On the Cohomology of Certain Topological Colimits of Pro-C-Groups

Dion Gildenhuys
Department of Mathematics, McGill University, Montreal, Canada

AND

Luis Ribes

Department of Mathematics, Carleton University, Ottazua, Canada
Communicated by D. Buchsbaum
Received October 10, 1971

Introduction

Let \mathbf{C} be a class of finite groups, closed under the formation of subgroups, group extensions and homomorphic images. In Section 1 we develop a cohomology theory for pairs (G, H) of pro-C-groups, (where H is a closed subgroup of G), on the same lines as Ribes' cohomology theory of pairs of abstract groups [15]. If G is the colimit (push-out) of the diagram

in the category PC of pro-C-groups, and the canonical map $K \rightarrow G$ is injective, then we have an excision axiom (Theorem 1.10)

$$
H^{n}(G, H,-) \cong H^{n}(K, L,-), \quad n \geqslant 1
$$

If both canonical maps $K \rightarrow G$ and $H \rightarrow G$ are injective, then G is called the amalgamated product of K and H over the common closed subgroup L (see Ribes [16]), and we have

$$
H^{n}(G, I,-) \cong H^{n}(H, L,-) \oplus H^{n}(K, L,-), \quad(n \geqslant 1),
$$

(Proposition 1.11), as well as a Mayer-Vietoris sequence for the ordinary cohomology groups (Theorem 1.13). Section 2 is mainly formal in nature. We recall the definition of a category object \mathscr{C} in a category \mathscr{P} with pullbacks; and when \mathscr{P} is the category top of topological spaces or the category Ptop of pointed topological spaces, we define the concepts of a functor from \mathbb{C} into PC, and the colimit of such a functor. The first author learned about such things from A. Joyal, who dealt with similar concepts in the setting of the topos of Lawvere and Tierney. Just as a free discrete group is the colimit of a functor with domain a discrete category and values equal to the free group on one generator, the free pro-C-group generated by a pointed topological space is the topological colimit of a functor: $\mathscr{C} \rightarrow \mathbf{P C}$, where \mathscr{C} is a category object in Ptop without nonidentity maps. More generally, the free pro-C-product defined in Gildenhuys and Ribes [7] of a family $\left\{G_{x} \mid x \in X\right\}$ of pro-C-groups, indexed by a pointed topological space $(X, *)$, with $G_{*}=(1)$ and $x \mapsto G_{x}$ locally constant outside ($*$), is an example of a topological colimit of such a functor (Proposition 2.2). In Section 3 we study the cohomology of such free pro-C-products.

Given a discrete group $F^{0}\left(x_{0}, x_{1}, \ldots, x_{m+1}\right) /(r)$ with one defining relator r and minimal set $\left\{x_{0}, x_{1}, \ldots, x_{m+1}\right\}$ of generators, assume that r belongs to the normal subgroup $N^{0}=\left(x_{0}, x_{1}, \ldots, x_{m}\right)$, generated in the free group $F^{0}\left(x_{0}, x_{1}, \ldots, x_{m+1}\right)$ by the elements $x_{0}, x_{1}, \ldots, x_{m}$. Very often r becomes more amenable when expressed in terms of the frec gencrators $x_{i, j}=x_{m+1}^{-j} x_{i} x_{m+1}^{j}$ $(0 \leqslant i \leqslant m, j \in \mathbb{Z})$ of N^{0}. For one thing it becomes shorter. If r belongs to the subgroup $F_{0}{ }^{0}$ of N^{0} freely generated by the elements $\left\{x_{i, j} \mid h_{i} \leqslant j \leqslant\right.$ $\left.h_{i}+n_{i} ; 0 \leqslant i \leqslant m\right\}$, then $r_{k}=y^{-k} r y^{k}$ belongs to the subgroup $F_{k}{ }^{0}$ of N^{0} freely generated by $\left\{x_{i, j} \mid h_{i}+k \leqslant j \leqslant h_{i}+k+n_{i} ; 0 \leqslant i \leqslant m\right\}$; and N^{0} / R^{0}, where $R^{0}=(r)$, can be built up from the (simpler) one relator groups $F_{k}^{0} /\left(r_{k}\right)$ by a process of successive amalgamations followed by a passage to the direct limit (see Karass, Magnus, and Solitar [13, p. 252]). In the case of pro-p-groups with one defining relator, we can do something similar, but the direct limit (or colimit) in the category of groups has to be replaced by a topological colimit in the category of pro-p-groups (Proposition 2.3). Section 4 deals with the cohomology of pro-p-groups with single defining relator. As an illustration of our methods, we consider the defining relator

$$
r=x^{y}((x, y),((y, x), x))
$$

(Example 4.5). If $p=3$, Labute's method [10] does not apply. However, rewriting r in terms of the conjugates $x_{j}=y^{-j} x y^{j}$, it becomes more amenable

$$
r=r_{0}=x_{0}{ }^{3}\left(x_{0}^{-1} x_{1},\left(x_{1}^{-1}, x_{0}\right)^{x_{0}}\right) .
$$

Labute's method gives $\operatorname{cd}\left(F\left(x_{0}, x_{1}\right) /\left(r_{0}\right)\right)=2$, and from our Theorem 4.4 we deduce that $\operatorname{cd}(F(x, y) /(r)) \leqslant 3$.

1. A Соhomotogy Theory for Pairs of Pro-C-Groups

Throughout this section, \mathbf{C} will denote a nontrivial class of finite groups, closed under the formation of subgroups, extensions, and homomorphic images. Note that if the order of a group in \mathbf{C} is divisible by a prime p, then \mathbf{C} contains the Sylow p-groups of that group, and hence contains all finite p-groups. It follows that the free pro-C-group on one generator is of the form

$$
\hat{\mathbb{Z}}_{\mathbf{C}}=\prod_{p \in S} \hat{\mathbb{Z}}_{p}
$$

where \mathbb{Z}_{p} denotes the ring of p adic integers, and S is the set of primes dividing the order of some group in \mathbf{C}. So, $\hat{\mathbb{Z}}_{\mathbf{C}}$ is a pseudocompact ring, and for every pro-C-group G we can define a complete group algebra

$$
O l G=\hat{\mathbb{Z}}_{\mathbf{C}}[[G]]=\lim _{\overleftarrow{U}} \hat{\mathbb{Z}}_{\mathbf{C}}[G / U]
$$

(U runs through the open normal subgroups of G) which is again a pseudocompact ring (Brumer [2, Section 4]). Let $\mathscr{C}_{\mathbf{C}}{ }^{G}$ be the category of discrete (topological) (OUlG)-modules. Then $\mathscr{C}_{C}{ }^{G}$ is an abelian category with enough injectives (Brumer [2, Lemma 1.8]). Note that the discrete (OVIG)-modules can also be characterized as discrete G-modules A that are \mathbf{C}-torsion, in the sense that each element of A has finite order equal to a product of powers of primes in S (see Brumer [2, pp. 454, 455]). Given an abelian torsion group, i.e., a discrete $\hat{\mathbb{Z}}$-module, where

$$
\hat{\mathbb{Z}}=\hat{\mathbb{Z}}_{\mathbf{F}}=\prod_{p} \hat{\mathbb{Z}}_{p},
$$

and \mathbf{F} is the class of all finite groups, we denote by $T(A)$ (resp. $T^{\prime}(A)$) the submodule of A consisting of all elements whose orders are products of powers of primes $p \in S$ (resp. $p \notin S$). One easily sees that $A=T(A) \oplus T^{\prime}(A)$, and if $0 \rightarrow A^{\prime} \rightarrow A \rightarrow A^{\prime \prime} \rightarrow 0$ is an exact sequence of abelian torsion groups, then so is $0 \rightarrow T(A) \rightarrow T\left(A^{\prime}\right) \rightarrow T\left(A^{\prime \prime}\right) \rightarrow 0$.

Let H be a closed subgroup of G, let $A \in\left|\mathscr{C}_{\mathbf{c}}{ }^{G}\right|$, and denote by $M_{G}{ }^{H}(A)$ the induced module (Serre [18, Chapter I, 2.5] or Ribes [17, p. 143]). One has an exact sequence

$$
0 \rightarrow A \xrightarrow{i} M_{G}^{H}(A) \rightarrow \Gamma(A) \rightarrow 0
$$

in $\mathscr{C}_{\mathrm{C}}{ }^{G}$ [18, I-13], $M_{G}{ }^{H}: \mathscr{C}_{\mathrm{C}}{ }^{G} \rightarrow \mathscr{C}_{\mathbf{C}}{ }^{G}$ is an exact functor (see Ribes [17, Proposition 7.2]), and, by the 3×3 lemma [12, Lemma 5.1], $\Gamma: \mathscr{C}_{\mathrm{C}}{ }^{G} \rightarrow \mathscr{C}_{\mathrm{C}}{ }^{G}$ is also an exact functor.

Consider the abelian group

$$
X(G, H, A)=\{f: G \rightarrow A|f(x y)=x f(y)+f(x), f| H=0\}
$$

of continuous crossed homomorphisms from G to A, vanishing on H.
Definition 1.1. The nth right derived functor of the left-exact functor $X(G, H,-)$ from $\mathscr{C}_{\mathrm{C}}{ }^{G}$ into the category $O \not \subset b$ of abelian groups, is denoted by $H^{n+1}(G, H,-)$, and $H^{n+1}(G, H, A)$ is called the $(n+1)$ st cohomology group of the pair (G, H), with coefficients in the discrete G-module $A(n \geqslant 0)$.

We shall see that these cohomology groups are independent of \mathbf{C}, in the sense that we get the same groups if we view G and H as profinite groups, and A as an object of $\mathscr{C}_{\mathbf{F}}{ }^{G}$.

Lemma 1.2. One has a natural isomorphism

$$
\operatorname{Hom}_{G}\left(\hat{\mathbb{Z}}_{\mathbf{C}}, \Gamma(A)\right) \cong X(G, H, A) .
$$

The proof proceeds almost exactly as in Ribes [15], Lemma 1.1, and is therefore omitted.

Lemma 1.3. Let H be a closed subgroup of a pro-C-group G, and let A be an injective object of $\mathscr{C}_{\mathbf{C}}{ }^{G}$ or of $\mathscr{C}_{\mathbf{F}}{ }^{G}$. Then the cohomology groups $H^{n}(H, A)$ are zero for $n \geqslant 1$.

Proof. For every open normal subgroup U of G, let

$$
A^{U}=\{a \in A \mid u a=a, u \in U\}
$$

be the submodule of U-invariants. If A is an injective object of $\mathscr{C}_{\mathbf{C}}$, then A^{U} is easily seen to be an injective G / U module. By Ribes [17, Lemma 5.12], it is an injective ($H U / U$)-module, and from the isomorphism

$$
H^{n}(H, A) \cong \lim _{\vec{v}} H^{n}\left(H U / U, A^{U}\right)
$$

of Serre [18, I, Proposition 8], we deduce that $H^{n}(H, A)=0$ for $n \geqslant 1$. The same argument applies if A is an injective objcct of $\mathscr{C}_{\mathbf{F}}{ }^{f}$.

