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A connect ion  is es tabl ished be tween  formal  language theory  and  m a t h e -  
matical  analysis by  associat ing the  symbo l s  of  s t r ings  of  a language  wi th  the  
digits of  expans ions  of  po in t s  in the  un i t  interval.  A language  is m a d e  to 
cor respond  to a par t icular  subse t  of  the  un i t  interval,  and  the  d imens ion  of  a 
language  is defined as the  Hausdo r f f  d imens ion  of this  subset .  It  is shown  tha t  
the  d imens ion  of  a language  is less t han  or equal  to its channe l  capacity, and  it 
is s h o w n  tha t  a s t a t emen t  involving the  d imens ion  of  a language  can be added  
to a list of  criteria developed by  Brainerd  and  K n o d e  (1972) for de t e rmin ing  
tha t  a language  is no t  recognizable by  a finite au tomaton .  

1. INTRODUCTION 

This paper introduces the idea of viewing a formal language as a subset of 
the unit interval in order that techniques from mathematical analysis may 
be employed. The  particular concept from analysis which will be used here is 
that of Hausdorff dimension. It  is defined as follows (see Billingsley, 1965). 

Let  S ~ {0, 1,..., b - -  1} where b > / 2  is an integer, let x ~ (0, 1], and let 
ao 

x = Y~i=~ xi b-i be the nonterminating base b expansion of x. Define bi(x) =~ xi 
for all i, i.e., bi(x ) is the ith digit of the nonterminating base b expansion of x. 
A set of the form {x : b~(x) = s i , i = 1,..., n}, where si ~ S, is denoted 
[s 1 ,..., s~] and is called a cylinder of  length b -~. Note that [s 1 .... , s~] is a 
half-open (open on the left) b-adic interval of length b -n (i.e., an interval of 
the form ( j ib% ( j  + 1)/b ~] for some j, 0 ~<j ~< b '~ - -  1). 

Now let M C (0, 1], let c~ and p be positive real numbers, and let h be 
Lebesgue measure. Define ;~(M, p ) ~  infY~ih(vi) ~, where the infimum is 
taken over all p-coverings of 34, a p-covering being a covering by cylinders 
v~ with )~(v~) < p. I t  is clear that A~(M, p) ~< A~(3~ r, p') for p' < p, so the limit 

hn(M ) ~ lim A~(M, p) 
040 

exists (but may be infinite). I t  can be shown that for fixed M there is an a 0 
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such that A~(M) = ~ for ~ < ~0 and A~(M) = 0 for ~ > a0. The  number  % 
is called the (Hausdorff) dimension of M and is denoted by dim M. Some 
properties of dimension are given in the following proposition (Billingsley, 
1965). 

PROPOSITION 1. Dimension has the following properties: 

(i) The dimension of a set lies between 0 and 1 ; 
(ii) The dimension of a countable set is 0; 

(iii) The dimension of a set of positive Lebesgue measure is 1 ; and 
(iv) dim (M 1 u 1142) : max (dim 3/1 ,  dim M2) for  any two subsets 

M 1 and M e of the unit interval 

In  Section 2 a subset of the unit interval associated with a language is 
described and the dimension of a language is defined. Section 3 gives examples 
of the dimension and channel capacity of certain languages. In  Section 4 an 
inequality relationship between the dimension and channel capacity of a 
language is proven. In  Section 5 it is shown that a statement involving the 
dimension of a language can be added to a list of criteria developed 
by Brainerd and Knode (1972) for determining that a set is not recognizable 
by a finite automaton. Finally, Section 6 gives examples using the result of  
Section 5. 

2. THE DIMENSION OF A LANGUAGE 

Let  Z be a finite alphabet of cardinality b > /2 ,  let L be a language over Z 
(i.e., L _C Z*  where Z*  is the set of all finite strings of elements from Z),  and 
l e t f  be a one-to-one onto function from Z to S. Define a subset My* of (0, 1] 
associated with L and f as follows. 

DEFINITION. Mr* ~ {x E (0, 1] : given a positive integer p, there exists an 
integer q ) p such that the string f-l[bl(x)] ""f-l[b~(x)] EL}. 

