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INTRODUCTION 

Let C be a class of finite groups, closed under the formation of subgroups, 
group extensions and homomorphic images. In Section 1 we develop a 
cohomology theory for pairs (G, H) of pro-C-groups, (where H is a closed 
subgroup of G), on the same lines as Ribes’ cohomology theory of pairs 
of abstract groups [15]. If G is the colimit (push-out) of the diagram 

in the category PC of pro-C-groups, and the canonical map K -+ G is 
injective, then we have an excision axiofn (Theorem 1.10) 

W(G, H, -) E Hn(K, L, -), 12 > 1. 

If both canonical maps K--f G and H + G are injective, then G is called 

the amalgamated product of K and H over the common closed subgroup L (see 
Ribes [16]), and we have 

H”(G, L, -) E H”(H, L, -) @ H”(K, L, -), (n 2 11, 
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(Proposition 1.1 I), as well as a Mayer-Vietoris sequence for the ordinary 

cohomology groups (Theorem 1.13). Section 2 is mainly formal in nature. 
We recall the definition of a category object ‘6 in a category B with pullbacks; 
and when g is the category top of topological spaces or the category Ptop 
of pointed topological spaces, we define the concepts of a functor from K 
into PC, and the colimit of such a functor. The first author learned about 
such things from A. Joyal, who dealt with similar concepts in the setting 
of the topos of Lawvere and Tierney. Just as a free discrete group is the 
colimit of a functor with domain a discrete category and values equal to 
the free group on one generator, the free pro-C-group generated by a pointed 
topological space is the topological colimit of a functor: ‘& 4 PC, where 
(6 is a category object in Ptop without nonidentity maps. More generally, 
the free pro-C-product defined in Gildenhuys and Ribes [7] of a family 
{G, 1 x E X] of pro-C-groups, indexed by a pointed topological space (X, *), 
with G, = (1) and x M G, locally constant outside (*), is an example of a 
topological colimit of such a functor (Proposition 2.2). In Section 3 we 
study the cohomology of such free pro-C-products. 

Given a discrete group F”(x~ , x’ r ,..., .~~+r)/(r) with one defining relator r 
and minimal set {x,, , .rr ,..., x,,+r } of generators, assume that Y belongs to 
the normal subgroup No = (2~~ , X~ ,..., x,,,), generated in the free group 

qxo, %,-..r ~x*,,Cl ) by the elements so , sr ,..., x,, . Very often r becomes more 
amenable when expressed in terms of the free generators xi,j = ~,&.z~x~,,+r 
(0 < i < M, i E Z) of No. For one thing it becomes shorter. If Y belongs to 
the subgroup Foe of No freely generated by the elements (xiej j hi <i < 
hi + ni ; 0 < i < m}, then yk = ykyyk belongs to the subgroup Fko of No 
freely generated by {Xi.j ] hi + K < j < lli + k + IZ~ ; 0 < i < m}; and 
NO/RO, where R” = (Y), can be built up from the (simpler) one relator 
groups Fko/(yp) by a process of successive amalgamations followed by a 
passage to the direct limit (see Karass, Magnus, and Solitar [13, p. 2521). 
In the case of pro-p-groups with one defining relator, we can do something 
similar, but the direct limit (or colimit) in the category of groups has to be 
replaced by a topo2ogicaZ colimit in the category of pro-p-groups (Proposi- 
tion 2.3). Section 4 deals with the cohomology of pro-p-groups with single 
defining relator. As an illustration of our methods, we consider the defining 
relator 

(Example 4.5). If p = 3, Labute’s method [lo] does not apply. However, 
rewriting Y in terms of the conjugates xi = T-j.@, it becomes more amenable 

r = r. = x~(.x~~s~ , (XT’, 3~~)~). 
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Labute’s method gives cd(F(x, , xJ(Y~)) = 2, and from our Theorem 4.4 
we deduce that cd(F(x, y)/(r)) < 3. 

1. A COHOMOLOGY THEORY FOR PAIRS OF PRO-C-GROUPS 

Throughout this section, C will denote a nontrivial class of finite groups, 
closed under the formation of subgroups, extensions, and homomorphic 
images. Note that if the order of a group in C is divisible by a prime p, 
then C contains the Sylow p-groups of that group, and hence contains 
all finite p-groups. It follows that the free pro-C-group on one generator 
is of the form 

2, = JJ 2,) 
DES 

where f, denotes the ring of padic integers, and S is the set of primes 
dividing the order of some group in C. So, fc is a pseudocompact ring, 
and for every pro-C-group G we can define a complete group algebra 

OZlG = &[[Gj] = 1itg f&G/u1 

(U runs through the open normal subgroups of G) which is again a pseudo- 
compact ring (Brumer [2, Section 43). Let P?cG be the category of discrete 
(topological) (02/G)-modules. Then gee is an abelian category with enough 
injectives (Brumer [2, Lemma 1.81). Note that the discrete (@ZG)-modules 
can also be characterized as discrete G-modules A that are C-torsion, in 
the sense that each element of A has finite order equal to a product of powers 
of primes in S (see Brumer [2, pp. 454, 4551). Given an abelian torsion 
group, i.e., a discrete f-module, where 

2=&q&, 
P 

and F is the class of all finite groups, we denote by T(A) (resp. T’(A)) the 
submodule of A consisting of all elements whose orders are products of 
powers of primes p E S (resp. p $ S). 0 ne easily sees that A = T(A) @ T’(A), 
and if 0 + A’ + A 4 A” --+ 0 is an exact sequence of abelian torsion 
groups, then so is 0 ---f T(A) + T(A’) + T(A”) + 0. 