Proposition 1.4. Let A be an object of $\mathscr{C}_{\mathbf{F}}{ }^{G}$. Then $T(A)$ is an object of $\mathscr{C}_{C}{ }^{G}$, and one has natural isomorphisms of cohomology functors

$$
\begin{aligned}
H^{n}(G, A) & \cong H^{n}(G, T(A)) \\
H^{n+1}(G, H, A) & \simeq H^{n+1}(G, H, T(A)) \simeq H^{n}(G, \Gamma(A)) \simeq H^{n}(G, \Gamma(T A))
\end{aligned}
$$

for all $n \geqslant 1$.
Proof. One easily sees that $T: \mathscr{C}_{\mathbf{F}}{ }^{G} \rightarrow \mathscr{C}_{\mathbf{C}}{ }^{G}$ is an exact functor mapping injectives to injectives, and

$$
M_{G}{ }^{H} \circ T=T \circ M_{G}{ }^{H}, \quad \Gamma \circ T=T \circ \Gamma
$$

Since both $H(G,-)$ and $H(G, T(-))$ are effaceable by injectives in $\mathscr{C}_{\mathbf{F}}$, and $\Gamma: \mathscr{C}_{\mathbf{C}}{ }^{G} \rightarrow \mathscr{C}_{\mathbf{C}}{ }^{G}$ is exact, the isomorphisms
$H^{n}(G,-) \cong H^{n}(G, T(-)), \quad H^{n}(G, \Gamma(-)) \cong H^{n}(G, \Gamma(T(-))) \quad(n \geqslant 0)$
follow from a standard comparison theorem (Ribes [17, Corollary 5.7]). Lemma 1.2 yields the natural isomorphism

$$
X(G, H, A) \cong X(G, H, T(A))
$$

and we may as well assume that A is in $\mathscr{C}_{\mathbf{c}}{ }^{G}$. Using the isomorphism

$$
H^{n}(G,-) \cong \operatorname{Ext}_{I l t G}^{n}\left(\mathbb{Z}_{\mathbf{C}},-\right), \quad n \geqslant 0
$$

(Brumer [2, Lemma 4.2(i)]), and applying $\operatorname{Hom}_{\text {alG }}\left(\mathbb{Z}_{\mathbf{c}},-\right.$) to the exact sequence

$$
0 \rightarrow A \rightarrow M_{G}^{H}(A) \rightarrow \Gamma(A) \rightarrow 0
$$

we obtain a long exact sequence

$$
\begin{aligned}
0 & \rightarrow \operatorname{Hom}_{\text {allG }}\left(\hat{\mathbb{Z}}_{\mathbf{C}}, A\right) \rightarrow \operatorname{Hom}_{\nexists l G}\left(\hat{\mathbb{Z}}_{\mathbf{C}}, M_{G}^{H}(A)\right) \rightarrow \operatorname{Hom}\left(\hat{\mathbb{Z}}_{\mathbf{C}}, \Gamma(A)\right) \\
& \rightarrow H^{1}(G, A) \rightarrow H^{\mathbf{1}}\left(G, M_{G}^{H}(A)\right) \rightarrow H^{1}(G, \Gamma(A)) \rightarrow H^{2}(G, A) \\
& \rightarrow H^{2}\left(G, M_{G}^{H}(A)\right) \rightarrow \cdots .
\end{aligned}
$$

By Serre [18, 1-12, Proposition 10], we have natural isomorphisms

$$
H^{n}\left(G, M_{G}^{H}(A)\right) \cong H^{n}(H, A), \quad n \geqslant 0
$$

and if A is an injective object of $\mathscr{C}_{\mathbf{C}}{ }^{G}$, then

$$
H^{n}(G, A)=0=H^{n}(H, A)
$$

for all $n \geqslant 1$ (Lemma 1.3). From the above long exact sequence, we conclude that $H^{n}(G, \Gamma(A))=0$ for all $n \geqslant 1$, and by Lemma 1.2 and the standard comparison theorem (Ribes [17, Corollary 5.7]), we have

$$
H^{n}(G, \Gamma(-)) \cong H^{n+1}(G, H,-), \quad n \geqslant 1
$$

Proposition 1.5. Let H be a closed subgroup of a pro-C-group G, and let A be an object of $\mathscr{C}_{\mathbf{C}}{ }^{G}$. There exists a long exact sequence

$$
\begin{aligned}
0 & \rightarrow A^{G} \xrightarrow{i} A^{H} \xrightarrow{\delta} H^{1}(G, H, A) \xrightarrow{j} H^{1}(G, A) \\
& \xrightarrow{i} H^{1}(H, A) \xrightarrow{\delta} H^{2}(G, H, A) \xrightarrow{j} \cdots
\end{aligned}
$$

where the i 's are restriction maps induced by the inclusion $H \subset G$.
Proof. Substitute A^{G} for $\operatorname{Hom}_{\not \subset \imath G}\left(\hat{\mathbb{Z}}_{\mathbf{C}}, A\right), A^{H}$ for $\operatorname{Hom}_{\not \partial \iota G}\left(\hat{\mathbb{Z}}_{\mathbf{C}}, M_{G}{ }^{H}(A)\right)$, $H^{1}(G, H, A)$ for $\operatorname{Hom}\left(\hat{\mathbb{Z}}_{\mathbf{c}}, \Gamma(A)\right), H^{n}(H, A)$ for $H^{n}\left(G, M_{G}{ }^{H}(A)\right)$ and $I I^{n+1}(G, I I, A)$ for $H^{n}(G, \Gamma(A))(n \geqslant 1)$ in the long exact sequence of the proof of Proposition 1.4.

Corollary 1.6. Let 1 denote the group with one element. Then

$$
H^{n}(G, 1, A) \cong H^{n}(G, A), \quad n \geqslant 2, \quad A \in \mathscr{C}_{\mathbf{c}}{ }^{G}
$$

Lemma 1.7. Let $H \subset K \subset G$ be embeddings of pro-C-groups. Then $\left\{H^{n}(K, H,-) \mid n \geqslant 1\right\}$ is a universal sequence of connected functors in $\mathscr{C}_{\mathbf{F}}{ }^{G}$ ("д-foncteur universel" in the terminology of Grothendieck [8]).

Proof. The sequence is certainly exact. One easily deduces from Lemma 1.3 and Proposition 1.5 that it is effaceable.

Lemma 1.8. Let $X(G, A)$ stand for the abelian group $X(G, 1, A)$ of continuous crossed homomorphisms from a pro-C-group G into a discrete OllG-module A. Let F be a functor from a small category I into the category PC of pro-C-groups. One has a natural isomorphism

$$
X(\underline{\lim } F, A) \cong \varliminf\left(\begin{array}{l}
X(-), A) \\
\end{array}\right.
$$

of abelian groups, where, for each if $|\mathbf{I}|$, the $F(i)$-module structure of A is induced by the canonical map: $F(i) \rightarrow \underline{\lim } F$.

Proof. Since A is a direct limit of finite $C Z l G$-modules, we may assume without loss in generality that A is a finite $O l l G$-module and an abelian group in \mathbf{C}. For each $i \in|\mathbf{I}|$, let

$$
\varphi_{i}: F(i) \rightarrow G=\varliminf \underline{\varliminf} F, \quad p_{i}: \varliminf X(F(-), A) \rightarrow X(F(i), A)
$$

be the canonical maps. There exists a unique homomorphism

$$
\eta: X(G, A) \rightarrow \varliminf \supseteq
$$

such that

$$
p_{i}(\eta(e))=e \circ \varphi_{i}: F(i) \rightarrow A
$$

for all $i \in|\mathbf{I}|$ and $e \in X(G, A)$.
Consider the commutative diagram in PC with split exact rows

where \hat{G} is the space $A \times G$ with the product topology and with multiplication defined by

$$
(a, g)\left(a^{\prime}, g^{\prime}\right)=\left(a+g a^{\prime}, g g^{\prime}\right)
$$

$F(i)$ is the product space $A \times F(i)$, with multiplication defined by

$$
(a, h)\left(a^{\prime}, h^{\prime}\right)=\left(a+\varphi_{i}(h) a^{\prime}, h h^{\prime}\right)
$$

and

$$
\begin{gathered}
\pi(a, g)=g, \quad \sigma(g)=(0, g), \quad \pi_{i}(a, h)=h, \quad \sigma_{i}(h)=(0, h) \\
\hat{\varphi}_{i}(a, h)=\left(a, \varphi_{i}(h)\right)
\end{gathered}
$$

For each $f \in \varliminf(\boldsymbol{l}(-), A)$ and $i \in|\mathbf{I}|$, we define a map

$$
t_{i}: F(i) \rightarrow \widehat{F(i)}, \quad t_{i}(h)=\left(p_{i}(f)(h), h\right), \quad h \in F(i)
$$

It is immediately verified that each t_{i} is a continuous homomorphism, and the maps $\hat{\varphi}_{i} \circ t_{i}: F(i) \rightarrow \hat{G}$ induce a unique morphism $s: G \rightarrow \hat{G}$ such that $s \circ \varphi_{i}=\hat{\varphi}_{i} \circ t_{i}$ for all $i \in|\mathbf{I}|$. Now,

$$
\pi\left(s\left(\varphi_{i}(h)\right)\right)=\pi\left(\hat{\varphi}_{i}\left(t_{i}(h)\right)\right)=\varphi_{i}(h)
$$

for all $i \in|\mathbf{I}|$, and hence $\pi \circ s=i d_{G}$. So wc can write $s(g)=(e(g), g)$, where $e: G \rightarrow A$ is easily seen to be a continuous crossed homomorphism. We define

$$
\theta: \varliminf \text { im } X(F(-), A) \rightarrow X(G, A)
$$

by $\theta(f)=e$. One verifies with no difficulty that θ and η are inverse isomorphisms, and are natural in A.

Proposition 1.9. Let G be the colimit (or pushout) in the category PC of a diagram consisting of maps $\alpha_{i}: H \rightarrow G_{i},(i \in I)$, and let $\varphi_{i}: G_{i} \rightarrow G$ be the canonical maps $(i \in I)$. Let $\alpha=\varphi_{i} \circ \alpha_{i}: H \rightarrow G$. One has a natural isomorphism

$$
X(G, \alpha(H), A) \cong \prod_{i \in I} X\left(G_{i}, \alpha_{i}(H), A\right)
$$

where A is a discrete OllG-module, and hence also a discrete G_{i}-module, by the maps φ_{i}.