ML* represents the set of infinite strings which have arbitrarily long initial 
segments be longingto  L. 

T h e  dimension of a language L, written dim L, is now defined as the number  
d im ML*. We omit reference to f when writing dim L because of the following 
proposition. 

PROPOSITION 2. Let f and g be one-to-one onto functions from X to S. Then 
dim MLI = dim MLo for any language L. 
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Proof. I t  is clear from properties (ii) and (iv) of Proposition 1 that the 
dimension of a set is not changed by the addition or deletion of a countable 
number  of points. In  what follows, we will assume that all rational points 
have been removed from MLS and ML~. Since the set of rationals is countable, 
the dimensions of MaS and MLg will remain unchanged. 

Let {vi : i = 1, 2,...} be a covering of ML s where each vi is a cylinder 
S i " s i  [ 1 , @, . . . . .  J. Let  u i be the cylinder 

--1 S i --1 s i  [g(f  (1 ) )  ..... g(f ( ~,))]; 

we show nowtha t  {ul : i = 1, 2,...} is a covering of ML~. Let yEMLg  and 
let Yi =-- bi(y) for all i >~ 1. Then  it is clear that 

y'  =~ . f[g- l (y l )  ] f[g-l(y2) ] "" e MLs 

and thus y '  ~ v~ for some k. (It is at this point that we wish to avoid considera- 
tion of certain rational points. I f  y was a rational whose expansion was non- 
terminating in some digit, then it is possible that the expansion above for y '  
could be the terminating expansion, and y '  may not belong to .MLs. ) Now vz: 
is a cylinder 

[f(g-~(yl)),... ,  f(g-l(yn~))] 

SO 

uk = [g( f - l ( f (g- l (y l ) ) ) )  ..... g(f-~(f(g-l(yn~))))] 

[Yl .... , Ynk], 

which covers y. Hence every point of ML~ belongs to some u k so 
{ui : i = 1, 2,...} is a covering of MLg. 

We have shown that for every cover of MLS by a set of cylinders there is 
another set of the same number of cylinders with the same lengths which 
covers Mff.  Similarly it can be shown that every covering of MLg has a 
corresponding covering of MLr. This correspondence of coverings of MLg 
and M S is sufficient to show that dim MLs = dim dF/Lg. | 

As a result of Proposition 2, we see that for defining the dimension of a 
language, there is no loss in generality in assuming that the alphabet ~' is 
simply S, and that L _C S*. We shall then omit reference to f and refer to 
simply M L . 

The  following proposition demonstrates two properties of the dimension of 
a language which follow easily from properties of dimension in the unit 
interval. 
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PROPOSITION 3. Let  L~ and La be languages over S.  

(i) dim (L~ wLe)  = max ( d i m L y ,  dimLy);  

(ii) I f L ~  C L z  then dimL~ ~< d i m L z .  

Proof. (i) We show first that ML~UL ~ = ML~ W N I L .  Let  x e ML~UL 2 . 
Then  for every positive integer p, there exists an integer q /> p such that  
bl(x ) ... bq(x) e L  1 u L  2. I f  x e M L ~  then x ~ML~ U ML . I f  X ~ M L a ,  then 
there exists a positive integer r such that  for no s > / r  does bl(x ) "" bs(x ) ~ L  1 . 

But since bl(x ) "" b o ( x ) ~ L  1 u L 2 for arbitrari ly large q, it  must  be the case 
that bl(x ) "" b~(x) e L~ for arbitrarily large q. Hence x ~ M ~  so x ~ M ~  u ML . 

Now let x a ML~ tA M5~ .  I f  x ~ ML~ then for every positive p, there exists 
an integer q > / p  such that  

bl(X ) "'" bq(x) ~ L 1 C_ L 1 w L2 , 

so X ~ M L 1 u L  ~. A similar argument holds if x ~ M L .  Thus  ML1UL 2 = 
ML1 W ML~, so by proper ty  (iv) of Proposit ion 1 we have dim ML1UL ~ = 
max (dim ML~ , dim ML2 ). 