Let H be a closed subgroup of G, let il E 1 %?cG I, and denote by MGH(A) 
the induced module (Serre [18, Chapter I, 2.51 or Ribes [17, p. 1431). One 
has an exact sequence 

0 --+ A A MGH( A) -+ I-( A) -+ 0 
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in vcG [18, I-131, MGH: %,’ +gcG is an exact functor (see Ribes [17, 
Proposition 7.2]), and, by the 3 x 3 lemma [12, Lemma 5.11, l? %?cG -+ VcG 
is also an exact functor. 

Consider the abelian group 

X(G, H, A) = if: G --+ A I f(xy) = xf(y) + f(x), f I H = 01 

of continuous crossed homomorphisms from G to A, vanishing on H. 

DEFINITION 1.1. The nth right derived functor of the left-exact functor 
X(G, H, -) from @‘cc into the category C!!b of abelian groups, is denoted 
by Hn+l(G, H, -), and Hn+l(G, H, A) is called the (n + 1)st cohomology 
group of the pair (G, H), with coeJicients in the discrete G-module A (n > 0). 

We shall see that these cohomology groups are independent of C, in 
the sense that we get the same groups if we view G and H as profinite groups, 
and A as an object of VFG. 

LEMMA 1.2. One has a natural isomorphism 

HOI’&, , r(A)) cz X(G H, A). 

The proof proceeds almost exactly as in Ribes [15], Lemma 1.1, and is 
therefore omitted. 

LEMMA 1.3. Let H be a closed subgroup of a pro-C-group G, and let A 
be an injective object of V,G or of gFG. Then the cohomology groups Hn(H, A) 
are zero for n > 1. 

Proof. For every open normal subgroup U of G, let 

be the submodule of U-invariants. If A is an injective object of Vc , then 
Au is easily seen to be an injective G/U module. By Ribes [17, Lemma 5.121, 
it is an injective (HU/U)-module, and from the isomorphism 

H”(H, A) E li? H”(HU/U, Ao) 
CJ 

of Serre [18, I, Proposition 81, we deduce that Hn(H, A) = 0 for n 3 1. 
The same argument applies if A is an injective object of VFG. 1 

481/29/l-12 
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PROPOSITION 1.4. Let A be an object of Vpc. Then T(A) is an object of 
QCG, and one has natural isomorphisms of cohomology functors 

H’YG, A) zz H”(G T(A)), 
Hn+l(G, H, A) g H”+l(G, H, T(A)) g Hn(G, r(A)) gg Hn(G, r(TA)) 

for alln > 1. 

Proof. One easily sees that T: GFFG -+ VcG is an exact functor mapping 
injectives to injectives, and 

i&Ho T = ToMoH, TOT-TOT. 

Since both H(G, -) and H(G, T(-)) are effaceable by injectives in VF, 
and lT %‘cc + VcG is exact, the isomorphisms 

H”(G, -) cz H’YG, T(-)), H”(G, r(-)) s H”(G, WY-))) (n >, 0) 

follow from a standard comparison theorem (Ribes [17, Corollary 5.71). 
Lemma 1.2 yields the natural isomorphism 

X(G ff, A) ec X(G H, T(A)), 

and we may as well assume that A is in VcG. Using the isomorphism 

H”(G, -> E E&w& , -1, n>O 

(Brumer [2, Lemma 4.2(i)]), and applying Homa&, , -) to the exact 
sequence 

0 --f A -+ MoH(A) + r(A) + 0, 

we obtain a long exact sequence 

0 + Horn&&, A) - Hom&fc , M&4)) -+ Hom(fc , r(A)) 
-+ H1(G, A) + H1(G, M/(A)) - W(G, r(A)) + H*(G, A) 

+ H*(G, MGH(A)) -+ . . . . 

By Serre [18, I-12, Proposition lo], we have natural isomorphisms 

H”(G, M,‘V)) FZ H”(K A), n 3 0, 

and if A is an injective object of %cG, then 

Hn(G, A) = 0 = Hn(H, A) 
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for all n > 1 (Lemma 1.3). From the above long exact sequence, we conclude 
that H”(G, r(A)) = 0 f or all n > 1, and by Lemma 1.2 and the standard 
comparison theorem (Ribes [17, Corollary 5.7]), we have 

Hn(G, T(-)) gg Hn+l(G, H, -), n>l. 1 

PROPOSITION 1.5. Let H be a closed subgroup of a pro-C-group G, and 
let A be an object of gee. There exists a long exact sequence 

0 + Ao 2 AH 2 H1(G, H, A) 1 H’(G, A) 

5 H1(H, -4) 5 H2(G, H, -4) L . . . . 

where the i’s are restriction maps induced by the inclusion H C G. 