Proof. As in the preceding lemma, we may suppose, without loss in generality, that A is a finite abelian group in C. Let

$$
p_{i}: \prod_{i \in I} X\left(G_{i}, \alpha_{i}(H), A\right) \rightarrow X\left(G_{i}, \alpha_{i}(H), A\right)
$$

be the canonical projection, and define a homomorphism

$$
\eta: X(G, \alpha(H), A) \rightarrow \prod_{i \in I} X\left(G_{i}, \alpha_{i}(H), A\right)
$$

by writing $p_{i}(\eta(e))=e \circ \varphi_{i}$ for all $e \in X(G, \alpha(H), A), i \in I$.
As in the previous proof, one has a commutative diagram in PC, with split exact rows

where \hat{G} is the product space $A \times G$, with multiplication defined by

$$
(a, g)\left(a^{\prime}, g^{\prime}\right)=\left(a+g a^{\prime}, g g^{\prime}\right), \quad a, a^{\prime} \in A, \quad g g^{\prime} \in G
$$

and G_{i} is the product space $A \times G_{i}$, with multiplication defined by

$$
\left(a, g_{i}\right)\left(a^{\prime}, g_{i}^{\prime}\right)=\left(a+\varphi_{i}\left(g_{i}\right) a^{\prime}, g_{i} g_{i}^{\prime}\right), \quad a, a^{\prime} \in A, \quad h, h^{\prime} \in F(i)
$$

For each $f \in \prod_{i \in I} X\left(G_{i}, \alpha_{i}(H), A\right)$, define a map $t_{i}: G_{i} \rightarrow \hat{G}_{i}$ by $t_{i}\left(g_{i}\right)=$ ($\left.p_{i}(f)\left(g_{i}\right), g_{i}\right)$. It is easily verified that each t_{i} is a continuous homomorphism, and the maps $\hat{\varphi}_{i} \circ t_{i}: G_{i} \rightarrow \hat{C}$ induce a unique morphism $s: G \rightarrow \hat{C}$ such that $s \circ \varphi_{i}=\hat{\varphi}_{i} \circ t_{i}$ for all $i \in I$. Now

$$
\pi\left(s\left(\varphi_{i}\left(g_{i}\right)\right)\right)=\pi\left(\hat{\varphi}_{i}\left(t_{i}\left(g_{i}\right)\right)\right)=\varphi_{i}\left(g_{i}\right)
$$

for all $i \in I$ and $g_{i} \in G_{i}$, and hence $\pi \circ s=i d_{G}$. So, we can write $s(g)=$ $(e(g), g)$, where $e: G \rightarrow A$ is easily seen to be a continuous crossed homomorphism that is trivial on $\alpha(H)$. We define

$$
\theta: \prod_{i \in I} X\left(G_{i}, \alpha_{i}(H), A\right) \rightarrow X(G, \alpha(H), A)
$$

by $\theta(f)=e$. One easily verifies that θ and η are inverse isomorphisms, and are natural in A.

Let $H \subset G, L \subset K$ be pro-C-groups. Let $\varphi: K \rightarrow G$ be a continuous group homomorphism with $\varphi L \subset H$. If A is a discrete ($(O l G)$-module then it possesses a natural (OlK)-module structure induced by φ. Then φ induces a natural homomorphism

$$
\varphi^{1}: X(G, H, A) \rightarrow X(K, L, A)
$$

given by

$$
\left(\varphi^{1} f\right) x=f(\varphi x)
$$

which in turn induces mappings

$$
\varphi^{n}: H^{n}(G, H, A) \rightarrow H^{n}(K, L, A) .
$$

Theorem 1.10 (The Excision Axiom). Let L be a common closed subgroup of two pro-C-groups H and K, and suppose that the pushout G in PC of $L \subset H$ and $L \subset K$ has the property that the canonical map: $K \rightarrow G$ is injective. Then the morphisms

$$
\varphi^{n}: H^{n}(G, H,-) \rightarrow H^{n}(K, L,-) \quad(n \geqslant 1)
$$

of functors: $\mathscr{C}_{\mathbf{C}}{ }^{\boldsymbol{G}} \rightarrow$ Cal, induced by the inclusion

$$
\varphi:(K, L) \rightarrow(G, H)
$$

are isomorphisms.
Proof. It follows from Lemma 1.7 and the standard comparison theorem [17, Corollary 5.7], that it suffices to show that

$$
\varphi^{1}: X(G, H,-) \rightarrow X(K, L,-)
$$

is an isomorphism. So, let M be an object of $\mathscr{C}_{\mathbf{c}}{ }^{G}$, and suppose that $f: K \rightarrow M$ is a continuous crossed homomorphism that annihilates L. Then, by Proposition 1.9, f and the trivial map 0: $H \rightarrow M$ induce a continuous crossed homomorphism $\eta(f): G \rightarrow M$. Clearly, the map

$$
\eta: X(K, L, M) \rightarrow X(G, H, M)
$$

and the restriction $\varphi_{M}{ }^{1}$ are inverse isomorphisms.

Proposition 1.11. Suppose that \mathbf{C} is contained in another class \mathbf{C}^{\prime} of finite groups, closed under the formation of subgroups, homomorphic images and extensions. Given pro-C-groups $H_{i}, i \in I$, with a common closed subgroup L, we may view H_{i} as pro- C^{\prime}-groups, and we now assume the existence of their amalgamated product

$$
G=\coprod_{i \in I} H_{i}
$$

in the category $\mathbf{P C}^{\prime}$. Then

$$
H^{n}(G, L, A) \cong \prod_{i \in I} H^{n}\left(H_{i}, L, A\right)
$$

for $n \geqslant 1$ and $A \in \mathscr{C}_{\mathbf{C}}^{G}$, where the canonical projections are induced by the inclusions: $\left(H_{i}, L\right) \rightarrow(G, L)$.

Proof. By Proposition 1.4, we may without loss in generality take $\mathbf{C}=\mathbf{C}^{\prime}$, and, by Lemma 1.7 and the standard comparison theorem [17, Corollary 5.7], it suffices to refer to Proposition 1.9, which gives the result for dimension 1.

Corollary 1.12 (Neukirch [14]). Let $G=H \amalg K$ be the coproduct in the category PC of two pro-C-groups H and K, and let A be an object of $\mathscr{C}_{\mathbf{C}}$. Then

$$
H^{n}(G, A)=H^{n}(H, A) \oplus H^{n}(K, A)
$$

for $n \geqslant 2$.
Proof. Put $L=1$ in Proposition 1.11 and apply Corollary 1.6.

Theorem 1.13 (A Mayer-Vietoris sequence). Assume the existence of the amalgamated product $\mathbf{G}=H \coprod_{L} K$ in $\mathbf{P C}$ of two pro-C-groups H and K over a common closed subgroup L, and let A be an object of $\mathscr{C}_{\mathrm{c}}{ }^{G}$. Then the following sequence is exact:

$$
\begin{aligned}
0 & \rightarrow X(G, A) \rightarrow X(H, A) \oplus X(K, A) \rightarrow X(L, A) \rightarrow H^{2}(G, A) \rightarrow \cdots \\
& \rightarrow H^{n}(L, A) \xrightarrow{\Delta} H^{n+1}(G, A) \xrightarrow{\Phi} H^{n+1}(H, A) \oplus H^{n+1}(K, A) \\
& \xrightarrow{\Psi} H^{n+1}(L, A) \rightarrow \cdots
\end{aligned}
$$

where

$$
\Delta: H^{n}(L, A) \xrightarrow{\delta} H^{n+1}(K, L, A) \xrightarrow{\left(\Phi^{n+1}\right)^{-1}} H^{n+1}(G, H, A) \xrightarrow{j} H^{n+1}(G, A),
$$

with δ and j as in Proposition 1.5, φ^{n+1} as in Theorem 1.10; Φ is the direct sum of the maps induced in cohomology by the inclusions $H \subset G$ and $K \hookrightarrow G$; $\Psi\left(\nu_{1}, \nu_{2}\right)=h_{1}^{n+1}\left(\nu_{1}\right)-h_{2}^{n+1}\left(\nu_{2}\right)$, where h_{1}^{n+1} and h_{2}^{n+1} are maps induced in
cohomology by the inclusions $h_{1}: L \hookrightarrow H$ and $h_{2}: L \hookrightarrow K$ respectively, $\nu_{1} \in H^{n+1}(H, A), \nu_{2} \in H^{n+1}(K, A)$.

The proof is formally the same as in Eilenberg and Steenrod [3, Theorem 15.3(c), p. 43].

Remark 1.14. Barr and Beck have proved (see [1, Section 7, p. 297 and Section 9, p. 310]) that the analogue of Theorem 1.13 is valid in a very general setting in the presence of Proposition 1.11, namely for a class of categories tripleable over sets, and triple cohomology. The category PC is tripleable over sets (see Kennison and Gildenhuys [9]); however, we did not try to ascertain whether the usual cohomology groups of pro-C-groups are obtainable from this triple.

2. Topological Colimits of Pro-C-Groups

Let \mathscr{P} be a category with pullbacks. A category object in \mathscr{P} is a 6-tuple $\mathscr{C}=(F, X, \alpha, \beta, \mu, m)$, where $\mu: X \subset \rightarrow F$ is a monomorphism in \mathscr{P}, α and β are maps $F \rightarrow X$, called the domain map and codomain map, respectively, such that $\alpha \mu=\beta \mu=i d_{F}$;

is a pullback in \mathscr{P}, and $m: M \rightarrow F$, called composition, is a map satisfying certain more or less obvious conditions. We are only interested in the case where \mathscr{P}^{P} is the category top of topological spaces, or the category Ptop of pointed topological spaces, in which case these conditions can be expressed by requiring that $\mathbf{U C \mathscr { C }}$ be a (small) category, where the objects of $\mathbf{U} \mathscr{C}$ are the elements of X, the maps are the elements of F, the identity map on $x \in X$ is $\mu(x)$, the domain (resp. codomain) of $f \in F$ is the object $\alpha(f)$ (resp. $\beta(f)$), and composition \circ is defined as follows. Suppose that $f, f^{\prime} \in F$ and $\alpha\left(f^{\prime}\right)=\beta(f)$. Let $1=\{1\}$ be the terminal object in \mathscr{P}, and define $g: 1 \rightarrow F$, $g^{\prime}: 1 \rightarrow F$ be $g(1)=f, g^{\prime}(1)=f^{\prime}$; then g and g^{\prime} determine a unique map $h: 1 \rightarrow M$, and we let $f^{\prime} \circ f=m(h(1))$. In order for $\mathbf{U} \mathscr{C}$ to be a category, we need among other things that $\alpha\left(f^{\prime} \circ f\right)=\alpha(f)$ and $\beta\left(\rho^{\prime} \circ \rho\right)=\beta(\rho)$. We will call $\mathbf{U} \mathscr{C}$ the underlying category of \mathscr{C}.