(ii) Using part  (i) and the fact that L I_CLz,  we have dim L 2 = 
dim(La wL2) = max(dimLy, dimL2) >~ d i m L x .  | 

Next  we prove a proposi t ion that  illustrates the structure of the set M z . 
Let  N(n)  be the number  of strings of length n in L, and for each such string 

""" " [ 1 ,.-., sn~] • Then  let sl * sn* of length n define A n  i to be the cylinder s i 

N(n) 

A n  ~ U A ~  i 
i = 1  

(where we take A n ~ ~ if N(n)  = 0). 

PROPOSITION 4. M r = l im sup An • 

Proof. Let  x ~ M z and let p be a positive integer. Then  there exists an 
integer q ~>p such that  bl(x ) "" bq(x )EL,  and hence x ~ A q .  There -  

co co co 

fore x ~ Un=~ A n  , and since p was arbitrary, x e 0~=1 Un=~ A n  , i.e., 
x ~ lira sup An • 

¢o co co 
Now let x ~ (~=1Un=~ A n  and let r be a positive integer. Then  x ~ Un=r A n  

so there exists a q ~ r such that  x E Aq.  Then  bl(X ) -'- bq(x) e L  so x ~ M L . | 
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3. EXAMPLES 

Dimension,  in a sense, measures the size of a language. Another  quanti ty 
used to measure language size, the (channel) capacity, has been considered by 
several authors (see, for example, Kuich, 1970). I t  is defined as follows. Le t  R 
be the radius of convergence of the power series ~ 1  N(n) z~; the capacity 
C of a language is defined as C ~- log ( l /R) .  By Hadamard ' s  formula, 

1/R = lim sup[N(n)]~/~, 
n - +  oz  

and thus 
C = lim sup[log N(n)/n]. 

n-~m 

All logs are taken to the base b (the cardinality of the alphabet), and log 0 is 
taken to be 0. In  this section we compute the dimension and capacity of some 
sample languages; in the next section an inequality relationship between 
dimension and capacity is proven. 

EXAMPLE 1. Let  L ~ S*. Then  M L = (0, 1] so dim L = 1. Also, 
C = lira s u p ~ ,  (log b~/n) = 1. 

EXAMPLE 2. Let  L be finite. Then  M L = ~ so dim L = 0. Also, C = 0. 

EXAMPLE 3. Let  S ~ {0, 1} and let L ~ {w E S*: w does not contain two 
consecutive l's}. The  recurrence relation N(n)=  N ( n -  1 ) @  N ( n -  2), 
n >~ 3, holds, since all strings of length n are accounted for by adding a 0 
to the strings of length n - -  1, or by  adding 01 to the strings of length n - -  2. 
This  is the Fibonacci  recurrence relation and it has the solution 

N(n) = (1/51/2){[(1 + 51/2)/2p ÷~ - -  [(1 - -  51/~)/2]~+2}. 

A theorem of the author (1970, Theorem 3.5) can be used to show that  
dim L = (2, and, from the above expression for N(n), this value is seen to be 
log [(1 + 5~/~)/2]. 

EXAMPLE 4. Let  S ~ {0, 1, 2} and let L ~ {w ~ S* : w does not contain 
a 1}. Then  My is the Cantor set and it is well-known that dim 1]//L = log 2. 
Also, C = lim sup~o~ log 2~/n = log 2. 

EXAMPLE 5. Let  L = {0nw : w ~ S* and ] w / = n, n = 1, 2,...}, where 
[ w ] denotes the length ofw. Then  M z = s~ so d i m L  = 0. Since N(n) = b~/2 
for n even and N(n) = 0 for n odd, C = 1/2. 
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4. RELATIONSHIP BETWEEN DIMENSION AND CAPACITY 

THEOREM 1. Let L be a language with capacity C. Then dimL ~ C. 

Proof. By Proposition 4, My ~- 0~-_1 0 ~  An.  Hence, for any integer 
~o / j  

p >/ 1, 0~=~ ~ contains M L and thus the collection of cylinders 

{A~i: n ~ p, p + 1,...; i = 1, 2,..., N(n)} 

is a covering of ML • Let E > 0 and p > 0 be given and choose p such that 
b -~ < p. Then 

Ac+,(mz, p ) ~  ~ N(n) b -~c+~)". 