Proof. Substitute AC for Horn,,,@, , A), AH for Horn,,,@, , MoH(A)), 
HI(G, H, A) for Horn@, , P(A)), HVz(H, A) for Hn(G, M,H(A)) and 
Hn+l(G, H, A) for Hn(G, P(,4)) (n > 1) in the long exact sequence of the 
proof of Proposition 1.4. 1 

COROLLARY 1.6. Let 1 denote the group with one element. Then 

H”(G, 1, A) z Hn(G, A), n 2 2, ,4 E 9?cc. 

LEMMA 1.7. Let H C KC G be embeddings of pro-C-groups. Then 
{Hn(K, H, -) 1 n > l} is a universal sequence of connected functors in YZFG 
(“a-foncteur universel” in the terminology of Grothendieck [S]). 

Proof. The sequence is certainly exact. One easily deduces from 
Lemma 1.3 and Proposition 1.5 that it is effaceable. 1 

LEMMA 1.8. Let X(G, A) stand for the abelian group X(G, 1, A) of 
continuous crossed homomorphisms from a pro-C-group G into a discrete 
GIlG-module A. Let F be a functor from a small category I into the category 
PC of pro-C-groups. One has a natural isomorphism 

X(l& F, A) N Jim X(F(-), A) 

of abelian groups, where, for each i E 1 I 1, the F(i)-module structure of A is 
induced by the canonical map: F(i) + l&F. 

Proof. Since A is a direct limit of finite edlG-modules, we may assume 
without loss in generality that A is a finite aZG-module and an abelian 
group in C. For each i E 1 I 1, let 

vi: F(i) -+ G = hF, pi: lb X(F(-), A) -+ X(F(i), A) 
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be the canonical maps. There exists a unique homomorphism 

such that 

7: X(G, A) + lim X(F(-), A) 

&(7(e)) = e 0 vi: F(i) -+ A 

forallieIII andeEX(G,A). 
Consider the commutative diagram in PC with split exact rows 

where G is the space A x G with the product topology and with multiplica- 
tion defined by 

(a, gw, g’) = (a + ga’, gg’); 

F(i) is the product space A x F(i), with multiplication defined by 

(4 Ma’, h’) = (a + PiW’, hh’), 

and 

+4 g) = g, a = (0,&9, .rri(U, h) = h, q(h) = (0, h), 
Qi(U, 4 = (4 %(h)). 

For eachfebX(F(-), A) and in 1 I I, we define a map 

ti: F(i) -+ F?), bCh) = (Pi(fXh)s h)7 h E F(i). 

It is immediately verified that each ti is a continuous homomorphism, 
and the maps & 0 ti: F(i) + G induce a unique morphism s: G -+ G such 
thatso~i=&otiforalliEIII.N~~, 

44dh))) = 4$&W) = vi(h) 

for all i E 1 I (, and hence r 0 s = i&- . So we can write s(g) = (e(g), g), 
where e: G + A is easily seen to be a continuous crossed homomorphism. 
We define 

6’: lim X(F(-), A) -+ X(G, A) 

by e(j) = e. One verifies with no difficulty that 8 and 71 are inverse iso- 
morphisms, and are natural in A. 1 



COLIMITS OF PRO-C-GROUPS 179 

PROPOSITION 1.9. Let G be the colimit (OY pushout) in the category PC of 
a diagram consisting of maps q:H+G,,(i~I),andletQi:Gi+Gbetlte 
canonical maps (i E I). Let OL = Qi 0 0~~: H --+ G. One has a natural isomorphism 

where A is a discrete 0?lG-module, and hence also a discrete Gi-module, by 
the maps (pi . 

Proof. As in the preceding lemma, we may suppose, without loss in 
generality, that A is a finite abelian group in C. Let 

Pi: 5 X(G, ,4H)s A) 4 X(Gi > 4fO A) 

be the canonical projection, and define a homomorphism 

7: X(G +4, A) + n X(Gi ,4H), A), 
iPI 

by writing Pi(T(e)) = e 0 Qi for all e E X(G, a(H), A), i E I. 
As in the previous proof, one has a commutative diagram in PC, with 

split exact rows 

where e is the product space A x G, with multiplication defined by 

(a, id@‘, g’) = (a + ga’, gg’), a, a’ E A, gg’ E G 

and ei is the product space A x Gi , with multiplication defined by 

(a, gi)(a’, gi’) = (a + Qikib’y EiEi’)t a, a’ E A, h, h’ EF(i). 

For each f E &,X(G, , q(H), A), define a map t,: Gi + ei by ti(gi) = 
(pi(f)(gl), gi). It is easily verified that each ti is a continuous homomorphism, 
and the maps Qi o ti: Gi -+ e induce a unique morphism s: G + G such 
thatsoQi =&~tiforalliEz.Now 

"ds(Qiki))) = 'd@i(bki))) = Q&i) 
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for all i E I and gi E Gi , and hence rr 0 s = id, , So, we can write s(g) = 
(e(g), g), where e: G + A is easily seen to be a continuous crossed homo- 
morphism that is trivial on or(H). We define 

0: fl X(G , +Q A) - X(G oc(H), A) 
iSI 

by e(f) = e. One easily verifies that 0 and 7 are inverse isomorphisms, 
and are natural in A. 1 

Let H C G, L C K be pro-C-groups. Let v: K -+ G be a continuous 
group homomorphism with PL C H. If A is a discrete (@IIG)-module then 
it possesses a natural (@ZK)-module structure induced by p. Then p induces 
a natural homomorphism 

given by 
$: X(G, H, A) + X(K, L, A) 

which in turn induces mappings 

p: Hn(G, H, A) - H”(K, L, A). 

