructions. The cDNA product (1 ml) was then used
as template for PCR in a 25 ml reaction solution with 0.125 unit of
TaqDNA polymerase (Qiagen). The reaction mixture comprised 10X PCR

Fig. 2. Total protein carbonylation level in wild-type and mdx gastrocnemius muscle. Carbonylated proteins were detected by 1D carbonylated protein Western blot in
gastrocnemius muscle of 8-week-old wild-type and mdx mice, nonexercised (Non) or after 4 weeks of swimming exercise, 1 h (Ex 1h) or 2 days (Ex 2d) after the last session.
Ponceau red staining is shown as loading control. nPo0.05, nnPo0.01, nnnPo0.001 means a significant difference between two groups. n ¼ 4 to 6 per group.

Fig. 3. Representative 2D carbonylated protein Western blot of gastrocnemius muscle from 8-week-old nonexercised and exercised wild-type andmdxmice. Proteins were separated
by IEF and carbonylated proteins were derivatized with DNPH in the strip (13 cm, 3–10 NL). Second dimensionwas performed in 12% acrylamide SDS PAGE. Protein carbonylation was
compared two by two between wild-type and mdx mice for each condition: nonexercised, 1 h after the last swimming session or 2 days after. ○ represents overcarbonylated spots in
mdx in comparison with wild-type. □ represents less carbonylated spots in mdx in comparisonwith wild-type. Numbers indicate the spots identified by MS (Supplementary Table 1A)
and listed in Table 1. For each experiment, gastrocnemius muscles from five different mice were pooled and electrophoresis was performed in triplicate.

J. Hyzewicz et al. / Free Radical Biology and Medicine 82 (2015) 122–136 125



buffer (Roche, Basel, Switzerland), 10mmol/L of each dNTP (Qiagen),
and 10 mmol/L of each primer. The primers for PCR were synthesized by
Operon Biotechnologies (Tokyo, Japan) and are listed in Supplementary
Table S2. The cycling conditions were 95 1C for 4min, 35 cycles at 94 1C
for 1min, 60 1C for 1min, 72 1C for 1min, and finally 72 1C for 7min.
The intensity of PCR bands was analyzed by ImageJ software. Relative
gene expression levels were normalized to those of 18S rRNA.

Statistics

Values are reported as mean 7 SD (standard deviation). The
number of mice analyzed per group is shown in the figure legends.
Statistically significant differences between two groups were deter-
mined by Student’s t test, with a P value of P o 0.05 considered
significant. Statistically significant differences between more than
two groups were determined by ANOVA test followed by Tukey's
range test, a P value of P o 0.05 was considered significant for
ANOVA test, and a result superior to the minimum significant
difference was considered significant for the Turkey test.

Results

Effects of low intensity swimming on 8-week-old mice

We assessed the effects of swimming exercise on wild-type
and mdx muscle. No changes were observed in sections from

gastrocnemius muscle after 1 h past the last session of 4 weeks of
swimming (Fig. 1A), even though creatine kinase levels were
significantly increased (P o 0.01) at this time. Creatine kinase
levels returned to nonexercised values after 2 days (Fig. 1B). Of
note, exercise led to an increase in grip strength of wild-type and
mdx mice (Fig. 1C).

Total protein carbonylation level after low intensity swimming

The level of oxidative stress in muscle was quantified by
measurement of protein carbonylation [12]. Carbonyls groups
were derivatized into their DNP adducts using DNPH and these
were detected by carbonylated protein Western blot. In wild-type
muscle, total protein carbonylation levels increased 1 h after
exercise (P o 0.05) and remained elevated 2 days after, as
observed in previous studies [42]. Interestingly, in mdx muscle,
total protein carbonylation level was not significantly different
after exercise (Fig. 2).

Influence of low intensity training on the proteome of gastrocnemius
muscle

Proteomic analysis of wild-type and mdx gastrocnemius muscles
was performed by 2D carbonylated protein Western blot to detect
alterations in protein carbonylation (Fig. 3), 2D-PAGE to examine
protein expression (Fig. 4), and BN-PAGE to detect protein–protein

Fig. 4. Representative Coomassie blue staining of gastrocnemius muscle from 8-week-old nonexercised and exercised wild-type andmdx mice. Corresponding Coomassie blue gels
related to Fig. 3. Protein expression was compared two by two between wild-type and mdx mice. represents overexpressed spots in mdx in comparison with wild type. ◊
represents downregulated spots in mdx in comparison with wild-type muscle. Numbers indicate spots identified by MS (Supplementary Table 1A) and listed in Table 2.
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interaction (Fig. 5). In a first step, we compared nonexercised wild-type
muscle with nonexercised mdx muscle and in a second one, non-
exercised muscle with exercised ones in both types of mice. Spots
displaying a change of at least 50% were selected for mass spe
ctrometrical identification. A total of 76 spots were identified
(Supplementary Table 1) and grouped by categories according to the
SwissProt/UniProtKB data base (Tables 1–4).