Let \mathbf{C} be a class of finite groups, closed under the formation of subgroups, finite products and homomorphic images.

A functor: $\mathscr{C} \rightarrow$ PC from a category object $\mathscr{C}=(F, X, \alpha, \beta, \mu, m)$ of the category $\mathscr{P}=$ top (resp. $\mathscr{P}=$ Ptop) into the category PC of pro-C-groups
is a pair $T=(\pi, \tau)$, where $\pi: E \rightarrow(X, *)$ is a map in \mathscr{P} such that for every $x \in X$, the fiber $G_{x}=\pi^{-1}(\{x\})$ (resp. $G_{x}=\pi^{-1}(\{x, *\})$) is a pro-C-group and $G_{x} \hookrightarrow \longrightarrow$ is a morphism in \mathscr{P};

are pullback diagrams in \mathscr{P} and $\tau: \alpha^{*}(E) \rightarrow \beta^{*}(E)$ is a map in \mathscr{P}, with $\beta^{\prime} \tau=\alpha^{\prime}$ and the property that $U T: \mathbf{U C} \mathscr{C} \rightarrow \mathbf{P C}$, defined as follows, is a functor in the usual sense. For every object $\boldsymbol{x} \in X$ of $\mathbb{U} \mathscr{C}$, write $(U F)(x)=G_{x}$. For each $t \in G_{x_{1}}$ and $f \in F$ with $\alpha(f)=x_{1}, \beta(f)=x_{2}$, let $\hat{t}: 1 \rightarrow \alpha^{*}(E)$ be the map induced by $1 \rightarrow E, 1 \mapsto t$ and $1 \rightarrow F, 1 \mapsto f$. Then $\beta\left(\beta^{\prime}(\tau(\hat{t}(1)))\right)=$ $\beta(f)=x_{2}$, so that $\beta^{\prime \prime}(\tau(\hat{t}(1))) \in \pi^{-1}\left(\left\{x_{2}, *\right\}\right)=G_{x_{2}}$. So, $(U T)(f): G_{x_{1}} \rightarrow G_{x_{2}}$ is well defined by writing $(U T)(f)(t)=\beta^{\prime \prime}(\tau(\hat{t}(1)))$.

A morphism $\varphi: T=(\pi, \tau) \rightarrow T^{\prime}=\left(\pi^{\prime}, \tau^{\prime}\right)$ of functors from a category object \mathscr{C} of \mathscr{P} into PC is a map $\varphi: E \rightarrow E^{\prime}$ in \mathscr{P}, where $\pi: E \rightarrow X$ and $\pi^{\prime}: E^{\prime} \rightarrow X$, such that $\pi^{\prime} \varphi-\pi$, the following diagram commutes

and the restriction of φ to the fiber G_{x} above $x \in X$ defines a morphism: $G_{x} \rightarrow G_{x}{ }^{\prime}$ in PC. Here $G_{x}=\pi^{-1}(\{x\}), G_{x}{ }^{\prime}=\left(\pi^{\prime}\right)^{-1}(\{x\})$ (resp. $G_{x}=$ $\pi^{-1}(\{x, *\}), G_{x}{ }^{\prime}=\left(\pi^{\prime}\right)^{-1}(\{x\})$ if $\mathscr{P}=t o p$ (resp. Ptop).

One easily sees that the functors from the category object \mathscr{C} of \mathscr{P} into $\mathbf{P C}$, and morphisms of thesc functors, form a catcgory $\mathbf{P} \mathscr{C}^{\mathscr{C}}$.

To every pro-C-group G, there corresponds a constant functor $K(G)=$ $(\pi, \tau): \mathscr{C} \rightarrow \mathbf{P C}$, where π is the projection from the product $G \circ X$ of G and X in \mathscr{P}, onto X, and

$$
\tau: \alpha^{*}(G \circ X)=G \circ F \rightarrow G \circ F=\beta^{*}(G \circ X)
$$

is the identity map.
A pair (G, η) consisting of a pro-C-group G and a morphism $\eta: T \rightarrow K(G)$ in $\mathscr{P}^{\mathscr{C}}$ is said to be a topological colimit of a functor $T: \mathscr{C} \rightarrow \mathscr{P}$ if for every other pro-C-group G^{\prime} and morphism $\varphi: T \rightarrow K\left(G^{\prime}\right)$, there exists a unique morphism $\psi: G \rightarrow G^{\prime}$ in PC, such that $K(\psi) \eta-\varphi$.

Proposition 2.1. Let $T: \mathscr{C} \rightarrow \mathbf{P C}$ be a functor from a category object \mathscr{C} of \mathscr{P} into the category PC of pro-C-groups, where \mathscr{P} is the category top or the category Ptop. Then the topological colimit of T exists and is unique up to isomorphism.

Proof. Let $U T: \mathbf{U} \mathscr{C} \rightarrow \mathbf{P C}$ be the corresponding underlying functor, and L its colimit in PC. Let $\mathscr{C}=(F, X, \alpha, \beta, \mu, m), T=(\pi, \tau), \pi: E \rightarrow X$. For each $x \in X$, one has a canonical morphism

$$
\eta_{x}: G_{x} \rightarrow L
$$

of pro-C-groups, where $G_{x}=\pi^{-1}(\{x\})$ if $\mathscr{P}=t o p$ and $G_{x}=\pi^{-1}(\{x, *\})$ if $\mathscr{P}=$ Ptop and $*$ is the distinguished point of X.

We define $\nu: E \rightarrow L$ by $\nu(e)=\eta_{\pi(e)}(e)$. Let Φ be the family of open normal subgroups N of L, such that $\nu^{-1}(g N)$ is open in E, for every coset $g N$ of N in L. Let $G=\varliminf_{N \in \Phi} L / N$ (with $G=(1)$ if $\Phi=\varnothing$). For each $N \in \Phi$, let $p_{N}: G \rightarrow L / N$ be the canonical projection of G onto the discrete group L / N. Then the maps $p_{N} \circ \nu: E \rightarrow L / N$ are continuous and induce a morphism $\eta^{\prime}: E \rightarrow G$ in \mathscr{P}. The maps η^{\prime} and π induce a map η from E into the product $G \circ X$ of G and X in \mathscr{P}, and η defines a morphism $\eta: T \rightarrow K(G)$ in $\mathscr{P}^{\mathscr{C}}$. One easily verifies that the pair (G, η) is a topological colimit of T. Uniqueness is clear.

Proposition 2.2. Let $(X, *)$ be a pointed compact Hausdorff totally disconnected space, and let $\left\{G_{x} \mid x \in X\right\}$ be a family of pro-C-groups with $G_{*}=(1)$, and such that the map $x \mapsto G_{x}$ is locally constant on $X \backslash\{*\}$. Then the free pro-C-product (see Gildenhuys and Ribes [7]) of these pro-C-groups is a topological colimit of a functor from a category object of Ptop into PC.

Proof. We recall the definition of the étale space $E=\vee_{x \in X} G_{x}$. As a pointed set, E is the coproduct of the pointed sets ($G_{m}, 1$), $x \in X$. For all $x \in X \backslash\{*\}$, there exists a so-called constant open neighborhood U of x in $X \backslash\{*\}$, with $G_{x}=G_{y}$ for all $x, y \in U$, and for such a set U we define

$$
p_{U}: U \times G_{x} \rightarrow E, \quad(u, t) \mapsto t \in A_{u}, \quad(u, t) \in U \times G_{x}
$$

A subset W of E is open iff
(i) for every constant open subset U of X, the set $p_{U}^{-1}(W)$ is open with respect to the product topology on $U \times G_{\tau},(x \in U)$;
(ii) if W contains the distinguished point 1 of E, there is a neighborhood V of $*$ in X, such that $G_{y} \subset W$ whenever $y \in V$.

The map $\pi: E \rightarrow X$ is defined by $\pi(1)=*$ and $\pi(e)=x$ if $e \in G_{x} \backslash\{1\}$.

Let \mathscr{C} be the category object ($X, X, i d_{X}, i d_{X}, i d_{X}, i d_{X}$) of Ptop. Clearly $T=\left(\pi, i d_{X}\right): \mathscr{C} \rightarrow \mathbf{P C}$ is a functor. There is a bijective correspondance between maps $\eta: T \rightarrow K(G),(\eta: E \rightarrow G \circ X)$ of functors in $\mathrm{PC}^{\mathscr{C}}$ and maps $\eta^{\prime}: E \rightarrow G$ in Ptop whose restrictions to the fibers $\pi^{-1}(\{x, *\}), x \in X$, are morphisms of pro-C-groups. The pair $\left(G, \eta^{\prime}\right)$ is a free pro-C-product of $\left\{G_{x} \mid x \in X\right\}$ iff for each morphism φ from E into the underlying pointed space of a pro-C-group H such that $\varphi \mid \pi^{-1}(\{x, *\})$ is a morphism in PC, there exists a unique morphism $\psi: G \rightarrow G^{\prime}$ of pro-C-groups such that $\psi \circ \eta^{\prime}=\varphi$. Clearly this condition is equivalent to (G, η) being a colimit of T.

We will now look at pro-p-groups $G=F\left(x_{0}, x_{1}, \ldots, x_{m+1}\right) /(r)(m \geqslant 0)$ with one defining relator r, which belongs to the Frattini subgroup F^{*} of $F=F\left(x_{0}, x_{1}, \ldots, x_{m+1}\right)$. (If $r \not \subset F^{*}$, then G is free.) Changing the basis of F, if necessary, we may assume without loss in generality that r belongs to the closed normal subgroup $N=\left(x_{0}, x_{1}, \ldots, x_{m}\right)$ of F, generated by $x_{0}, x_{1}, \ldots, x_{m}$. We write $R=(r)$ and $x_{i, j}=x_{m+1}^{-j} x_{i} x_{m+1}^{j}\left(i \in\{0,1, \ldots, m\}, j \in \hat{\mathbb{Z}}_{p}\right)$. We know that N is the free pro-C-group generated by the homeomorphic image

$$
\left\{x_{i, j} \in N \mid i \in\{0,1, \ldots, m\}, j \in \hat{\mathbb{Z}}_{p}\right\}
$$

of the product $\{0,1, \ldots, m\} \times \hat{\mathbb{Z}}_{p}$ of the discrete space $\{0,1, \ldots, m\}$ and the underlying space of the ring of p adic integers, under the map

$$
\omega: X \rightarrow N, \quad(i, j) \mapsto x_{i, j}
$$

(See Gildenhuys and Lim [6, Corollary 2.2].) It follows that N is also freely generated by $\omega(X)$, where $X=\{0,1, \ldots, m\} \times \mathbb{Z}$, and \mathbb{Z} has the p-adic topology. We now suppose that r belongs to the closed subgroup C of N generated by $x_{i, j}, j=h_{i}, h_{i}+1, \ldots, h_{i}+n_{i}, n_{i} \geqslant 0, i=0,1, \ldots, m$. (If r is a (finite) word in the generators $x_{0}, x_{1}, \ldots, x_{m+1}$, this assumption is always justified.) Since we can replace the basis $x_{0}, x_{1}, \ldots, x_{m+1}$ by the basis