THEOREM 1.10 (The Excision Axiom). Let L be a common cZosed subgroup 
of two pro-C-groups H and K, and suppose that the pushout G in PC of L C H 
and L C K has the property that the canonical map: K -+ G is injective. Then 
the morphisms 

pn: Hn(G, H, -) -+ Hn(K, L, -) (n> 1) 

of functoYs: gee + OM, induced by the inclusion 

v: (K L) -+ (G HI, 
are isomorphisnx 

Proof. It follows from Lemma 1.7 and the standard comparison theorem 
[17, Corollary 5.71, that it suffices to show that 

#: X(G, H, -) + X(K, L, -) 

is an isomorphism. So, let M be an object of %?cc, and suppose that> K --f M 
is a continuous crossed homomorphism that annihilates L. Then, by 
Proposition 1.9, f and the trivial map 0: H + M induce a continuous crossed 
homomorphism q(f): G + M. Clearly, the map 

17: X(K, L, M) + X(G, H, M) 

and the restriction pM1 are inverse isomorphisms. 1 
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PROPOSITION 1.11. Suppose that C is contained in another class C’ of 
finite groups, closed under the formation of subgroups, homomorphic images and 
extensions. Given pro-C-groups Hi , i E I, with a common closed subgroup L, 
we may view Hi as pro-C-groups, and we now assume the existence of their 
amalgamated product 

G=u Hi 
ioIL 

in the category PC’. Then 

H”(G, L, A) E n H”(H, , L, A) 
&I 

for n> 1 and AEVE,, where the canonical projections are induced by the 
inclusions: (Hi , L) + (G, L). 

Proof. By Proposition 1.4, we may without loss in generality take C = C’, 
and, by Lemma 1.7 and the standard comparison theorem [17, Corollary 5.71, 
it suffices to refer to Proposition 1.9, which gives the result for dimension 1. 1 

COROLLARY 1.12 (Neukirch [14]). Let G = H u K be the coproduct in 
the category PC of two pro-C-groups H and K, and let A be an object of V, . 
Then 

H”(G, A) = H”(H, A) @ H”(K, A) 

for n > 2. 

Proof. Put L = 1 in Proposition 1.11 and apply Corollary 1.6. 1 

THEOREM 1.13 (A Mayer-Vietoris sequence). Assume the existence of the 
amalgamated product G = H & K in PC of two pro-C-groups H and K 
over a common closed subgroup L, and let A be an object of VcG. Then the 
following sequence is exact: 

0 -+ X(G, A) + X(H, A) @ X(K, A) + X(L, A) + H2(G, A) + ... 

+ H”(L, A) -s Hnfl(G, A) % H”+l(H, A) @ Hn+l(K, A) 

-% Hn+l(L, A) ---f . . . . 

A: H”(L, -4) A H”+l(K, L, A) = Hn+l(G, H, A) -% Hn+l(G, A), 

with S and j as in Proposition 1.5, q~~+l as in Theorem 1.10; @ is the direct 
sum of the maps induced in cohomology by the inclusions H c-+ G and K c-+ G; 
Y(v~ , VJ = h;+‘(v,) - hg+l(v,), where hy+’ and hzfl are maps induced in 
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cohomology by the in&siws h,: L 4 H and h,: L C--N K respectively, 
v1 E H”+l(H, A), v, E Hn+l(K, A). 

The proof is formally the same as in Eilenberg and Steenrod [3, Theo- 
rem 15.3(c), p. 431. 

Remark 1.14. Barr and Beck have proved (see [l, Section 7, p. 297 and 
Section 9, p. 3101) that the analogue of Theorem 1.13 is valid in a very 
general setting in the presence of Proposition 1.11, namely for a class of 
categories tripleable over sets, and triple cohomology. The category PC is 
tripleable over sets (see Kennison and Gildenhuys [9]); however, we did not 
try to ascertain whether the usual cohomology groups of pro-C-groups are 
obtainable from this triple. 

2. TOPOLOGICAL COLIMITS OF PRO-C-GROUPS 

Let d be a category with pullbacks. A category object in d is a 6-tuple 
%Z = (F, X, 01, j3, CL, m), where p: X c-+ F is a monomorphism in B, OL and /3 
are maps F -+ X, called the domain map and co&main map, respectively, 
such that LY~L = rS, = id, ; 

M-F 

is a pullback in B, and m: M --+ F, called composition, is a map satisfying 
certain more or less obvious conditions. We are only interested in the case 
where d is the category top of topological spaces, or the category Ptop 
of pointed topological spaces, in which case these conditions can be expressed 
by requiring that U% be a (small) category, where the objects of II%? are 
the elements of X, the maps are the elements of F, the identity map on 
x E X is p(x), the domain (resp. codomain) off EF is the object a(f) (resp. 
fi(f )), and composition 0 is defined as follows. Suppose that f, f’ E F and 
a(f ‘) = B(f). Let 1 = {I} be the terminal object in b, and define g: 1 -+ F, 
g’: 1 -F be g(l) = f, g’(l) = f ‘; then g and g’ determine a unique map 
h: 1 --f M, and we let f’ 0 f = m(h(1)). In order for U% to be a category, 
we need among other things that a(f’ 0 f) = a(f) and /3(p’ t p) = p(p). We 
will call II%? the underlying category of g. 