Proteome of 8-week-old nonexercised wild-type and mdx
gastrocnemius muscle

Overcarbonylated proteins inmdxmuscle were mainly involved
in the citric acid cycle, for example, succinate dehydrogenase,
aconitate hydratase, in muscle contraction such as the fast iso-
forms of troponin T and MyBP-C, in glycogen metabolism, such as
glycogen phosphorylase (GP) and glycolysis and in cytoskeleton
(Table 1A and Fig. 3).

Downregulated proteins were involved in the respiratory chain,
muscle contraction, glycogen metabolism, and the stress response.
Interestingly, fast isoforms of troponin T and MyBP-C and glycogen
phosphorylase were both carbonylated and downregulated. Over-
expressed proteins were involved in glycolysis and in the micro-
tubular cytoskeleton (Tables 2 and 3A and Figs. 4 and 5).

Protein–protein interaction analysis by BN-PAGE revealed the
absence of ATP synthase subunits α and β in mdx muscle (Table 3D
and Fig. 5).

Proteome of nonexercised and exercised gastrocnemius in wild-type
or mdx muscle

We compared nonexercised muscle with exercised muscle
2 days after the last swimming session (Table 4 and Figs. 3–5).
In wild-type muscle, LIT increased protein carbonylation, but had
little influence on protein expression. Proteins involved in the
citric acid cycle, the fast isoforms of troponin T and MyBP-C, and
UTP-glucose-1-phosphate uridylyl transferase were more carbo-
nylated in exercised wild-type muscle (Fig. 3) as compared to
control, whereas beta-enolase was overexpressed (Figs. 4 and 5).

In mdx muscle (Table 4 and Figs. 3–5), LIT decreased the
carbonylation and enhanced the expression of specific proteins.
While total protein carbonylation remained unchanged by exercise
(Fig. 2), voltage-dependent anion-selective channel protein 1, fast
isoforms of troponin T and MyBP-C, and phosphoglucomutase-1
were less carbonylated in exercisedmdxmuscle (Fig. 3). In contrast
to wild-type muscle, LIT increased protein expression of some
respiratory chain proteins, the fast isoforms of troponin T and

Fig. 5. Representative Blue Native PAGE of gastrocnemius muscle from 8-week-old nonexercised and exercised wild-type and mdx mice. Proteins were separated under
nondenaturing conditions in 4–15% acrylamide-bisacrylamide gel. Second dimension was performed in 12% acrylamide SDS PAGE. represents the protein complexes
present in wild-type, but absent in mdx gels. P numbers represent protein complexes listed in Table 3D. As for Fig. 3, protein expression was compared two by two between
wild-type and mdx mice. represents overexpressed spots in mdx in comparison with wild type. ◊ represents downregulated spots in mdx in comparison with wild type. B
numbers indicate spots identified by MS (Supplementary Table 1B) and listed in Table 3. For each experiment, gastrocnemius muscles from five different mice were pooled
and electrophoresis was performed in triplicate.
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Table 1
Identity of proteins whose carbonylation differs in mdx gastrocnemius, in comparison with wild type.

Protein carbonylation in mdx muscle
(in comparison with wild type)

A. Nonexercised B. Exercised, 1 h after the last session C. Exercised, 2 days after the last session

Spot
No. a

Accession
No. b

Protein name Fold
change c

Spot
No. a

Accession
No. b

Protein name Fold
change c

Spot
No. a

Accession
No. b

Protein name Fold
change c

↑ Mitochondria ↑ Mitochondria ↑ Muscle contraction
29 Q8CAQ8 Mitochondrial inner membrane

protein
20 30 Q8CAQ8 Mitochondrial inner membrane

protein
5.26 57 P05977 Myosin light chain 1/3, skeletal

muscle
Only mdx

30 Q8CAQ8 Mitochondrial inner membrane
protein

14.29 42 Q91YT0 NADH dehydrogenase flavoprotein
1

3.85 41 Q9JIF9 Myotilin Only mdx

31 Q8K2B3 Succinate dehydrogenase
flavoprotein sub

14.29 Cytoskeleton Others

32 Q8K2B3 Succinate dehydrogenase
flavoprotein sub

14.29 4 P31001 Desmin 3.13 57 O70250 Phosphoglycerate mutase 2 Only mdx

38 Q9D0K2 Succinyl-CoA:3-ketoacid coA
transferase 1

14.29 Other 57 Q9CQA3 Succinate dehydrogenase iron-
sulfur subunit

Only mdx

43 P35486 Pyruvate dehydrogenase E1
subunit alpha

7.69 1 P59242 Cingulin 3.23 ↓ Mitochondria

33 P13707 Glycerol-3-phosphate
dehydrogenase

5 ↓ Glycolysis 45 Q9DB77 Cytochrome b-c1 complex subunit
2

-6.06

25 Q99KI0 Aconitate hydratase, mitochondrial 4.76 51 P05064 Fructose-bisphosphate aldolase A -3.72 39 Q03265 ATP synthase subunit alpha,
mitochondrial