$$
\left\{x_{m+1}^{-h_{i}} x_{i} x_{m+1}^{h_{i}} \mid i=0,1, \ldots, m\right\} \cup\left\{x_{m+1}\right\}
$$

if necessary [18, I-Proposition 2.5], we may assume without loss in generality that $h_{i}=0$ for all $i=0,1, \ldots, m$. Let $r_{j}=x_{m+1}^{-j} r x_{m+1}^{j}\left(j \in \mathscr{Z}_{p}\right)$ and identify the free pro-p-group

$$
F_{0}=F\left(x_{0,0}, x_{0.1}, \ldots, x_{0, n_{0}} ; x_{0,0}, \ldots, x_{0, n_{1}} ; \ldots ; x_{m, 0}, \ldots, x_{m, n_{m}}\right)
$$

with its obvious image C in N. For every $j \in \hat{\mathbb{Z}}_{p}$, the free pro-p-group F_{j} generated by the finite set

$$
\left\{x_{i, h+j} \mid h=0,1, \ldots, n_{i} ; i=0,1, \ldots, m\right\}
$$

can also be identified in an obvious way with a closed subgroup of N, containing r_{j}. For every $j \in \mathbb{Z}_{p}$ one has a natural map

$$
\gamma_{j}: G_{j}=F_{j} /\left(r_{j}\right) \rightarrow N / R
$$

(in general not injective, see Gildenhuys [5, Remark (i)]]. For each $j \in \mathbb{Z}_{p}$, let H_{j} be the free pro-p-group generated by the set

$$
\left\{x_{i, h ; j} \mid 0 \leqslant h \leqslant n_{i}-1 ; i=0,1, \ldots, m\right\} .
$$

For each $j \in \hat{\mathbb{Z}}_{\boldsymbol{p}}$, there are two maps

$$
\delta_{j}: H_{j} \rightarrow G_{j}, \quad \delta_{j}^{\prime}: H_{j} \rightarrow G_{j-1}
$$

that send each $x_{i, k}$ to its natural image in G_{j} and G_{j-1}, respectively.
Proposition 2.3. The closed normal subgroup N / R of G is a topological colimit of a functor $T: \mathscr{C} \rightarrow \mathbf{P}_{p}$ from a category object \mathscr{C} of top into the category \mathbf{P}_{p} of pro-p-groups, where the underlying category $\mathbf{U} \mathscr{C}$ of \mathscr{C} is represented by the infinite diagram

and the underlying functor $U T: \mathbf{U} \mathscr{C} \rightarrow \mathbf{P}_{\boldsymbol{p}}$ maps this diagram onto the diagram

Proof. Let

$$
\mathscr{C}=(\mathbb{Z} \cup \mathbb{Z} \cup \mathbb{Z} \cup \mathbb{Z}, \mathbb{Z} \cup \mathbb{Z}, \alpha, \beta, \mu, m),
$$

where \mathbb{Z} has the padic topology and the symbol \cup denotes the coproduct in top. Let E_{1} (resp. E_{2}) be the product $G_{0} \times \mathbb{Z}$ (resp. $H_{0} \times \mathbb{Z}$) in top. The maps $\pi_{1}: E_{1} \rightarrow \mathbb{Z}$ and $\pi_{2}: E_{2} \rightarrow \mathbb{Z}$ are projections and $\pi: E=E_{1} \cup E_{2} \rightarrow$ $\mathbb{Z} \cup \mathbb{Z}$ is their coproduct. The functor $T: \mathscr{C} \rightarrow \mathbf{P}_{p}$ is of the form $T=(\pi, \tau)$. Note that for each $j \in \mathbb{Z}$ one has an isomorphism $\sigma_{j}: G_{0} \rightarrow G_{j}$ and an isomorphism $\tau_{j}: H_{0} \rightarrow H_{j}$. The pro- p-group G_{j} (resp. H_{j}) is identified with the fiber $\pi_{1}^{-1}(\{j\})$ (resp. $\pi_{2}^{-1}(\{j\})$). It is now clear how τ, α, β, μ, and m are to be defined, in order for the conditions of Proposition 2.3 to be satisfied.

There exists a unique map $\eta_{1}: E_{1} \rightarrow N / R$ that sends $e \in G_{j} \subset E$ to $\gamma_{j}(e)$ (i.e., the image $\bar{x}_{i, h}$ of $x_{i, h}, 0 \leqslant i \leqslant m, j \leqslant h \leqslant n_{i}+j$, is sent to its natural image in N / R), and has the property that $\eta_{1} \mid G_{j}: G_{j} \rightarrow N / R$ is a morphism in $\mathbf{P}_{\boldsymbol{p}}$ for each $j \in \mathbb{Z}$. For every open normal subgroup W of N / R, there exists a natural number k, such that the images of $x_{i, h}$ and $x_{i, l}$ are congruent $\bmod W$, whenever $h \equiv t \bmod p^{k} \mathbb{Z}, 0 \leqslant i \leqslant m$. Hence,

$$
\gamma_{j}\left(\sigma_{j}(e)\right) \equiv \gamma_{t}\left(\sigma_{t}(e)\right) \bmod W
$$

whenever $j \equiv t \bmod p^{k} \mathbb{Z}, e \in G_{0}$, and η_{1} is continuous. Moreover, it has the property that $\eta_{\mathbf{1}} \mid G_{j}: G_{j} \rightarrow N / R$ is a morphism in \mathbf{P}_{p} for each $j \in \mathbb{Z}$. Similarly, one has a map $\eta_{2}: E_{2} \rightarrow N / R$ that sends $x_{i, h} \in H_{j} \subset E_{2}, 0 \leqslant i \leqslant m$, $j \leqslant h \leqslant n_{i}+j-1$ to its natural image in N / R, and has the property that $\eta_{2} \mid H_{j}$ is a morphism in \mathbf{P}_{p} for each $j \in \mathbb{Z}$. The maps η_{1} and η_{2} now induce a map $\eta^{\prime}: E \rightarrow N / R$ in top, and the maps η^{\prime} and π induce a map $\eta: E \rightarrow(N / R) \times(\mathbb{Z} \cup \mathbb{Z})$, which can be viewed as a morphism: $T \rightarrow K(N / R)$ in $\mathbf{P}_{p}{ }^{\mathscr{C}}$. We proceed to verify that $\eta: T \rightarrow K(N / R)$ satisfies the universal property of a topological colimit. So, let $\varphi: T \rightarrow K\left(G^{\prime}\right)$ be a morphism in $\mathbf{P}_{p}{ }^{\boldsymbol{8}}$; then the composition of $\varphi: E \rightarrow G^{\prime} \times(\mathbb{Z} \cup \mathbb{Z})$ and the projection $G^{\prime} \times(\mathbb{Z} \cup \mathbb{Z}) \rightarrow G^{\prime}$ gives a morphism $\varphi^{\prime}: E \rightarrow G^{\prime}$ in top. For every open normal subgroup V of G^{\prime}, there exists a natural number k such that if $h \equiv j \bmod p^{k} \mathbb{Z}$, then $\varphi^{\prime}\left(\bar{x}_{i, h}\right) \equiv \varphi^{\prime}\left(\bar{x}_{i, j}\right)$ and $\varphi^{\prime}\left(x_{i, h}\right) \equiv \varphi^{\prime}\left(x_{i, j}\right) \bmod V$, where $\bar{x}_{i, h}$ denotes the image of $x_{i, h}$ in some $G_{j} \subset E_{1} \subset E\left(j \leqslant h \leqslant j+n_{i}\right.$, $0 \leqslant i \leqslant m$), and $x_{i, h}$ has been identified with its image in $H_{j} \subset E_{2} \subset E$ $\left(j \leqslant h \leqslant j+n_{i}-1,0 \leqslant i \leqslant m\right)$. Since N is freely generated by the topological space $\left\{x_{i, h} \mid 0 \leqslant i \leqslant m, h \in \mathbb{Z}\right\}$, there exists a unique map $\theta_{V}: N \rightarrow G^{\prime} \mid V$ that sends $x_{i, h}$ to the image of $\varphi^{\prime}\left(x_{i, h}\right)$ in G / V. Moreover, the restriction of φ^{\prime} to each fiber G_{j} is a continuous homomorphism; hence $\theta_{V}\left(r_{j}\right)=1$ for all $j \in \hat{\mathbb{Z}}_{p}$, and θ_{V} induces a map $\theta_{V}^{\prime}: N / R \rightarrow G^{\prime} \mid V$. The maps θ_{V}^{\prime} now induce the desired map $\psi: N / R \rightarrow G^{\prime}=\varliminf G^{\prime} \mid V$, for which $\psi \circ \eta^{\prime}=\varphi^{\prime}$, and hence $K(\psi) \circ \eta=\varphi: T \rightarrow K\left(G^{\prime}\right)$ in $\mathbf{P}_{p}{ }^{\mathscr{E}}$. The uniqueness of ψ is easily verified.

3. On the Cohomology of Free Pro-C-Products of Pro-C-Groups

Let \mathbf{C} be a nontrivial class of finite groups, closed under the formation of subgroups, extensions and homomorphic images, and let $(X, *)$ be a pointed compact Hausdorff totally disconnected topological space. Let $\left\{G_{x} \mid x \in X\right\}$ be a family of pro-C-groups, such that $G_{*}=(1)$ and $x \mapsto G_{x}$ is locally constant outside $\{*\}$. There exists a family \mathbf{R} of open equivalent relations R on X such that $G_{x}=G_{y}$ whenever $x R y$ and not $x R *$. Writing
$G_{x R}=G_{x}$ and G^{R} for the coproduct of the finite set $\left\{G_{x R} \mid x R \in X / R\right\}$ of pro-C-groups (here $x R$ denotes the equivalence class of x), we have an isomorphism

$$
\coprod_{x \in \boldsymbol{X}} G_{x}=\varliminf_{R \in \mathbf{R}} G^{R}
$$

where the left side denotes the free pro-C-product of the family $\left\{G_{x} \mid x \in X\right\}$ (see Gildenhuys and Ribes [7, Proposition 2.1]).

Proposition 3.1. For every discrete CllG-module A, where CllG $=\mathbb{Z}_{\mathbf{c}}[[G]]$ (see Section 1), one has a natural isomorphism

$$
H^{n}\left(\coprod_{x \in X} G_{x}, A\right)=\varliminf_{R \in \mathbf{R}} \oplus_{x \in \in X / R} H^{n}\left(G_{x R}, A^{R}\right), \quad n \geqslant 2
$$

where

$$
A^{R}=\left\{a \in A \mid k a=a, k \in K_{R}\right\}
$$

is the submodule of invariants under the kernel K_{R} of the canonical projection:

$$
G=\coprod_{x \in X} G_{x} \rightarrow G^{R}=\coprod_{x \in X / R} G_{x R},
$$

and the $G_{x R}$ module structure on A^{R} is induced by the canonical inclusion $G_{x R} C G^{R}$.