Let C be a class of finite groups, closed under the formation of subgroups, 
finite products and homomorphic images. 

A fun&or: V + PC from a category object V = (F, X, (Y, 8, p, m) of the 
category B = top (resp. B = Ptop) into the category PC of pro-C-groups 
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is a pair T = (P, r), where a: E --f (X, *) is a map in d such that for every 

x E X, the fiber G, = &({x}) (resp. G, = ?r+({x, *})) is a pro-C-group and 
G, c-+ E is a morphism in 9; 

a*(E) - E /l*(E) ‘” b E 

a’ 1 1 7r 8’ 1 1 n 

F-X F ‘+X 

are pullback diagrams in 9 and 7: a*(E) -+ p*(E) is a map in 9, with 
/3’r = 1~’ and the property that UT: UV -+ PC, defined as follows, is a 
functor in the usual sense. For every object x E X of U%Z, write (UF)(x) = G, . 
For each t E Gz, and f EF with a(f) = x1, /3(f) = x2, let i: 1 + a*(E) be 
the map induced by 1 + E, I++ t and 1 -+ F, 1 t+f. Then /3(/3’(~(n(l)))) = 

B(f) = x2 9 so that /7’(~(2(1))) E r-l({x2 , *}) = GE, . So, (UT)(f ): Gz, -+ Gz, 
is well defined by writing (UT)(f)(t) = p(~(f(l))). 

A morphism (p: T = (T, T) + T’ = (r’, 7’) of functors from a category 
object V of 9’ into PC is a map v: E -+ E’ in 9, where a: E -+ X and 
n’: E’ --+ X, such that r’v = rr, the following diagram commutes 

a*(E) 2 B*(E) 
a*(9) 1 1 8*(C) 

ar*(E’) ” l /3*(E’) 

and the restriction of q to the fiber G, above x E X defines a morphism: 
G, -+ G,’ in PC. Here G, = +((x}), G,’ = (zT’)-r({x}) (resp. G, = 
+({x, c}), G,’ = (d-l({x}) if 9 = top (resp. Ptop). 

One easily sees that the functors from the category object V of B into 
PC, and morphisms of these functors, form a category PV. 

To every pro-C-group G, there corresponds a constant fun&or K(G) = 
(rr, T): V--t PC, where rr is the projection from the product G 0 X of G 
and X in 9, onto X, and 

~:cx*(GoX) = GoF-+GoF =/3*(GoX) 

is the identity map. 
A pair (G, 7) consisting of a pro-C-group G and a morphism ‘7: T -+ K(G) 

in 9% is said to be a topological colimit of a functor T: V + 9’ if for every 
other pro-C-group G’ and morphism ‘p: T + K(G), there exists a unique 
morphism 1,4: G - G’ in PC, such that K(t,4b = v. 
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PROPOSITION 2.1. Let T: Y: -+ PC be a functor from a category object ‘3’ 
of 9 into the category PC of pro-C-groups, where 9 is the category top OY 

the category Ptop. Then the topological colimit of T exists and is unique up 
to isomorphism. 

Proof. Let UT: U% + PC be the corresponding underlying functor, 
and L its colimit in PC. Let V = (F, X, 01, p, p, m), T = (TT, T), n: E ---f X. 
For each x E X, one has a canonical morphism 

rlr. * G,-+L 

of pro-C-groups, where G, = +({+) if B = top and G, = rr-I({%, *}) if 
B = Ptop and * is the distinguished point of X. 

We define v: E + L by v(e) = 7,.,(,,(e). Let @ be the family of open normal 
subgroups N of L, such that v-l(gN) is open in E, for every coset gN of N 
in L. Let G = bNEO L/N (with G = (1) if @ = a). For each NE @, 
let pN: G + L/N be the canonical projection of G onto the discrete group 
L/N. Then the maps p, 0 v: E -+ L/N are continuous and induce a morphism 
7’: E - G in 9. The maps 7’ and r induce a map 7 from E into the product 
G 0 X of G and X in 9, and 7 defines a morphism 7: T + K(G) in 9%. 
One easily verifies that the pair (G, 7) is a topological colimit of T. Uniqueness 
is clear. 1 

PROPOSITION 2.2. Let (X, *) be a pointed compact Hausdorff totally 
disconnected space, and let {G, / x E X} be a family of pro-c-groups with 
G, = (I), and such that the map x F+ G, is locally constant on X\(*}. Then 
the free pro-C-product (see Gildenhuys and Ribes [7]) of these pro-C-groups 
is a topological colimit of a functor from a category object of Ptop into PC. 