-3.07

26 Q99KI0 Aconitate hydratase, mitochondrial 4.35 51 P16858 Glyceraldehyde-3-phosphate
dehydrogenase

-3.72 Glycogen metabolism

36 O08749 Dihydrolipoyl dehydrogenase,
mitochondrial

4.35 21 Q9WUB3 Glycogen phosphorylase, muscle
form

-5.01

Muscle contraction 23 Q9WUB3 Glycogen phosphorylase, muscle
form

-5.16

48 Q9QZ47 Troponin T, fast skeletal muscle 7.69 39 Q91ZJ5 UTP-glucose-1-phosphate
uridylyltransferase

-3.07

16 Q5XKE0 Myosin-binding protein C, fast-type 5.56 Muscle contraction
41 Q9JIF9 Myotilin 5 46 Q9QZ47 Troponin T, fast skeletal muscle -3.31
46 Q9QZ47 Troponin T, fast skeletal muscle 5 Others
Glycogen metabolism 47 P14152 Malate dehydrogenase, cytoplasmic -7.27
35 Q9D0F9 Phosphoglucomutase-1 8.33 46 P07310 Creatine kinase M-type -3.31
23 Q9WUB3 Glycogen phosphorylase, muscle

form
7.69 39 P97384 Annexin A11 -3.07

22 Q9WUB3 Glycogen phosphorylase, muscle
form

6.25

37 Q91ZJ5 UTP-glucose-1-phosphate
uridylyltransferase

6.25

Glycolysis
40 P52480 Pyruvate kinase isozymes M1/M2 33.33
55 O70250 Phosphoglycerate mutase 2 7.69
48 P21550 Beta-enolase 7.69
13 P21550 Beta-enolase 4
Cytoskeleton
29 P48678 Prelamin-A/C 20
31 O88342 WD repeat-containing protein 1 14.29
15 P68033 Actin, alpha cardiac muscle 1 7.14
28 Q9JKS4 LIM domain-binding protein 3 5
27 Q9JKS4 LIM domain-binding protein 3 4.76
17 P47753 F-actin-capping protein subunit

alpha-1
4
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MyBP-C, UTP-glucose-1-phosphate uridylyltransferase, and carbo-
nic anhydrase 3 (Figs. 4 and 5).

The difference in carbonylation levels between exercised wild-
type and mdx muscles was reduced 1 h after the last session of LIT
(Tables 1–3B) and 2 days later, ATP synthase subunit α, fast isoform
of troponin T, and GP were less carbonylated inmdxmuscle (Table 1C
and Fig. 3). In contrast, expression of tubulin, vimentin, and asso-
ciated proteins, as well as stress response proteins, was higher in
exercised mdx muscle as of 1 h after the last session, and remained
higher 2 days after (Tables 2 and 3B and Tables 2 and 3C; Figs. 4 and
5). Protein–protein interaction analysis showed that the two ATP
synthase complexes absent in nonexercised mdx muscle were
restored 1 h after LIT in mdx muscles (P1 in Table 3D and Fig. 5).

Validation of proteomic results by 1D carbonylated protein Western
blot and Western blot

The above results point to differences in protein carbonylation
and expression between wild-type and mdx muscles that are
altered by LIT. To validate these results, we investigated these
levels by coimmunoprecipitation (co-IP) followed by 1D carbony-
lated protein Western blot analysis. Two critical proteins were
selected, namely GP (Fig. 4, spot 24; Fig. 5, spot B13), and the fast
isoforms of MyBP-C (Fig. 4, spot 18).

We confirmed that GP (Fig. 6A) and MyBP-C (Fig. 6B) were
significantly more carbonylated in nonexercised mdx muscle than
in wild-type muscle, consistent with results shown in Table 1A. GP
carbonylation was not significantly different between exercised
wild-type and mdx muscles, 1 h after LIT (Table 1B) but signifi-
cantly lower in exercised mdx muscle after 2 days (Table 1C).
MyBP-C carbonylation was not significantly different between
exercised wild-type and mdx muscles (Table 1B and C).