Proof. The natural isomorphism

$$
\bigoplus_{x R \in X / R} H^{n}\left(G_{x R}, A^{R}\right) \cong H^{n}\left(G^{R}, A^{R}\right)
$$

is an immediate consequence of Corollary 1.12, and the result now follows from Serre [18, I-Proposition 8].

Corollary 3.2 (Neukirch [14]). If G is the restricted free pro-C-product of a family $\left\{G_{x}\right\}_{x \in X}$ of pro-C-groups, then one has a natural isomorphism:

$$
H^{n}(G, A) \cong \oplus_{x \in X} H^{n}\left(G_{x}, A\right), \quad n \geqslant 2
$$

where A is a discrete CllG-module.
Proof. Let $\bar{X}=X \cup\{*\}$ be the one point compactification of the discrete space X, and $G_{*}=(1)$, then

$$
G \cong \coprod_{x \in \mathbb{X}} G_{x} \cong \varliminf_{R \in \mathbf{R}} G^{(R)}
$$

and \mathbf{R} admits a cofinal subset \mathbf{R}^{\prime} of equivalence relations whose equivalence classes either contain $*$ or consist of a single element of X. Clearly

$$
H^{n}(G, A) \cong \lim _{R \in \mathbb{R}^{\prime}} \underset{x \in \in X / R}{ } H^{n}\left(G_{x R}, A\right) \cong \oplus_{x \in X} H^{n}\left(G_{x}, A\right)
$$

4. Сohomology of Pro-p-Groups with Single Defining Relator

We keep the notation of Section 2. For every natural number k, let F^{k} be the free pro-p-group generated by

$$
\left\{x_{i, j} \mid 0 \leqslant j \leqslant p^{k}+n_{i}-1,0 \leqslant i \leqslant m\right\} .
$$

We identify F^{k} in an obvious way with a closed subgroup of N. Let $\left(r_{0}, r_{1}, \ldots, r_{p^{k}-1}\right)$ be the closed normal subgroup of F^{k} generated by $r_{0}, r_{1}, \ldots, r_{p^{k}-1}$, and let

$$
G^{k}=F^{k} /\left(r_{0}, r_{1}, \ldots, r_{p^{k}-1}\right) .
$$

Let k_{0} be a fixed natural number such that $p^{k_{0}} \geqslant n_{i}$ for all $i=0,1, \ldots, m$. For $k \geqslant k_{\mathbf{0}}$, write

$$
\mathbb{Z} / p^{k} \mathbb{Z}=\left\{0,1, \ldots, p^{k}-1\right\}
$$

and for $i \in \mathbb{Z} / p^{k} \mathbb{Z}$, write

$$
r_{i}^{\prime}=\pi\left(r_{i}\right) \in E_{k}=F\left(x_{i, j} \mid 0 \leqslant i \leqslant m, 0 \leqslant j \leqslant p^{k}-1\right)
$$

and $D_{k}=E_{k} /\left(r_{0}{ }^{\prime}, r_{1}{ }^{\prime}, \ldots, r_{p^{k}-1}\right)$, where

$$
\pi: N=F\left(x_{i, j} \mid 0 \leqslant i \leqslant m, j \in \hat{\mathbb{Z}}_{p}\right) \rightarrow E_{k}
$$

is induced by the canonical projection $\pi^{\prime}: \mathbb{Z}_{p} \rightarrow \mathbb{Z} / p^{k} \mathbb{Z}$, i.e., $\boldsymbol{r}_{i}^{\prime}$ is obtained from r_{i} by writing r_{i} as a limit of sequence of words w_{n} in the letters

$$
x_{0, i}, x_{0, i+1}, \ldots, x_{0, i+n_{0}} ; x_{1, i}, \ldots, x_{1, i+n_{1}} ; \ldots ; x_{m, i}, \ldots, x_{m, i+n_{m}}
$$

and replacing $x_{i, j}$ by $x_{i, h}$ where h is the image in $\mathbb{Z} / p^{k} \mathbb{Z}$ of $j \in \hat{\mathbb{Z}}_{p}$. Let K_{k} be the closed subgroup of G^{k} generated by the images of the elements

$$
x_{i, j+y^{k}}^{-1} x_{i, j}, \quad 0 \leqslant j \leqslant n_{i}-1, \quad 0 \leqslant i \leqslant m
$$

Clearly $N / R=\varliminf$ (im D_{k} (see also Gildenhuys [5]).

Lemma 4.1. Let A be a discrete $\operatorname{Oll}(N / R)$-module, where $\operatorname{Oll}(N / R)=$ $\widehat{\mathbb{Z}}_{p}[[N / R]]$. Then A can be viewed as a discrete OllG${ }^{k}$-module by the obvious map $G^{k} \rightarrow N / R$, and one has a natural isomorphism

$$
X(N / R, A) \cong \lim _{k \geqslant k_{0}} X\left(G^{k}, K_{k}, A\right)
$$

where the direct limit is taken with respect to the maps defined in the proof below.
Proof. If $j \geqslant k \geqslant k_{0}$, the map $X\left(G^{k}, K_{k}, A\right) \rightarrow X\left(G^{j}, K_{j}, A\right)$ is induced by a map $q_{j, k}: G^{j} \rightarrow G^{k}$, which in turn is induced by $q_{j, k}^{\prime}: F^{j} \rightarrow F^{k}$, defined as follows. If $h \geqslant p^{j}$, let $q_{j, k}^{\prime}\left(x_{i, h}\right)=x_{i, h-p^{j}+p^{k}}$, and if

$$
h \in\left\{0,1, \ldots, p^{j}-1\right\}=\mathbb{Z} \mid p^{j} \mathbb{Z}
$$

let t be the image of h in $\mathbb{Z} / p^{k} \mathbb{Z}=\left\{0,1, \ldots, p^{k}-1\right\}$, and define $q_{j, k}^{\prime}\left(x_{i, h}\right)=x_{i, t}$. Since each $r_{h} \in F^{j}\left(0 \leqslant h \leqslant p^{j}-1\right)$ involves sequences of letters

$$
x_{i, 0}, x_{i, 1}, \ldots, x_{i, n_{i}} \quad(0 \leqslant i \leqslant m)
$$

of length $\leqslant n_{i} \leqslant p^{k_{0}} \leqslant p^{k}$, one has $q_{j, k}^{\prime}\left(r_{h}\right)=r_{t}$, and the induced map $q_{j, k}: G^{j} \rightarrow G^{k}$ is therefore well defined.

Suppose now that $\gamma \in X(N / R, A)$. Since γ is continuous, there exists a natural number $k \geqslant k_{0}$ such that $\gamma\left(\bar{x}_{i, h}^{-1} \cdot \bar{x}_{i, j}\right)=0$ whenever $j \equiv h \bmod p^{k} \ddot{\mathbb{Z}}_{p}$, where $\bar{x}_{i, h}$ denotes the image of $x_{i, h}$ in N / R. So, the composite

$$
\delta_{k}: G_{k} \rightarrow N / R \xrightarrow{\nu} A
$$

is a continuous crossed homomorphism that annihilates K_{k}. If

$$
\alpha_{k}: X\left(G^{k}, K_{k}, A\right) \rightarrow \varliminf_{k \geqslant k_{0}} X\left(G^{k}, K_{k}, A\right)
$$

denotes the canonical map, then it is immediately verified that

$$
\theta: X(N / R, A) \rightarrow \varliminf_{k \geqslant k_{0}} X\left(G^{k}, K_{k}, A\right)
$$

is well defined by $\theta(\gamma)=\alpha_{k}\left(\delta_{k}\right)$, (where k depends on γ), and θ is a homomorphism of abelian groups.

To define its inverse, suppose that $\epsilon \in X\left(G^{k}, K_{k}, A\right),\left(k \geqslant k_{0}\right)$. Its image generates a finite abelian subgroup A^{\prime} of A and, since the action of N / R on A is continuous, one can find a natural number $j \geqslant k$ such that $\bar{x}_{i, t} a^{\prime}=$ $\bar{x}_{i, s} a^{\prime}$ whenever $t \equiv s . \bmod p^{j} \widehat{\mathbb{Z}}_{p}$ and $a^{\prime} \in A^{\prime}$, where $\bar{x}_{i, t}$ and $\bar{x}_{i, s}$ denote the images of $x_{i, t}$ and $x_{i, s}$ in N / R. It follows that A^{\prime} is a D_{j}-module.

Moreover, the image of $\psi=\epsilon \circ q_{j, k}: G^{j} \rightarrow A$ is contained in A^{\prime}, and ψ annihilates the elements

$$
e_{i, h}=\tilde{x}_{i, h}^{-1} \cdot \tilde{x}_{i, h+p^{j}}, \quad 0 \leqslant h \leqslant n_{i}-1, \quad 0 \leqslant i \leqslant m
$$

where $\bar{x}_{i, h}$ now denotes the image of $x_{i, h}$ in G^{j}. If $g \in G^{j}$, then

$$
\psi\left(g^{-1} e_{i, h} g\right)=\left(1-g^{-1} e_{i, h} g\right) \psi(g)+g^{-1} \psi\left(e_{i, h}\right)=0 .
$$

Thus ψ annihilates conjugates of $e_{i, h}$, products of conjugates of $e_{i, h}$ and their inverses, and limits of sequences of such products. It follows that ψ induces a continuous crossed homomorphism

$$
\eta_{k}(\epsilon): N / R \rightarrow D_{j} \cong G^{j} \mid M \rightarrow A^{\prime} \subset A
$$

where M is the closed normal subgroup of G^{j} generated by the elements $e_{i, h}\left(0 \leqslant h \leqslant n_{i}-1,0 \leqslant i \leqslant m\right)$, and $N / R \rightarrow D_{j} \cong G^{j} / M$ are the obvious maps. One easily verifies that the maps

$$
\eta_{k}: X\left(G^{k}, K_{k}, A\right) \rightarrow X(N / R, A)
$$

induce a homomorphism

$$
\eta: \underline{\lim } X\left(G^{k}, K_{k}, A\right) \rightarrow X(N / R, A)
$$

and that η and θ are inverse isomorphisms, natural in A.

