Note
Symmetric and resolvable λ-configurations constructed from block designs

Dean Crnković

Department of Mathematics, Faculty of Philosophy, Omladinska 14, 51000 Rijeka, Croatia

Received 1 April 2005; received in revised form 12 July 2007; accepted 14 August 2007
Available online 24 September 2007

Abstract

A λ-configuration (v_r, b_k) is a finite incidence structure of v points and b blocks such that each block contains exactly k points, each point lies on exactly r blocks and two different points are connected by at most λ blocks. If $v = b$ and hence $r = k$, then a λ-configuration is symmetric. From any block design we construct λ-configurations. Some block designs lead to symmetric λ-configurations, and some leads to resolvable λ-configurations.

© 2007 Elsevier B.V. All rights reserved.

Keywords: λ-configuration; Block design; Resolvable λ-configuration

1. Introduction

Definition 1. A λ-configuration (v_r, b_k) is a finite incidence structure $(\mathcal{P}, \mathcal{B}, I)$, where \mathcal{P} and \mathcal{B} are disjoint sets and $I \subseteq \mathcal{P} \times \mathcal{B}$, such that

1. $|\mathcal{P}| = v$,
2. $|\mathcal{B}| = b$,
3. every element of \mathcal{B} is incident with exactly k elements of \mathcal{P},
4. every element of \mathcal{P} is incident with exactly r elements of \mathcal{B},
5. every pair of distinct elements of \mathcal{P} is incident with at most λ elements of \mathcal{B}.

The elements of the set \mathcal{P} are called points, and the elements of the set \mathcal{B} are called blocks. If a point P is incident with a block x, we write PIx.

A 2-configuration is called a spatial configuration. If $v = b$ and hence $r = k$, then a λ-configuration is symmetric.

Definition 2. A parallel class or resolution class in a λ-configuration is a set of blocks that partition the point set. A resolvable λ-configuration is a λ-configuration whose blocks can be partitioned into parallel classes.
Definition 3. Let \mathcal{I} be an incidence structure with the set of points $\mathcal{P} = \{P_1, P_2, \ldots, P_v\}$ and the set of blocks $\mathcal{B} = \{x_1, x_2, \ldots, x_b\}$. The incidence matrix of \mathcal{I} is a $b \times v$ matrix $M = (m_{ij})$ defined by

$$m_{ij} = \begin{cases} 1 & \text{if } P_j \text{ is incident with } x_i, \\ 0 & \text{otherwise.} \end{cases}$$

Definition 4. Let M be the incidence matrix of an incidence structure \mathcal{I}. Denote by M^t the transpose of M. The graph with adjacency matrix

$$\begin{bmatrix} 0 & M \\ M^t & 0 \end{bmatrix}$$

is called the incidence graph of \mathcal{I}.

Definition 5. A (v, k, λ) block design is a λ-configuration $(v_r, b_k)_\lambda$ such that every pair of points is incident with exactly λ blocks. A $(v, 3, 1)$ block design is called a Steiner triple system.

For further basic definitions and properties of configurations and block designs we refer the reader to [1–3].

2. λ-configurations constructed from block designs

Let $\mathcal{D} = (\mathcal{P}, \mathcal{B}, I)$ be a (v, k, λ) block design. Let us define the incidence structure $\mathcal{D}_1 = (\mathcal{P}_1, \mathcal{B}_1, I_1)$ as follows:

$\mathcal{P}_1 = \{(P, x) | P \in \mathcal{P}, \ x \in \mathcal{B}, \ PIx\}$,

$\mathcal{B}_1 = \{(P, x, Q) | P, Q \in \mathcal{P}, \ P \neq Q, \ x \in \mathcal{B}, \ PIx, \ QIx\}$,

$P_1 = (P, x_1), \ x_1 \in \mathcal{B}, \ P_1 I_1 x_1 \leftrightarrow P \in \{\bar{P}, \bar{Q}\}$.

Remark 1. Let G be the incidence graph of a (v, k, λ) block design $\mathcal{D} = (\mathcal{P}, \mathcal{B}, I)$ and $\mathcal{D}_1 = (\mathcal{P}_1, \mathcal{B}_1, I_1)$ be the incidence structure defined as above. Then we can describe the incidence structure \mathcal{D}_1 in the following way:

\mathcal{P}_1 is the set of all the edges of G,

\mathcal{B}_1 is the set of all paths of length 2 in G with the first (and the last) vertex corresponding to a point of \mathcal{D},

$P_1 \in \mathcal{P}_1, \ x_1 \in \mathcal{B}_1, \ P_1 I_1 x_1$ if and only if the union of the corresponding edge and path of length 2 is a path of length 2 or 3.