Expression was assessed by Western blot. We confirmed that
GP (Fig. 7A) and MyBP-C (Fig. 7B) were downregulated in non-
exercised mdx muscles, compared with nonexercised wild-type
muscles, as found previously (Tables 2 and 3A). GP expression was
lower in exercised mdx muscle than in wild-type muscle, 1 h after
the last session (Table 2B) and after 2 days, it was similar in both
types of mice (Table 3B). MyBP-C expression was not significantly
different between exercised wild-type and mdx muscles (Table 2B
and C). Altogether, results of co-IP and Western blot analysis were
in accordance with the results of the proteomic study.

Increased expression of fast skeletal muscle isoforms in exercised mdx
gastrocnemius muscle

Gastrocnemius muscle is composed of about 95% of fast type
fibers [43]. Proteomic analysis revealed a lower expression of fast
isoforms of troponin T and MYBP-C in mdx gastrocnemius muscle
as compared to wild-type muscle (Table 2). Using Western blot
analysis, we confirmed this result and showed that slow isoforms
were more highly expressed in nonexercised mdx, compared with
wild-type muscle (Fig. 7B). After swimming, a higher expression of
slow isoforms was detected in both exercised wild-type and mdx
muscles. Interestingly, in mdx muscle, we found a higher expres-
sion of fast isoforms, similar to the level of exercised wild-type
muscle. This result showed that LIT stimulated the expression of
slow type isoforms, and also restored the expression of fast
isoforms in mdx muscle. These observations at the protein level
were supported by a similar pattern at the mRNA level (Fig. 7C).

Discussion

Our study links, for the first time, alterations in protein
carbonylation and expression levels, induced by low intensity
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training at the molecular level in muscle of mdx mice. We
hypothesized first that overcarbonylated proteins in mdx muscle
would also be downregulated and that protein–protein interac-
tions would be lost. We also thought that LIT would rescue these
changes, rendering LIT a physiotherapeutic approach to treatment.

In agreement with our first hypothesis, we found that proteins
involved in muscle contraction and glycogen metabolism were
both overcarbonylated and downregulated in nonexercised mdx
muscle. However, this was not associated with a loss of protein–
protein interactions.

Table 2
Identity of proteins whose expression differs in mdx gastrocnemius, in comparison with wild type.

Protein expression in mdx muscle (2D-PAGE)
(in comparison with wild type)

A. Nonexercised B. Exercised, 1 h after the last session C. Exercised, 2 days after the last session

Spot
No. a

Accession
No. b

Protein name Fold
change
c

Spot
No. a

Accession
No. b

Protein name Fold
change
c

Spot
No. a

Accession
No. b

Protein name Fold
change
c

↑ Cytoskeleton ↑ Muscle contraction ↑ Cytoskeleton
3 P05213 Tubulin alpha-1B chain 3.45 9 P58774 Tropomyosin beta

chain
2.63 12 P11983 T-complex protein

1 subunit alpha
3.45

3 P20152 Vimentin 3.45 50 Q9QZ47 Troponin T, fast
skeletal muscle

1.67 10 P11983 T-complex protein
1 subunit alpha

3.03

5 P68372 Tubulin beta-4B chain 1.79 49 Q9QZ47 Troponin T, fast
skeletal muscle

1.54 10 P80316 T-complex protein
1 subunit epsilon

3.03

↓ Mitochondria Glycolysis 4 P31001 Desmin 2.56
43 P35486 Pyruvate

dehydrogenase E1
subunit alpha

-2.35 51 P05064 Fructose-bisphosphate
aldolase A

2.86 28 Q9JKS4 LIM domain-binding
protein 3

2.44

56 Q9DCS9 NADH dehydrogenase
1 β subcomplex sub 10

-2.21 51 P16858 Glyceraldehyde-3-
phosphate
dehydrogenase

2.86 3 P05213 Tubulin alpha-1B chain 1.82

42 Q91YT0 NADH dehydrogenase
flavoprotein 1

-2.18 9 P21550 Beta-enolase 2.63 3 P20152 Vimentin 1.82

54 Q60932 Voltage-dependent
anion-selective
channel 1

-2.03 Cytoskeleton Stress response

Muscle contraction 10 P11983 T-complex protein
1 subunit alpha

2.17 11 P27773 Protein disulfide-
isomerase A3

4.17

53 Q9QZ47 Troponin T, fast
skeletal muscle

-2.78 10 P80316 T-complex protein
1 subunit epsilon

2.17 2 P63038 60 kDa heat shock
protein, mitochondrial

2.86

56 Q9QZ47 Troponin I, fast skeletal
muscle

-2.21 3 P05213 Tubulin alpha-1B chain 1.64 Others (cell cyke)