Proof. We recall the definition of the Ctale space E = Vzox G, . As a 
pointed set, E is the coproduct of the pointed sets (G, , I), x E X. For all 
x EX\{*}, there exists a so-called constant open neighborhood U of x in 
X\{*}, with G, = G, for all x, ~1 E U, and for such a set U we define 

p,: U x G, + E, (u, t) H t E A,, (u, t) E U x G, . 

A subset W of E is open iff 

(i) for every constant open subset U of X, the set pi’(W) is open 
with respect to the product topology on U x G, , (x E U); 

(ii) if Wcontains the distinguished point 1 of E, there is a neighborhood 
V of * in X, such that G, C IV whenever y E V. 

The map ZY E -+ S is defined by m( 1) = * and n(e) = x if e E G,\(l). 



COLIMITS OF PRO-C-GROUPS 185 

Let g be the category object (X, X, id, , id,, id,, id,) of Ptop. Clearly 
T = (r, id,): $? + PC is a functor. There is a bijective correspondance 
between maps 7: T + K(G), (7: E --f G o X) of functors in PC” and maps 
7’: E --f G in Ptop whose restrictions to the fibers n-l({x, r}), x E X, are 
morphisms of pro-C-groups. The pair (G, 7’) is a free pro-C-product of 
{G, 1 x E X> iff for each morphism v from E into the underlying pointed 
space of a pro-C-group H such that v 1 +({x, *}) is a morphism in PC, 
there exists a unique morphism 4: G - G’ of pro-C-groups such that 
1,4 o 17’ = v. Clearly this condition is equivalent to (G, 7) being a colimit 
of T. 1 

We will now look at pro-p-groups G = F(xa , .‘cr ,..., x~+~)/(Y) (m > 0) 
with one defining relator r, which belongs to the Frattini subgroup F* of 
F = F(x, , *, ,..., x,+1 ). (If Y $F*, then G is free.) Changing the basis of F, 
if necessary, we may assume without loss in generality that Y belongs to the 
closed normal subgroup N = (x0 , x, ,..., x,) ofF, generated by:,, , x1 ,..., x, . 
We write R = (Y) and Xi,j = x$~A&+~ (iE{O, l,..., m},j~ Z,). We know 
that N is the free pro-C-group generated by the homeomorphic image 

{xi,i E N 1 i E (0, I,..., m>, j E f,} 

of the product (0, l,..., m} x %, of the discrete space (0, l,..., m} and the 
underlying space of the ring of padic integers, under the map 

w: X-+N, k 8 b xi,j . 

(See Gildenhuys and Lim [6, Corollary 2.21.) It follows that N is also freely 
generated by w(X), where X = (0, I,..., m} x E, and Z has the p-adic 
topology. We now suppose that Y belongs to the closed subgroup C of N 
generated by xi,j , j = hi , hi + l,..., hi + ni , ni > 0, i = 0, I,..., m. (If Y 

is a (finite) word in the generators x0 , x, ,..., x,+~ , this assumption is always 
justified.) Since we can replace the basis x,, , x1 ,..., x,+~ by the basis 

(x;~~x~x~+, ) i = 0, l,..., m> U (xm+i) 

if necessary [18, I-Proposition 2.51, we may assume without loss in generality 
that h, = 0 for all z = 0, I,..., m. Let rj = x&Yx~+~ (j E f,) and identify 
the free pro-p-group 

Fo = F(xo,o, x0.1 ,..., xo,,, ; x0.0 s..., xo,,, i-.-i x”m.0 ,-.-, xm.,,) 

with its obvious image C in N. For every j E f, , the free pro-p-group Fi 
generated by the finite set 

{x~,*+~ 1 h = 0, I ,..., ni ; i = 0, l,..., m}, 
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can also be identified in an obvious way with a closed subgroup of N, 
containing ri . For every j E f, one has a natural map 

~9: Gi =Fj/(~i) + N/R 

(in general not injective, see Gildenhuys [5, Remark (i)]). For each j E Z, , 
let Hj be the free pro-p-group generated by the set 

{x~,~+~ 1 0 < h < ni - 1; i = 0, l,..., m}. 

For each j E 2, , there are two maps 

8j: Hi-t Gi) 8.j’: Hj + Gj-1 

that send each x~,~ to its natural image in Gs and G,-i , respectively. 

PROPOSITION 2.3. The closed normal subgroup N/R of G is a topological 
colimit of a fun&or T: V -+ P, from a category object V of top into the category 
P, of pro-p-groups, where the underlying category U% of V is represented by 
the in.nite diagram 

. . . . . . 

JVVVV\ 
. . . . 

and the underlying fur&or 

. . . . . 

UT: UW --f P, maps this diagram onto the diagram 

-*- He, H-1 HO Hl H, ... 