Theorem 1. Let $\mathcal{D} = (\mathcal{P}, \mathcal{B}, I)$ be a (v, k, λ) block design and $\mathcal{D}_1 = (\mathcal{P}_1, \mathcal{B}_1, I_1)$ be the incidence structure defined as above. Then \mathcal{D}_1 is a $(v - 1)\lambda$-configuration $(v'_r, b'_k)_{(v-1)\lambda}$ with the following properties:

1. $v' = vr = bk$,
2. $b' = \left(\frac{v}{2}\right)\lambda$,
3. $k' = 2r$,
4. $r' = (v - 1)\lambda$,
5. every pair of points is incident with exactly $(v - 1)\lambda$ or λ blocks,
6. every pair of blocks is incident with exactly $2r$, r or 0 points.

Proof. It is obvious that $v' = vr = bk$. Two points of the design \mathcal{D} determine λ blocks in \mathcal{D}_1, since every pair of points in (v, k, λ) block design is incident with exactly λ blocks. Therefore $b' = \left(\frac{v}{2}\right)\lambda$.

If a block x_1 in \mathcal{D}_1 corresponds to an ordered triple (P, x, Q), then x_1 is incident with points which correspond to (P, y) or (Q, z). Since the points P and Q in \mathcal{D} are incident with r blocks, x_1 is incident with $2r$ points.

A point $P_1 \in \mathcal{P}_1$ corresponding to an ordered pair (P, x) is incident with blocks which correspond to (P, y, Q), $Q \in \mathcal{P}_1$, $y \in \mathcal{B}_1$. We can choose Q in $v - 1$ ways, and each pair P, Q is incident with exactly λ blocks.

Let P_1 be a point in \mathcal{P}_1 which corresponds to an ordered pair (P, x). $R_1 \in \mathcal{P}_1$ corresponds to (P, y) and $Q_1 \in \mathcal{P}_1$ corresponds to (Q, z), $Q \neq P$. A block $x_1 \in \mathcal{B}_1$ is incident with P_1 if and only if it is incident with R_1. On the other
hand, pair of points \(P_1, Q_1 \) lies on \(\lambda \) blocks of the type \((P, w, Q)\), \(w \in B \). So, every pair of points in \(\mathcal{D}_1 \) is incident with exactly \((v - 1)\lambda\) or \(\lambda \) blocks.

Let \(P, Q, R, S \in \mathcal{P} \) be mutually different points in \(\mathcal{D} \) and \(x_1 = (P, x, Q), y_1 = (P, y, Q), z_1 = (Q, z, R) \) and \(w_1 = (R, w, S) \) be blocks in \(\mathcal{D}_1 \). The pair of blocks \(x_1, y_1 \) is incident with exactly \(2r \) points, the pair \(x_1, z_1 \) with \(r \) points, while \(x_1 \) and \(w_1 \) do not have common points. Therefore, every pair of blocks in \(\mathcal{D}_1 \) is incident with exactly \(2r\), \(r \) or 0 points. \(\square \)

Corollary 1. Let \(\mathcal{D} = (\mathcal{P}, \mathcal{B}, I) \) be a \((v, k, \lambda)\) block design. The \((v - 1)\lambda\)-configuration \(\mathcal{D}_1 = (\mathcal{P}_1, \mathcal{B}_1, I_1) \) is symmetric if and only if \(k = 3 \).

Proof. \(\mathcal{D}_1 \) is a symmetric \((v - 1)\lambda\)-configuration if and only if \(vr = \binom{v}{2} \lambda \). It is known that \(r(k - 1) = (v - 1)\lambda \) (see \([1, \text{Theorem 2.10, p. 10}]\)). Then \(r = (v - 1)\lambda/2 = r(k - 1)/2 \), so \(k = 3 \). \(\square \)

3. Resolvable \(\lambda \)-configurations constructed from block designs

Let \(\mathcal{D} = (\mathcal{P}, \mathcal{B}, I) \) be a \((v, k, \lambda)\) block design and \(P \in \mathcal{P} \) a point in \(\mathcal{D} \). Define an incidence structure \(\mathcal{D}_2 = (\mathcal{P}_2, \mathcal{B}_2, I_2) \) in the following way:

- \(\mathcal{P}_2 = \{(Q, x) \mid Q \in \mathcal{P}, Q \neq P, x \in \mathcal{B}, P I x, Q I x\}, \)
- \(\mathcal{B}_2 = \{(x, P, y) \mid x, y \in \mathcal{B}, P I x, P I y\}, \)
- \(P_2 = (Q, x), x_2 = (\tilde{x}, P, \tilde{y}), P_2I_2x_2 \Leftrightarrow x = \tilde{x} \) or \(x = \tilde{y} \).

Theorem 2. Let \(\mathcal{D} = (\mathcal{P}, \mathcal{B}, I) \) be a \((v, k, \lambda)\) block design, \(P \in \mathcal{P} \) and \(\mathcal{D}_2 = (\mathcal{P}_2, \mathcal{B}_2, I_2) \) be the incidence structure defined as above. Then \(\mathcal{D}_2 \) is a \((r - 1)\)-configuration \((v'_r, b'_k)_{r-1}\) with the following properties:

1. \(v' = r(k - 1) \),
2. \(b' = \binom{r}{2} \),
3. \(k' = 2(k - 1) \),
4. \(r' = r - 1 \),
5. every pair of points is incident with exactly \((r - 1)\) or 0 blocks,
6. every pair of blocks is incident with exactly \((k - 1)\) or 0 points.