18 Q5XKE0 Myosin-binding
protein C, fast-type

-2.12 3 P20152 Vimentin 1.64 20 Q9WU78 Programmed cell death
6-interacting protein

4.17

54 Q9QZ47 Troponin T, fast
skeletal muscle

-2.03 Stress response ↓ Mitochondria

52 Q9QZ47 Troponin T, fast
skeletal muscle

-1.74 11 P27773 Protein disulfide-
isomerase A3

3.45 57 Q9CQA3 Succinate
dehydrogenase iron-
sulfur subunit

-2.93

7 P58771 Tropomyosin alpha-1
chain

-1.61 14 Q60854 Serpin B6 2.17 8 Q9CZ13 Cytochrome b-c1
complex subunit 1

-1.54

Glycogen metabolism ↓ Mitochondria Glycolysis
37 Q91ZJ5 UTP-glucose-1-

phosphate
uridylyltransferase

-1.71 54 Q60932 Voltage-dependent
anion-selective
channel 1

-2.29 57 O70250 Phosphoglycerate
mutase 2

-2.93

Stress response 7 Q60597 2-oxoglutarate
dehydrogenase

-1.67 Others

43 P62196 26S protease
regulatory subunit 8

-2.35 Muscle contraction 57 P05977 Myosin light chain 1/3.
skeletal muscle isoform

-2.93

Others 54 Q9QZ47 Troponin T, fast
skeletal muscle

-2.29 8 P60710 Actin. cytoplasmic 1 -1.54

43 Q9DCL9 Multifunctional protein
ADE2

-2.35 Glycogen metabolism

43 P07310 Creatine kinase M-type -2.35 24 Q9WUB3 Glycogen
phosphorylase, muscle
form

-1.72

34 Q9D0F9 Phosphoglucomutase-
1

-1.65

Stress response
24 P58252 Elongation factor 2 -1.72

↑ Refer to proteins whose expression is higher in mdx than in wild-type muscle.
↓Refer to proteins whose expression is lower in mdx than in wild-type muscle.

a Spots refer to annoted spots in Fig. 4.
b Accession number in UniProtKB/Swiss-prot.
c Fold change between mdx and wild-type values. A positive fold change means an increased value in mdx, a negative means a decreased value.
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Furthermore, we found that LIT rescued, at least in part, mdx
muscle at the protein level, consistent with our second hypothesis.
Specifically, proteins from mitochondria, muscle contraction, and
glycogen metabolism, highly carbonylated and downregulated in
nonexercised mdx muscle, were less carbonylated and highly
expressed after LIT. LIT of mdx mice also restored carbonylation
and expression levels of fast isoforms of troponin T and MyBP-C at

the level of exercised wild-type muscle, while expression of slow
isoforms increased, also consistent with our second hypothesis.

Protein carbonylation in skeletal muscle of nonexercised mdx mice

Elevated total protein carbonylation levels have been reported in
muscle of mdx mice and DMD patients [17,20]. However, the targets

Table 3
Identity of proteins whose expression and protein-protein interactions differs in mdx gastrocnemius, in comparison with wild type.

Protein expression in mdx muscle (BN-PAGE)
(in comparison with wild type)

A. Nonexercised B. Exercised, 1 h after the last session C. Exercised, 2 days after the last session

Spot
No. a

Accession
No. b

Protein name Fold
change
c

Spot
No. a

Accession
No. b

Protein name Fold
change
c

Spot
No. a

Accession
No. b

Protein name Fold
change
c

↑ Glycolysis ↑ Mitochondria ↑ Glycolysis
B9 P06151 L-lactate dehydrogenase

A chain
2.56 B8 P55084 Trifunctional enzyme

subunit beta,
mitochondrial

1.86 B15 P21550 Beta-enolase 1.59

B15 P21550 Beta-enolase 1.75 Glycolysis B1 P52480 Pyruvate kinase
isozymes M1/M2

1.54

B19 P05064 Fructose-bisphosphate
aldolase A

1.75 B8 P21550 Beta-enolase 1.86 ↓ Glycolysis

Others B8 P05064 Fructose-bisphosphate
aldolase A

1.86 B6 P21550 Beta-enolase -1.51

B19 P07310 Creatine kinase M-type 1.75 B7 P21550 Beta-enolase 1.81
B16 P07310 Creatine kinase M-type 1.64 ↓ Mitochondria