Proposition 4.2. Suppose that

(i) G_{0} has cohomological dimension $\leqslant n$, where $n \geqslant 2$;
(ii) for all $k \geqslant k_{0}, K_{k}$ is freely generated by the images of $x_{i, j}^{-1} x_{i, p^{k}+j}$ in G^{k}, where $0 \leqslant j \leqslant n_{i}-1,0 \leqslant i \leqslant m$;
(iii) for every $k \geqslant k_{0}$ and discrete $O l G^{k}$-module M, the restriction map Res: $H^{1}\left(G^{k}, M\right) \rightarrow H^{1}\left(K_{k}, M\right)$ is injective;
(iv) the map $\gamma_{0}: G_{0} \rightarrow N / R$ is injective;
(v) For every $k \geqslant k_{0}$, the obvious maps: $G_{i} \rightarrow G^{k}$ are injective, for $i=0,1, \ldots, p^{k}-1$;
(vi) the maps $\delta_{0}: H_{0} \rightarrow G_{0}$ and $\delta_{1}^{\prime}: H_{1} \rightarrow G_{0}$ are injective. One then has a natural isomorphism:

$$
H^{q+1}(N / R, A) \cong \lim _{k \geqslant k_{0}} H^{q}\left(G^{k}, K_{k}, A\right)
$$

where A denotes a discrete $\operatorname{Cll}(N / R)$-module, and $q \geqslant 2$. Furthermore, N / R and each $G^{k}, k \geqslant k_{0}$, has cohomological dimension $\leqslant n$.

Proof. Clearly all the maps $\gamma_{j}, \delta_{j}, \delta_{j}{ }^{\prime}$ are injective ($j \in \mathbb{Z}$). The pro- p group G^{k} can be obtained from the pro-p-groups $G_{0}, G_{1}, \ldots, G_{p^{k}-1}$ by a process of necessive push-outs, as indicated in the diagram ${ }^{4}$ below.

where $P_{p^{k-1}}=G^{k}$, and $\gamma_{0}: G_{0} \rightarrow P_{1} \rightarrow P_{2} \rightarrow \cdots \rightarrow P_{p^{k-1}}=G^{k}$. Note that the maps β_{i} are injective, by (v), and we may consider them as inclusions. By the excision axiom (Theorem 1.10),

$$
\begin{aligned}
H^{n+1}\left(P_{2}, G_{2}, A\right) & \cong H^{n+1}\left(P_{1}, H_{2}, A\right) \\
H^{n+1}\left(P_{3}, G_{3}, A\right) & \cong H^{n+1}\left(P_{2}, H_{3}, A\right), \text { etc. } \\
H^{n+1}\left(G^{k}, G_{p^{k}-1}, A\right) & \cong H^{n+1}\left(P_{p^{k}-2}, H_{p^{k}-1}, A\right)
\end{aligned}
$$

for every discrete $\operatorname{Oll}(N / R)$-module A. Since α_{0} and β_{1} are injective, we can apply Theorem 1.13 to the first push-out, to obtain an exact sequence:

$$
\cdots \rightarrow H^{n}\left(H_{1}, A\right) \xrightarrow{\Delta} H^{n+1}\left(P_{1}, A\right) \xrightarrow{\Phi} H^{n+1}\left(G_{0}, A\right) \oplus H^{n+1}\left(G_{1}, A\right) \rightarrow \cdots
$$

Since H_{1} is free and $n \geqslant 2, \Phi$ is injective, and since $\operatorname{cd}\left(G_{0}\right) \leqslant n$, and hence $\operatorname{cd}\left(G_{j}\right) \leqslant n$ for all $j \in \mathbb{Z}$, we have $H^{n+1}\left(P_{1}, A\right)=0$. By the exact sequence,

$$
\begin{aligned}
& \cdots \rightarrow H^{n}\left(H_{j+1}, A\right) \xrightarrow{\delta} H^{n+1}\left(P_{j}, H_{j+1}, A\right) \xrightarrow{j} H^{n+1}\left(P_{j}, A\right) \\
& \quad \stackrel{i}{\square} H^{n+1}\left(H_{j+1}, A\right) \rightarrow \cdots
\end{aligned}
$$

of Proposition 1.5, we have

$$
H^{n+1}\left(P_{j}, H_{j+1}, A\right) \cong H^{n+1}\left(P_{j}, A\right), \quad j=1,2, \ldots, p^{k}-2
$$

Applying the same exact sequence to the pair $\left(P_{j}, G_{j}\right)$, we obtain

$$
H^{n+1}\left(P_{j}, A\right) \cong H^{n+1}\left(P_{j}, G_{j}, A\right) / \delta\left(H^{n}\left(G_{j}, A\right)\right), \quad 1 \leqslant j \leqslant p^{k}-1
$$

and it follows from the above isomorphisms that

$$
H^{n+1}\left(G^{k}, A\right)=0, \quad \text { i.e., } \quad \operatorname{cd} G^{k} \leqslant n
$$

Suppose now that A is an injective $O l l(N / R)$-module. Then, by Proposition 1.3, $H^{n}\left(G_{j}, A\right)=0=H^{n}\left(H_{j}, A\right)$ for $n \geqslant 1$ and $j \in \mathbb{Z}$. From the above exact sequence of Theorem 1.13, we deduce that $H^{q+1}\left(P_{1}, A\right)=0$ for $q \geqslant 1$, and from the exact sequence of Proposition 1.5 , we deduce that

$$
H^{q+1}\left(P_{j}, H_{j+1}, A\right) \cong H^{q+1}\left(P_{j}, A\right) \cong H^{q+1}\left(P_{j}, G_{j}, A\right) / \delta\left(H^{q}\left(G_{j}, A\right)\right)
$$

for $q \geqslant 1$. The isomorphisms

$$
H^{q+1}\left(P_{j}, G_{j}, A\right) \cong H^{q+1}\left(P_{j-1}, H_{j}, A\right), \quad 2 \leqslant j \leqslant p^{k}-1
$$

of the excision theorem (Theorem 1.10) now imply that $H^{q+1}\left(G^{k}, A\right)=0$ for $q \geqslant 1$. The exact sequence

$$
\begin{aligned}
\cdots & \rightarrow H^{1}\left(G^{k}, A\right) \xrightarrow{\text { Res }} H^{1}\left(K_{k}, A\right) \xrightarrow{\delta} H^{2}\left(G^{k}, K_{k}, A\right) \xrightarrow{j} H^{2}\left(G^{k}, A\right) \\
& \rightarrow H^{2}\left(K_{k}, A\right) \rightarrow \cdots
\end{aligned}
$$

and the hypotheses (ii) and (iii) imply that

$$
H^{2}\left(G^{k}, K_{k}, A\right) \cong H^{2}\left(G^{k}, A\right)=0
$$

Also, if $q \geqslant 2$, then $H^{a}\left(K_{k}, A\right)=0=H^{a+1}\left(K_{k}, A\right)$ and

$$
H^{q+1}\left(G^{k}, K_{k}, A\right) \cong H^{q+1}\left(G^{k}, A\right)=0
$$

So, the cohomology functor $\left\{H^{q+1}\left(G^{h}, K_{k},-\right)\right\}_{Q \geqslant 0}$ is effaceable by injective discrete $C O l\left(N^{\nu} R\right)$-modules, and it follows from Lemma 4.1 and the standard comparison theorem [17, Corollary 5.7] that

$$
H^{q+1}(N / R, A) \cong \varliminf_{k \geqslant k_{0}} H^{q}\left(G^{k}, K_{k}, A\right)
$$

for every discrete $\operatorname{Cll}(N / R)$-module A. If $q \geqslant n$, then the exact sequence

$$
\cdots \rightarrow H^{q}\left(K_{k}, A\right) \xrightarrow{\delta} H^{q+1}\left(G^{k}, K_{k}, A\right) \xrightarrow{j} H^{q / 1}\left(G^{k}, A\right) \xrightarrow{i} H^{q+1}\left(K_{k}, A\right) \rightarrow \cdots
$$

shows that

$$
H^{q+1}\left(G^{k}, K_{k}, A\right) \cong H^{q+1}\left(G^{k}, A\right)-0
$$

which completes the proof.
Suppose from now on that $m=0$ and write

$$
x=x_{0}, \quad y=x_{1}, \quad z_{j}=y^{-j} x y^{j}, \quad j \in \hat{\mathbb{Z}}_{p}, \quad n=n_{0}
$$

Proposition 4.3. Suppose that r_{0} belongs to the closed normal subgroup of $F\left(z_{0}, z_{1}, \ldots, z_{n}\right)$ generated by z_{0}. Then K_{k} is free for all $k \geqslant k_{0}$, and Res: $H^{1}\left(G^{k}, A\right) \rightarrow H^{1}\left(K_{k}, A\right)$ is onto for every discrete OllGG^{k}-module A.

Proof. Define an automorphism α on

$$
F^{k}\left(z_{0}, z_{1}, \ldots, z_{p^{k}+n-1}\right)
$$

by

$$
\alpha\left(z_{i}\right)= \begin{cases}z_{i} & \text { for } 0 \leqslant i<p^{k} \\ z_{i-p^{k}}^{-1} \cdot z_{i} & \text { for } \quad p^{k} \leqslant i \leqslant p^{k}+n-1\end{cases}
$$

(see Serre [18, I-Proposition 25]). Clearly, the elements $r_{i}\left(0 \leqslant i \leqslant p^{k}-1\right)$ are contained in the closed normal subgroup of F^{k} generated by $\alpha\left(z_{i}\right)=z_{i}$ $\left(0 \leqslant i \leqslant p^{k}-1\right)$. Since $\left\{\alpha\left(z_{i}\right) \mid i=0,1, \ldots, p^{k}+n-1\right\}$ is a basis for F^{k}, we can define a map

$$
\beta: F^{k} \rightarrow F\left(z_{0}, z_{1}, \ldots, z_{n-1}\right)
$$

by

$$
\beta\left(\alpha\left(z_{i}\right)\right)- \begin{cases}1 & \text { if } 0 \leqslant i<p^{k} \\ z_{i-p^{k}} & \text { if } \quad p^{k} \leqslant i \leqslant p^{k}+n-1\end{cases}
$$

Then $\beta\left(r_{i}\right)=1$ for all $i=0,1, \ldots, p^{k}-1$, and β induces a map $\gamma: G^{k} \rightarrow$ $F\left(z_{0}, z_{1}, \ldots, z_{n-1}\right)$. This map has a right inverse $\delta: F\left(z_{0}, z_{1}, \ldots, z_{n-1}\right) \rightarrow G^{k}$, defined by sending z_{i} to the image of $\alpha\left(z_{i+v^{k}}\right),(i=0,1, \ldots, n-1)$; and δ defines an isomorphism φ of $F\left(z_{0}, z_{1}, \ldots, z_{n-1}\right)$ onto K_{k}. Given a continuous crossed homomorphism $\epsilon: K_{k} \rightarrow A$, the map

$$
\lambda: G^{k} \xrightarrow{\nu} F\left(z_{0}, z_{1}, \ldots, z_{n-1}\right) \xrightarrow[\cong]{\cong} K_{k} \xrightarrow{\epsilon} A
$$

is a continuous crossed homomorphism, whose restriction to K_{k} is ϵ. It follows that

$$
\text { Res: } H^{1}\left(G^{k}, A\right) \rightarrow H^{1}\left(K_{k}, A\right)
$$

is onto.