Now 
b-(C+~) < b-C ~_ b-log 1/R = R, 

• o O  

where R is the radius of convergence of the power series ~n=x N(n) z ~. Thus 
the series ~ - - x  N(n) b -~c+~)n converges; call its value V. Then 

Ac+~(ML, p) <~ V < 0% 

and since p was arbitrary, it follows that Ac+~(ML) ~ V < ~ .  Thus 

dim M L ~ C + E, 

and since e was arbitrary, we have dim ML <~ C. | 

The examples of the preceding section show that the relationship in the 
theorem cannot be improved to either equality or strict inequality. 

5. A NEW CRITERION FOR RECOGNIZABILITY 

We state here for reference purposes a theorem of Brainerd and Knode 

(1972). 

THEOREM 2 (Brainerd and Knode). LetL C_ S*, where S is of cardinality b, 
be recognized by a finite automaton• Let Q be the states of the minimal automaton 
A which recognizes L. Let N(n) be the number of strings of length n in L, R the 
radius of convergence of Zn~°__l N(n) z", C the capacity of L, and define iz(L) 
limm** (1/m)~],~=t [N(n)/b~]. Then the following are equivalent (x, y, and 
z denote strings in S*): 
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(a) A has a dead state d accessible from each state q ~ Q. 

(a') Vq~x(qx : d), where qx is the state of A after starting in state q and 
reading the input x. 

(a") Vy3xVz(yxz eL). 
(b) 3xVyVz(yxz  eL) .  

(b') 3xYq(qx = d). 

(b") 3x(S*xS* c~L = ;g). 

(c) R > (l/b), or equivalently, C < 1. 

(d) N(n)/b ~ --~ 0 as n --+ oo. 

(e) I~(L) = O. 

( f )  There is no subsequence of {N(n)} of the form {N(nt + m))~=o, 
t ~ m ~ O, such that l i m ~ o  {N[(n -]- 1) t + m]/N(nt - km) )  : b e. 

Another statement, involving the dimension of L, is now added to this list. 

THEOREM 3. The statement below can be added to the list of equivalent 
statements in Theorem 2: 

(g) dim L < I. 

Proof. We shall prove that (c) implies (g) and (g) implies (d). 

(c) implies (g): By Theorem 1, d imL ~ C, and hence C < 1 implies 
dim L < 1. 

(g) implies (d): d imL < 1 implies AI(ML) = 0 and thus AI(ML, p) = 0 
for all p. Let  e > 0 be given. Then  there exists a covering {vi : i = 1, 2,...} 

of M z = On = l  Uj=n i such that Y,i=l ( v i ) <  e/2. Let  E~ U~=nA~ co 
and let v ~ L)i=I  v i .  Suppose A(E~ --  v) /> e/2 for all n /> 1. {E~ --  v} is a 
decreasing sequence of sets and by a well-known result in analysis, 

A (E,  - -  v) = lira A(E, --  v) ) e/2. 

But 

a ( E ~ - v  - - ~  Z - - v  = A ( M L - - v ) = A ( ~ ) = 0 .  

This contradiction shows that there must exist a positive integer m such that 
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A(E~ - -  v) < ¢/2. Then  since {En --  v} is decreasing, A(En - -  v) < ~/2 for 
a l l n > ~ m .  Now 

N ( n )  b -~ -~ A(A~) ~ A(En) 

= ~(E~ n , )  + ~(E~ - -  ~) < ~(.) + ~(E~ - -  . )  < 

for all n ~ m. Thus  N ( n )  b -~ --~ 0 as n --~ ~ .  | 

The  condition dim L < 1 means intuitively that L gives rise to a "small" 
set of infinite strings, since dim L < 1 means that M L has Lebesgue measure 
0 (property (iii) of Proposition 1). 

6. EXAMPLES 

A language which satisfies one of the conditions of Theorems 2 and 3 but 
fails to satisfy another of the conditions is not recognizable by a finite auto- 
maton. Four examples will now be given. 

EXAMPLE 6. Let L ~ {ww: w E S*}. Then  the capacity C = 1/2 so 
d i m L  ~< 1/2. Thus  conditions (c) and (g) are satisfied but (b") is not, since for 
each w, wwe E L .  Hence L is not recognizable. 