↓ Mitochondria B14 Q99KI0 Aconitate hydratase,
mitochondrial

-3.36

B5 P56480 ATP synthase subunit
beta, mitochondrial

-3.72 B17 Q60932 Voltage-dependent anion-
selective channel prot 1

-1.59

B4 Q03265 ATP synthase subunit
alpha, mitochondrial

-3.26 Glycogen metabolism

B3 P56480 ATP synthase subunit
beta, mitochondrial

-2.57 B13 Q9WUB3 Glycogen phosphorylase,
muscle form

-1.72

B2 Q03265 ATP synthase subunit
alpha, mitochondrial

-2.42 Stress response

Glycogen metabolism B14 P07901 Heat shock protein HSP
90-alpha

-3.36

B13 Q9WUB3 Glycogen phosphorylase,
muscle form

-1.66 Other

Stress response B13 Q8R429 Sarco/endoplasmic
reticulum calcium ATPase
1

-1.72

B10 P16015 Carbonic anhydrase 3 -3.9 B17 P07310 Creatine kinase M-type -1.59
Others B17 P14152 Malate dehydrogenase,

cytoplasmic
-1.59

B11 P07310 Creatine kinase M-type -2.02
B13 Q8R429 Sarco/endoplasmic

reticulum calcium
ATPase 1

-1.66

D. Identity of the proteins which compose the complexes
absents in nonexercised mdx muscle

Spot
No. a

Accession
No. b

Protein name

P1 complexes
B2 Q03265 ATP synthase subunit

alpha, mitochondrial
B3 P56480 ATP synthase subunit

beta, mitochondrial
B4 Q03265 ATP synthase subunit

alpha, mitochondrial
B5 P56480 ATP synthase subunit

beta, mitochondrial

↑Refer to proteins whose expression is higher in mdx than in wild-type muscle.
↓Refer to proteins whose expression is lower in mdx than in wild-type muscle.

a Spots refer to annoted spots in Fig. 5.
b Accession number in UniProtKB/Swiss-prot.
c Fold change between mdx and wild-type values. A positive fold change means an increased value in mdx, a negative means a decreased value.
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of protein carbonylation were not identified until late. Consistent
with our observations (spots 25 and 26 in Fig. 3), a recent study on
tibialis anterior muscle of DMD patients [16] showed aconitate
hydratase to be overcarbonylated. Also in agreement with our study,
mitochondrial proteins appeared to be preferential targets of carbo-
nylation in dystrophic muscle. However, we showed that these
proteins were not equally affected by oxidative stress. We found
two major groups of proteins: those from the citric acid cycle
(Table 1A) and those from the respiratory chain (Tables 2 and 3A).
Citric acid cycle proteins were overcarbonylated, consistent with the
fact that the function of these proteins was impaired in mdx muscle
[44]. In contrast, respiratory chain proteins were not overcarbony-
lated. This suggests that the impact of oxidative stress on mitochon-
dria ofmdxmuscle depends on protein location, since citric acid cycle
proteins are mainly located in the matrix, whereas those of the
respiratory chain are located in the inner membrane [45].

We also found that other groups of proteins were over
carbonylated in mdx muscle: those involved in the modulation of

contraction, in glycogen metabolism, and in the formation of the
cytosketelon. A functional impairment of the proteins of the first
group, namely the fast isoforms of troponin T and MyBP-C, has not
been reported in DMD. On the other hand and consistent with a
recent study, in which a reduced activity of glycogen phosphor-
ylase was observed in mdx muscle [46], we found this enzyme to
be overcarbonylated. Among proteins involved in formation of the
cytoskeleton, we found overcarbonylated levels of actin-associated
proteins, such as LIM domain-binding protein 3 and F-actin-
capping protein subunit alpha-1. This is consistent with the finding
that the actin filament architecture is severely damaged in mdx
muscle [47]. Taken together our results suggest that protein
carbonylation could cause a functional impairment in mdx muscle.

Protein expression in skeletal muscle of nonexercised mdx mice

Differences in protein expression between wild-type and mdx
muscles have beenwidely documented. Our results (Tables 2 and 3A;

Table 4
Identity of proteins whose carbonylation or expression changes 2 days after exercise, in comparison with nonexercised, in wild-type or mdx.

Protein carbonylation after LIT Protein expression after LIT
(2 days after the last exercise) (2 days after the last exercise)

Spot No. a Accession
No. b

Protein name Fold
change c

Spot
No. d

Accession
No. b

Protein name Fold
change c

Wild
type

↑ Mitochondria ↑ Glycolysis

38 Q9D0K2 SuccinylCoA:3ketoacid coenzyme A
transferase 1

10 B8 P21550 Beta-enolase 5.26

26 Q99KI0 Aconitate hydratase, mitochondrial 2.85
Muscle contraction
46 Q9QZ47 Troponin T, fast skeletal muscle 4.16
18 Q5XKE0 Myosin-binding protein C, fast-type 1.66
Glycogen metabolism
37 Q91ZJ5 UTP-glucose-1-phosphate