Proof. Let 

where Z has the padic topology and the symbol u denotes the coproduct 
in top. Let E1 (resp. Es) be the product G, x Z (resp. H, x Z) in top. The 
maps rr: E1 -+ Z and ~~‘2: Es + Z are projections and rr: ‘E = E1 u E, + 
Z u Z is their coproduct. The functor T: %? + P, is of the form T = (P, T). 
Note that for each j E Z one has an isomorphism aj: G, + Gj and an 
isomorphism TV: H,, + Hi . The pro-p-group Gj (resp. Hi) is identified with 
the fiber r;l({ j}) (resp. r;‘({ j})). It is now clear how 7, OL, /I, p, and m are to be 
defined, in order for the conditions of Proposition 2.3 to be satisfied. 
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There exists a unique map Q: E1 --f N/R that sends e E Gj C E to n(e) 
(i.e., the image jgish of xiVh , O<i<m,j<h<n,+j,issenttoitsnatural 
image in N/R), and has the property that Q / Gj: Gi + N/R is a morphism 
in P, for each jE Z. For every open normal subgroup TV’ of N/R, there 
exists a natural number k, such that the images of xi,* and x~,~ are congruent 
mod FV, whenever h = t modp?Z, 0 < i < m. Hence, 

yj(uj(e)) = yj(u,(e)) mod fV 

whenever j = t mod@, e E G, , and 71 is continuous. Moreover, it has 
the property that ql 1 Gj: Gj -+ N/R is a morphism in P, for each j E 2’. 
Similarly, one has a map 7s: E, + N/R that sends Xi,h E Hj C E2 , 0 < i < m, 
j < h < ni + j - 1 to its natural image in N/R, and has the property 
that Q 1 Hj is a morphism in P, for each j E Z. The maps ql and 7s now 
induce a map 7’: E + N/R in top, and the maps q’ and 7r induce a map 
7: E ---f (N/R) x (Z w Z), which can be viewed as a morphism: T + K(N/R) 
in P,“. We proceed to verify that 7: T + K(N/R) satisfies the universal 
property of a topological colimit. So, let p: T + K(G) be a morphism 
in P,‘@; then the composition of ‘p: E + G’ x (E w Z) and the projection 
G’ x (Z u Z) --+ G’ gives a morphism #: E + G’ in top. For every open 
normal subgroup V of G’, there exists a natural number k such that if 
h E j mod pkZ, then $(z~,J = v’(Zc,j) and $(xi,J = P)‘(Q) mod V, where 
zisa denotes the image of xish in some G,CE,CE (j<h<j+n,, 
0 < i < m), and x#,~ has been identified with its image in Hj C E, C E 
(j < h < j + ni - 1, 0 < i < m). Since N is freely generated by the 
topological space {zi,h 1 0 < i < m, h E z}, there exists a unique map 
8,: N + G’/V that sends xish to the image of v’(xiVk) in G/V. Moreover, 
the restriction of p’ to each fiber Gj is a continuous homomorphism; hence 
&(rj) = 1 for all j E 2, , and BV induces a map 8,‘: N/R + G’/V. The maps 
8,’ now induce the desired map 4: N/R -+ G’ = lim G’/V, for which 
4 o 7’ = v’, and hence K(4) o 7 = v: T + K(G’) in P,“. The uniqueness 
of # is easily verified. 1 

3. ON THE COHOMOLOGY OF FREE PRO-C-PRODUCTS OF PRO-C-GROUPS 

Let C be a nontrivial class of finite groups, closed under the formation 
of subgroups, extensions and homomorphic images, and let (X, c) be a 
pointed compact Hausdorff totally disconnected topological space. Let 
{G, 1 x E X} be a family of pro-C-groups, such that G, = (1) and x H G, 
is locally constant outside {*}. There exists a family R of open equivalent 
relations R on X such that G, = G, whenever xRy and not xR*. Writing 

48112911-13 
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GzR = G, and GR for the coproduct of the finite set {GzR / XR E X/R} 
of pro-C-groups (here xR denotes the equivalence class of x), we have an 
isomorphism 

,5I,G, =L&G”, 

where the left side denotes the free pro-C-product of the family (G, 1 .v E X} 
(see Gildenhuys and Ribes [7, Proposition 2.11). 

PROPOSITION 3.1. For every discrete 6k’lG-module A, where r%G = Z,[[Gl] 
(see Section I), one has a natural isomorphism 

where 
AR = {a E A ] ha = a, h E KR} 

is the submodule of invariants under the kernel KR of the canonical projection: 

G= UG,dGR= u GxR, 
SEX reXJR 

and the G,, module structure on AR is induced by the canonical inclusion 
GzR ‘+ GR. 

Proof. The natural isomorphism 

@ ffn(Gz~, AR) g Hn(GR, AR) 
xReX/R 

is an immediate consequence of Corollary 1.12, and the result now follows 
from Serre [18, I-Proposition 81. 1 

COROLLARY 3.2 (Neukirch [14]). If G is the restricted free pro-C-product 

of a fam?v {G&x of pro-C-groups, then one has a natural isomorphism: 

H”(G, A) GL 0 H”(G, , A), n 3 2, 
XEX 

where A is a discrete OZlG-module. 

Proof. Let x = X w {*} be the one point compactification of the 
discrete space X, and G, = (I), then 

G E u G, N lim GcR), 
rs8 RER 
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and R admits a cofinal subset R’ of equivalence relations whose equivalence 
classes either contain * or consist of a single element of X. Clearly 

4. COHOMOLOGY OF PRO-P-GROUPS WITH SINGLE DEFINING RELATOR 

We keep the notation of Section 2. For every natural number K, let Fk 
be the free pro-p-group generated by 

We identify Fk in an obvious way with a closed subgroup of N. Let 
(yo 3 Yl >***, yDbml) be the closed normal subgroup of Fk generated by 
yo , Yl ,.a-, Y$-1 , and let 

Gk = F”/(Y, , rl ,..., Y&. 