EXAMPLE 7. The  language L of Example 5 is not recognizable since 
d i m L  = dim N = 0, and since for each w, 01WlwE EL, i.e., condition (g) 
is satisfied but (b") is not. 

I t  is well known that a language A is recognizable if and only if its reversal 
A R is recognizable. This fact is useful when applying condition (g) to a 
language such as L, since computation of dim L is trivial but  computation of 
dim L R is difficult. Hence, both L and L R should be examined to determine 
if one gives an easier computation of the dimension. 

This example can be slightly generalized. Let f be an unbounded nonneg- 
ative integer-valued function defined on the positive integers. Then  the 
language 

{0*'w: w E S* and ] w ] = f ( n ) ,  n = 1, 2,...} 

is not recognizable, since, as before, condition (g) is satisfied but (b") is not. 

EXAMPLE 8. Let S -~ {0, 1,..., b - -  1}, b >~ 2, let pi , 0 ~ i ~ b - -  1, 
b--1 

be positive rational numbers such that ~ = o  Pi = 1 and Pi ~= 1/b for some i, 
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and let L = {w e S*:  w contains i in the proportion Pi,  0 ~ i ~ b -- 1}. 
For each x ~ (0, 1] define ai(x, n), 0 ~ i ~ b -- 1, as the number of occur- 
rences of i among bl(x),... , b,~(x). Now for each x e M z the sequence 
{[ai(x, n)]/n}~=l has a cluster point o f p i ,  0 ~ i ~< b - -  1, since [ai(x, n)]/n 
has the value Pi for infinitely many n. Thus  M L is contained in the set 

S ~ {xe  (0, 1] : limsup[a~(x, n)]/n >~p~, 0 <~ i <~ b -- 1}. 

b--1 
Now let H =-- --Y~i=oPi logpi  and let 

T ~  I x ~ ( O ' l ] : l i m i n f (  lb-1 ) I . . . .  \ - -  n ~' ai(x, n) logpi ~ H . 
i=0 

A theorem of Billingsley (1961, Theorem 2.1) can be used to show that 
dim T ~< H. I t  is clear that S C T; therefore 

d i m L  ~ dim 214 L <~ dim S ~< dim T ~< H, 

and H < 1 sincepi =/: lib for some i (see, for example, Ash (1965, Theorem 
1.4.2)). Thus  condition (g) is satisfied. However, (b") is not satisfied since for 
each w e S*, 

0~11 . . . . .  (b - -  1) ~° wc e L  

for appropriate integers ni ~ O. Thus L is not recognizable. For example, this 
technique shows that the language 

{w e {0, 1}*: w consists of twice as many O's as l's} 

is not recognizable. 

EXAMPLE 9. Let S ~ {0, 1,..., b - -  1}, b > /2 ,  and let Px,  P~, P~ ,... be 
a sequence of strings over S such that (i) a particular string appears only a 
finite number  of times in the sequence, and (ii) I Pi ] <~ [ Py ] implies that Pi 
is a prefix of P5 (denoted Pi I PJ). Also, let Q1, Q2, ~a .... , be any enumeration 
of the strings of S*, and le tL ~ {Pi~i : i = 1, 2, 3,...}. Because of conditions 
(i) and (ii), it is clear that there exists a unique infinite string P such that 
Pi [ P for all i, and it is easily seen that M L is either empty (in case the point .P 
is in the form of a terminating expansion) or consists of the single point .P (in 
case .P is in the form of a nonterminating expansion). In  either case, d i m L  
dim M L ~ O, so condition (g) is satisfied. However, (b ')  is not satisfied since 
for each w e S*, PiwE eL ,  where i is such that w = ~ i .  Thus  L is not 
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recognizable. For this example, conditions (g) and (b") are particularly easy 
to use in relation to other techniques to show that L is not recognizable. 

I l L  is any of  the languages in the four examples above, then L u K is not 
recognizable for any language K with dim K < 1. The  reason is that con- 
dition (g) is still satisfied and (b") is still not satisfied. 
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