uridylyltransferase
5 ↓

Others
46 P07310 Creatine kinase M-type 4.16

↓ Cytoskeleton
5 P68372 Tubulin beta-4B chain -5.93

Spot No. a Accession
No. b

Protein name Fold
change c

Spot
No. d

Accession
No. b

Protein name Fold
change c

mdx ↑ ↑ Mitochondria
B7 P56480 ATP synthase subunit beta,

mitochondrial
3.57

B6 Q03265 ATP synthase subunit alpha,
mitochondrial

3.33

↓ Mitochondria 42 Q91YT0 NADH dehydrogenase [ubiquinone]
flavoprotein 1

2.63

54 Q60932 Voltage-dependent anion-selective
channel prot 1

-8.22 25 Q99KI0 Aconitate hydratase, mitochondrial 2

Muscle contraction Muscle contraction
54 Q9QZ47 Troponin T, fast skeletal muscle -8.22 53 Q9QZ47 Troponin T, fast skeletal muscle 3.03
46 Q9QZ47 Troponin T, fast skeletal muscle -3.83 52 Q9QZ47 Troponin T, fast skeletal muscle 2.27
18 Q5XKE0 Myosin-binding protein C, fast-type -1.76 18 Q5XKE0 Myosin-binding protein C, fast-type 1.96
Glycogen metabolism Glycogen metabolism
35 Q9D0F9 Phosphoglucomutase-1 -4.25 37 Q91ZJ5 UTP-glucose-1-phosphate

uridylyltransferase
1.64

24 Q9WUB3 Glycogen phosphorylase, muscle form -3.03 Stress response
Glycolysis 10 P21550 Carbonic anhydrase 3 4.16
40 P52480 Pyruvate kinase isozymes M1/M2 -6.27 ↓ Glycolysis
Cytoskeleton 16 P21550 Beta-enolase -1.63
4 P31001 Desmin -2.4
Others
46 P07310 Creatine kinase M-type -3.83

↑Refer to proteins whose carbonylation is higher in mdx than in wild-type muscle.
↓Refer to proteins whose carbonylation is lower in mdx than in wild-type muscle.
X spots refer to annoted spots in Fig. 3, BX to annoted spots in Fig. 4.

a Spots refer to annoted spots in Fig. 2.
d Spots refer to annoted spots in Fig. 2.
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Figs. 4 and 5) are in agreement with previous ones. In particular, we
found a downregulation of proteins of the respiratory chain [48] as
well as glycogen metabolism [46]. Again consistent with previous
reports, vimentin [49], tubulin [50], several enzymes involved in
glycolysis [51], and lactate deshydrogenase [52] were overexpressed.
Downregulation of fast isoforms of troponin T and MyBP-C have also
been reported [53]. As hypothesized, the majority of overcarbony-
lated proteins were downregulated. However, some proteins of the
citric acid cycle, of glycolysis, and of the actin cytoskeleton (27, 28, 29,
and 40, 55 in Table 1A and Fig. 3) were overcarbonylated but not
downregulated. We suppose the turnover of these proteins to be
slower and therefore they might accumulate more oxidative mod-
ifications before being degraded.

Protein–protein interactions in skeletal muscle of nonexercised mdx
mice

Our BN-PAGE analysis showed, for the first time, that ATP
synthase subunits α and β were absent in nonexercised mdx
muscle (Table 3D and Fig. 5). The molecular weights of these
complexes correspond to fully assembled monomeres and dimers
of ATP synthase, namely 597 and 1194 kDa [54]. This result is
consistent with previous findings reporting that the expression of
ATP synthase subunit α was not changed in mdx muscle, but ATP
production was reduced because of a proton leak in the inner
mitochondrial membrane [55]. Our study suggests that incomplete
formation of the ATP synthase complex in mdx muscle could be a
cause of this proton leak.

Effect of low intensity training on skeletal muscle of mdx mice

The major result of our study is that overcarbonylation, down-
regulation, and loss of protein–protein interactions inmdxmuscle are
fully corrected by LIT. Swimming is an endurance exercise, and
known to affect proteins involved in the respiratory chain, glucose

uptake, citric acid cycle, fatty acid metabolism, glycolysis, and oxygen
transfer [56]. We found that LIT reduced carbonylation levels and
increased the expression of proteins involved in mitochondria func-
tion, muscle contraction, glycogen metabolism, and glycolysis
(Table 4), but not of proteins involved in glucose uptake, oxygen
transfer, or fatty acid metabolism. Previous studies revealed that the
destabilization of microtubule networks affects the glucose uptake in
mdx muscle [57]. LIT was not able to counterbalance this effect,
consistent with the fact that cytoskeleton protein remained over-
expressed in exercised mdx muscle (Table 2).