Proof. \(P \) is incident with \(r \) blocks and each block contains \(k \) points, so \(b' = \binom{r}{2} \) and \(v' = r(k - 1) \).

Let \(x_2 = (x, P, y) \) be a block in \(\mathcal{D}_2 \). Since the blocks \(x \) and \(y \) both are incident with \(k - 1 \) points other then \(P \), \(x_2 \) is incident with \(2(k - 1) \) points form \(\mathcal{B}_2 \).

Let \(P_2 = (Q, x) \) be a point in \(\mathcal{D}_2 \). Blocks incident with \(P_2 \) are of the form \((x, P, y)\). \(P \) is incident with \(r \) blocks from \(\mathcal{B} \), so we have \(r - 1 \) possibilities for choosing the block \(y \).

Points \(P_2 = (Q, x) \) and \(Q_2 = (R, x) \) are incident with \(r - 1 \) common blocks. \(P_2 \) and a point \(R_2 = (S, y), y \neq x \), are incident with exactly one common block, the block \((x, P, y)\).

A pair of blocks \(x_2 = (x, P, y) \) and \(y_2 = (y, P, z) \) is incident with \(k - 1 \) points which correspond to \((Q, y), Q \in \mathcal{P}, Q \neq P, \) while blocks \(x_2 = (x, P, y) \) and \(z_2 = (z, P, w) \) do not have common points. \(\square \)

Let \(S \) be a set, \(r \) an even number and \(|S| = r \). Then there exist \(r - 1 \) partitions \(R_1, \ldots, R_{r-1} \) of \(S \) into 2-subsets, such that for every 2-subset \(|x, y| \subset S \) there exists exactly one partition \(R_i \) such that \(|x, y| \in R_i \).

Corollary 2. Let \(\mathcal{D} = (\mathcal{P}, \mathcal{B}, I) \) be a \((v, k, \lambda)\) block design and \(P \in \mathcal{P} \). If \(r \) is even, then \(\mathcal{D}_2 \) is a resolvable \((r - 1)\)-configuration. Blocks of \(\mathcal{D}_2 \) are partitioned into \(r - 1 \) parallel classes, each class consists of \(r/2 \) blocks.

Proof. Let \(\{x_1, x_2, \ldots, x_r\} \) be blocks of the design \(\mathcal{D} \) which are incident with the point \(P \). Further, let \(R_1, R_2, \ldots, R_{r-1} \) be pairwise disjoint partitions of the set \(\{x_1, x_2, \ldots, x_r\} \) into 2-subsets. Each partition \(R_i, i = 1, \ldots, r - 1 \), determines \(r/2 \) parallel blocks of \((r - 1)\)-configuration \(\mathcal{D}_2 \), i.e., one parallel class. Since \(R_1, R_2, \ldots, R_{r-1} \) are mutually disjoint partitions, they induce a partition of the set \(\mathcal{B}_2 \). \(\square \)
Corollary 3. Let $D = (\mathcal{P}, \mathcal{B}, I)$ be a (v, k, λ) block design, $P \in \mathcal{P}$ and $D_2 = (\mathcal{P}_2, \mathcal{B}_2, I_2)$ be the incidence structure defined as above. Then the dual structure D_2 of D is a (v', b', k')-configuration with the following properties:

1. $v' = \left(\frac{r}{2}\right)$,
2. $b' = r(k - 1)$,
3. $k' = r - 1$,
4. $r' = 2(k - 1)$,
5. every pair of points is incident with exactly $(k - 1)$ or 0 blocks,
6. every pair of blocks is incident with exactly $(r - 1)$ or 1 points.

Remark 2. If $D = (\mathcal{P}, \mathcal{B}, I)$ is a $(v, 3, \lambda)$ block design, then \overline{D}_2 is a spatial configuration. Especially, if D is a Steiner triple system then \overline{D}_2 is a spatial configuration.

Corollary 4. Let $D = (\mathcal{P}, \mathcal{B}, I)$ be a (v, k, λ) block design. Then D_2 and \overline{D}_2 are symmetric if and only if $k = (r + 1)/2$.

Corollary 5. Let $D = (\mathcal{P}, \mathcal{B}, I)$ be a residual design of a Hadamard $(m - 1, \frac{1}{2}m - 1, \frac{1}{4}m - 1)$ design. Then D is a $(\frac{1}{2}m, \frac{1}{4}m - 1)$ block design, D_2 is a symmetric $(\frac{1}{2}m - 2)$-configuration and \overline{D}_2 is a symmetric $(\frac{1}{4}m - 1)$-configuration.

Proof. D is a $(\frac{1}{2}m, \frac{1}{4}m - 1)$ block design and each point of D is incident with exactly $\frac{1}{2}m - 1$ blocks. □

References