Theorem 4.4. Suppose that

(i) $n \geqslant 1$, and r_{0} belongs to the closed normal subgroup of $F\left(z_{0}, z_{1}, \ldots, z_{n}\right)$ generated by z_{0};
(ii) $G_{0}=F\left(z_{0}, z_{1}, \ldots, z_{n}\right) /\left(r_{0}\right)$ has cohomological dimension $\leqslant q$, where $q \geqslant 2$;
(iii) there exists a (t, p)-filtration $\bar{\omega}$ on G_{0} such that:
(a) the elements $\mathrm{gr} \bar{z}_{0}, \operatorname{gr} \bar{z}_{1}, \ldots, \operatorname{gr} \bar{z}_{n}$ of the corresponding mixed Lie algebra $\mathrm{gr} G_{0}$ are distinct, where \bar{z}_{i} denotes the image of z_{i} in G_{0};
(b) the sets $S=\left\{\operatorname{gr} \bar{z}_{0}, \operatorname{gr} \bar{z}_{1}, \ldots, \operatorname{gr} \bar{z}_{n-1}\right\}$ and $T=\left\{\operatorname{gr} \bar{z}_{1}, \operatorname{gr} \bar{z}_{2}, \ldots\right.$, gr $\left.\bar{z}_{n}\right\}$ freely generate free mixed Lie algebras L_{S} and L_{T} in gr G_{0};
(c) $L_{S} \cap L_{T}$ is freely generated by $S \cap T$ (with $L_{S} \cap L_{T}=(0)$ if $S \cap T=\varnothing)$.

Then

$$
\operatorname{cd}(N / R) \leqslant q, \quad \operatorname{cd}\left(G^{k}\right) \leqslant q, \quad\left(k \geqslant k_{0}\right), \quad \operatorname{cd} F(x, y) / R \leqslant q+1
$$

and

$$
H^{j}(N / R, A) \cong \varliminf_{k \geqslant k_{0}} H^{j}\left(G^{k}, K_{k}, A\right)
$$

for every $j \geqslant 2$ and discrete $\operatorname{Cll}(N / R)$-module A.
Proof. The second statement follows from the first, by virtue of the exact sequence

$$
1 \rightarrow N / R \rightarrow F(x, y) / R \rightarrow F(y) \rightarrow 1
$$

and Serre [18, I-Proposition 15].
The element r_{0} belongs to the Frattini subgroup of $F\left(z_{0}, z_{1}, \ldots, z_{n}\right)$, because of (iii). Note that (iii) is precisely the hypothesis of Gildenhuys [5, Theorem 1], and, hence, the hypotheses (iv), (v), and (vi) of Proposition 4.2 are satisfied. The remaining hypotheses of this Proposition are satisfied by virtue of Proposition 4.3, and the result follows.

Example 4.5. Let $r=x^{p}((x, y),((y, x), x))$.
Case 1: $p>3$.
Let $\tau_{1}=1 / 4, \tau_{2}=1 / 10$, and let ω be the (x, τ, p)-filtration on $F(x, y)$. Then

$$
\omega(((x, y),((y, x), x)))=3 / 4+1 / 5<5 / 4=\omega\left(x^{p}\right)
$$

so that

$$
\operatorname{gr} r=\operatorname{gr}((x, y),((y, x), x))
$$

and Labute [10, Theorem 4'] can be applied. We conclude that

$$
\operatorname{cd} F(x, y) /(r)=2
$$

Case 2: $\quad p=3$.
In this case Labute's method fails when applied to r. However, rewriting r in terms of the conjugates $x_{j}=y^{-j} x y^{j}$, we obtain

$$
r_{0}=x_{0}^{3}\left(x_{0}^{-1} x_{1},\left(x_{1}^{-1}, x_{0}\right)^{x_{0}}\right) .
$$

Let $\left\{s_{n}\right\}$ be a strictly decreasing sequence of rational numbers tending to $1 / 2=1 /(p-1)$, and let ω_{n} be the (x, τ, p)-filtration on $F(x, y)$, where $\tau=\left(s_{n}, 1 / 2\right)$. Keep n fixed for the time being. Then the image $\operatorname{gr} r_{0}$ of r_{0} in the corresponding free mixed Lie algebra gr $F\left(x_{0}, x_{1}\right)$ is of the form

$$
\operatorname{gr} r_{0}=\left[\operatorname{gr} x_{0},\left[\operatorname{gr} x_{1}, \operatorname{gr} x_{0}\right]\right]-\left[\operatorname{gr} x_{1},\left[\operatorname{gr} x_{1}, \operatorname{gr} x_{0}\right]\right]
$$

By Labute [10, Theorem 4'], $\operatorname{cd} F\left(x_{0}, x_{1}\right) /\left(r_{0}\right)=2$ and $\operatorname{gr}\left(\left(r_{0}\right)\right)$ is the ideal (gr r_{0}) of $\operatorname{gr} F\left(x_{0}, x_{1}\right)$ generated by $\operatorname{gr} r_{0}$. Let $M\left(\xi_{0}\right)$ be the free mixed Lie algebra generated by one symbol ξ_{0}, and let

$$
\alpha: M\left(\xi_{0}\right) \rightarrow \operatorname{gr}\left(F\left(x_{0}, x_{1}\right) /\left(r_{0}\right)\right) \cong \operatorname{gr} F\left(x_{0}, x_{1}\right) /\left(\operatorname{gr}\left(r_{0}\right)\right)
$$

be the map that sends ξ_{0} to $\operatorname{gr} \bar{x}_{0}$, where $\operatorname{gr}\left(F\left(x_{0}, x_{1}\right) /\left(r_{0}\right)\right)$ is the mixed Lie algebra corresponding to the quotient filtration $\breve{\omega}_{n}$. Clearly α has a left inverse and

$$
\bar{\omega}_{n}\left(\bar{x}_{0}^{p^{k}}\right)=\varphi^{k}\left(\bar{\omega}_{n}\left(\bar{x}_{0}\right)\right)=\varphi^{k}\left(s_{n}\right),
$$

where φ is as in Lazard [11] or Gildenhuys [5, Section 3]. Similarly, $\bar{\omega}_{n}\left(\bar{x}_{1}^{\gamma^{k}}\right)=\varphi^{k}(1 / 2)$. Now

$$
\bar{\omega}\left(\bar{x}_{0}^{\nu^{k}}\right)=\lim _{n \rightarrow \infty} \varphi^{k}\left(s_{n}\right)=\varphi^{k}(1 / 2)=\bar{\omega}\left(\bar{x}_{1}^{p^{k}}\right)
$$

where $\bar{\omega}$ is the $(1 / 2, p)$-filtration on $F\left(x_{0}, x_{1}\right) /\left(r_{0}\right)$. (See Gildenhuys [5, Section 3], where a similar argument is used.) Hence condition (iii)(b) of Theorem 4.4 is satisfied. From the fact that $\operatorname{gr}\left(F\left(x_{0}, x_{1}\right) /\left(r_{0}\right)\right)$ is embedded in $\operatorname{gr}\left(\operatorname{Oll}\left(F\left(x_{0}, x_{1}\right) /\left(r_{0}\right)\right)\right)$, which has no zero-divisors (see Labute, [10, Theorem 4^{\prime}]), we can deduce, as in Gildenhuys [5, Section 3], that condition (iii)(c) of Theorem 4.4 is satisfied. Conditions (i) and (iii)(a) of Theorem 4.4 are trivially satisfied, and (ii) has already been proved, for $q=2$. Hence

$$
\operatorname{cd}(N / R)=2, \quad \operatorname{cd} F(x, y) /(r) \leqslant 3
$$

Case 3: $\quad p=2$.
We can write r in the form

$$
r=x^{2}\left((x, y),\left(y, x^{2}\right)\right)
$$

and by an argument similar to the one used in Gildenhuys [4] we deduce that r and x^{2} generate the same closed normal subgroup $F(x, y)$, and hence $\operatorname{cd}(F(x, y) /(r))=\infty$.

References

1. M. Barr and J. Beck, "Homology and Standard Constructions Seminar on triples and Categorical Homology," Vol. 80, Lecture Notes in Mathematics, Springer-Verlag, New York, 1969.
2. A. Brumer, Pseudocompact algebras, profinite groups and class formations, J. Algebra 4 (1966), 442-470.
3. S. Eilenberg and N. Steenrod, "Foundations of Algebraic Topology," Princeton University Press, Princeton, NJ, 1952.
4. D. Gildenhuys, On pro-p-groups with a single defining relator, Invent. Math. 5 (1968), 357-366.
5. D. Gildenhuys, Amalgamations of pro-p-groups with one defining relator, to appear.
6. D. Gildenhuys and C.-K. Lim, Free pro-C-groups, Math. Z. 125 (1972), 233-254.
7. D. Gildenhuys and L. Ribes, A Kurosh subgroup theorem for free pro-Cproducts of pro-C-groups, Trans. Amer. Math. Soc. 186 (1973).
8. A. Grothendieck, Sur quelques points d'algèbre homologique, Tohoku Math. J. 9 (1957), 119-221.
9. J. Keniison and D. Gildenhuys, Equational completions, model induced triples and pro-objects, J. Pure Appl. Algebra 2 (1971), 317-347.
10. J. Labute, Algèbres de Lie et pro-p-groupes définis par une seule relation, Invent. Math. 4 (1967), 142-158.
11. M. Lazard, Groupes analytiques p-adiques, Publ. Math. l'IHES, no. 26, 1965.
12. S. MacLane, "Homology," Springer-Verlag, Berlin, 1963.
13. W. Magnus, A. Karrass, and D. Solitar, "Combinatorial Group Theory," Interscience Tracts in Pure and Applied Mathematics, J. Wiley and Sons, Inc., New York/London/Sydney, 1966.
14. J. Neurirch, Freie Produkte Pro-endlicher Gruppen und ihre Kohomologie, Arch. Math. 22 (1971), 337-357.
15. L. Ribes, On a cohomology theory of pairs of groups, Proc. AMS 21 (1969), 230-234.
16. L. Ribes, Amalgamated products of profinite groups, Math. Z. 123 (1971), 357-364.
17. L. Ribes, Introduction of Profinite Groups and Galois Cohomology, Queen's Papers in Pure and Applied Mathematics No. 24, Queen's University, Kingston, Ontario, Canada, 1970.
18. J.-P.Serre, "Cohomologie Galoisienne," Vol. 5, Lecture Notes in Mathematics, Springer, Berlin/Göttingen/Heidelberg, 1964.