Low intensity training is more efficient on mdx muscle than on wild
type

Interestingly, the effects of LIT were more pronounced in mdx
than in wild-type muscle. In the latter, exercise increased protein
carbonylation but had little influence on their expression. In
contrast, in mdx muscle, exercise reduced protein carbonylation
and increased their expression. These results highlight differences
in sensitivity to training between wild-type and mdx muscle.

Swimming improves expression of slow and fast isoforms of troponin
T and MyBP-C

Pharmacologic agents have been developed during the past
years in an attempt to mimic the effects of aerobic exercise on
wild-type [58] or mdx muscle [59]. Some of these agents improved
mdx muscle strength and increased the expression of utrophin A
and slow myosin heavy chain isoforms through a shift from fast to
slow fibers. In our study, we showed that LIT decreased carbonyla-
tion and increased the expression level of fast isoforms of troponin
T and MyBP-C, and also stimulated the expression of their slow
isoforms (Fig. 7). These results encourage investigating the effects
of exercise mimicking drugs on a larger scale of muscle proteins,
especially regarding their isoforms in fast muscle.

Fig. 6. Validation of proteomic results by 1D carbonylated protein Western blot. Carbonylation levels of glycogen phosphorylase (A) or myosin binding protein C (B) were
confirmed by coimmunoprecipitation with corresponding antibodies, followed by 1D carbonylated protein Western blot.

n

Po0.05, nnPo0.01, nnnPo0.001 means a
significant difference between two groups. n ¼ 4–6 per group.
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Multiple proteins identified in a single spot

High sensitivity MALDI TOF/TOF analysis [60] revealed that 22%
of spots from 2D electrophoresis gels and 33% of spots from BN-
PAGE gels contained multiple proteins (Supplementary Fig. 1).

Because it was difficult to determine which proteins underwent
changes, we limited our analysis to observations made in previous
publications or consistent with other results. Using this approach,
we detected, for example, an increased expression of vimentin and
tubulin alpha1B chain in nonexercised mdx muscle (spot 3 in

Fig. 7. Expression of slow and fast troponin T and myosin binding protein C isoforms. Protein expression level of glycogen phosphorylase (A), then troponin T and myosin
binding protein C slow and fast isoforms (B), was assessed by Western blot using corresponding antibodies. Ponceau red staining is shown as loading control. mRNA level
was assessed by PCR analysis (C). nPo0.05, nnPo0.01, nnnPo0.001 means a significant difference between two groups. n ¼ 4 per group.
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Figs. 3 and 4), as reported previously [50]. This result is consistent
with the increased expression of desmin and tubulin beta 4B chain
(spot 4 and 5 in Figs. 3 and 4). Along similar lines, glycogen
phosphorylase and SERCA1 were identified in the same spot (B13
in Fig. 5). Downregulation of glycogen phosphorylase has been
previously reported [46] and is noted under Results. However,
downregulation of SERCA1 has not been documented and is
not noted.

Influence of infiltrated immune cells on proteomic analysis of
exercised mdx mice

In dystrophic muscle, infiltration of immune cells occurs during
early stages of the disease and plays a role in progression of DMD
pathology [61]. In mdx mice, this infiltration reaches a peak
between 4 and 8 weeks of age, which corresponds to the period
of LIT. We need to evaluate the extent of infiltrated cells, since they
may influence results of our proteomic analysis on nonexercised
and exercised wild-type and mdx samples.

According to Evans et al., at 8 weeks of age, macrophages are
the principal immune cells that infiltrate mdx muscles [61]. For
this reason, we immunostained macrophages in sections of gastro-
cnemius muscles and determined the stained area using ImageJ
software. Results showed that the area of infiltrated immune cells
was less than 1% of the total muscle area, even in exercised mdx
muscle (J. Hyzewicz et al., personal communication). As a con-
sequence, the influence of the infiltrated immune cells on the
proteomic study is negligible.

Conclusion

In our study, we have used an extensive proteomic method to
assess the effects of 4 weeks of LIT on carbonylation, expression,
and protein–protein interactions of proteins in gastrocnemius
muscle of 8-week-old mdx mice. We found that proteins of
mitochondria, muscle contraction, and glycogenolysis were over-
carbonylated and downregulated in nonexercised mdx muscle.
Furthermore, we demonstrated that LIT corrected these impair-
ments by decreasing carbonylation and increasing expression
levels of fast isoforms of troponin T and myosin binding protein
C, as well as increasing the expression of slow type isoforms. In
addition, the results point to different sensitivities of wild-type
and mdx muscle in response to LIT.

The present research confirms the beneficial effects of LIT at the
protein level and provides pertinent information which could help
to design exercise mimicking drugs for DMD therapy.
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