Let k, be a fixed natural number such that ~“0 > lzi for all i = 0, l,..., m. 
For k > A,, write 

z/p52 = (0, 1,...,pk - l} 

and for i E P/p%, write 

yi’ = T(YJ E E, = F(x,,~ j 0 < i < m, 0 <j < pk - l), 

and Dk = Ek/(yo’, Y,’ ,..., Y~LJ, where 

is induced by the canonical projection TT’: f, + Z/p”Z, i.e., yi’ is obtained 
from yi by writing yi as a limit of sequence of words w, in the letters 

xovd , Xo,i+l ,..., XO,~+~~ ; X1.i 9..-, Xl,i+nl ;-e-i xm,i 9*.-y *m.i+n, 

and replacing xi,j by xi,h where h is the image in Z@Z of j E 2, . Let Kk 
be the closed subgroup of Gh’ generated by the images of the elements 

X2 
0,3+phXi,j ’ 

O<jjfZn,-1, OGiim. 

Clearly N/R = lim D, (see also Gildenhuys [.5]). 
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LEMMA 4.1. Let A be a discrete GU(N/R)-module, where GU(N/R) = 
f,[[~p]]. Then A can be viewed as a discrete @lGk-module by the obvious 
map Gk 4 N/R, and one has a natural isomorphism 

X(N/R, A) = linl. X(P, I&, A), 
k>k, 

where the direct limit is taken with respect to the maps defined in the proof below. 

Proof. If j > k 3 k, , the map X(G”, Kk, A) -+ X(Gj, Kj , A) is 
induced by a map qj,k: Gi 4 Gk, which in turn is induced by qi,k: Fj - F”, 
defined as follows. If h 3 pj, let qi..k(.ri,h) = xi,h-Pj+Dk, and if 

h E (0, l,..., pj - I} = ZjpjZ, 

let t be the image of h inZ/p”Z = (0, l,..., pk - l}, and define q;,J+) = xi,t . 
Since each rh EF~ (0 < h < pj - 1) involves sequences of letters 

xi.O 9 L’ci,l v..*9 .ri.ni (0 < i < m) 

of length < ni < pko < pk, one has qiak(rA) = rt , and the induced map 
qj,k: Gj - Gk is therefore well defined. 

Suppose now that y E X(N/R, A). Since y is continuous, there exists a 
natural number k 3 k, such that y($, * %i,j) = 0 wheneverj = h mod p”f, , 
where .%ii.n denotes the image of xi,h in N/R. So, the composite 

6,: G, + N/R 2 A 

is a continuous crossed homomorphism that annihilates Kk . If 

01~: X(G”, KI, , A) + k$ X(Gk, Kk , A) 
0 

denotes the canonical map, then it is immediately verified that 

0: X(N/R, A) + lim X(Gk, l&, A) 
k>k, 

is well defined by 8(y) = ark&), ( w h ere k depends on r), and 0 is a homo- 
morphism of abelian groups. 

To define its inverse, suppose that E E X(G”, Kk , A), (k 3 k,). Its image 
generates a finite abelian subgroup A’ of A and, since the action of N/R 
on A is continuous, one can find a natural number j > k such that 5&a’ = 
xi,p’ whenever t E s. modpjf, and a’ E A’, where zimt and %ii.s denote 
the images of Xi,t and ~i,~ in N/R. It follows that A’ is a Dj-module. 
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Moreover, the image of # = E o CJ?,~: Gj + A is contained in A’, and # 
annihilates the elements 

ei,h 
= n;‘, . fi,h+p,, O<h<n,--1, O<i<m, 

where giSh now denotes the image of xieh in Gj. If g E Gj, then 

$(g-lei.hg) ,= (I - 8-1ei,hd $b) + g-‘+(ei,h) = O. 

Thus # annihilates conjugates of ei,h , p roducts of conjugates of ei.h and their 
inverses, and limits of sequences of such products. It follows that 9 induces 
a continuous crossed homomorphism 

T)k(~): N/R --+ Dj g Gj/M + A’ C A, 

where M is the closed normal subgroup of Gj generated by the elements 
ei,h (0 < h < ni - 1, 0 ,( i ,( m), and N/R -+ Dj g GjIM are the obvious 
maps. One easily verifies that the maps 

yk: X(G’;, Kk , A)+ X(N/R, A) 

induce a homomorphism 

7: I& X(Gk, K,, A) -+ X(N/R, A), 

and that 7 and 0 are inverse isomorphisms, natural in ,4. i 

PROPOSITION 4.2. Suppose that 

(i) G, has cohomological dimension < n, where n 3 2; 

(ii) for all k 3 k, , Kk . f 1 1s ree y generated by the images of x<;x~,++~ 
inG”,whereO<j<ni-l,O<i<m; 

(iii) for every k > k, and discrete CUGk’-module M, the restriction 
map Res: H1(GL, M) + H’(K,, , M) is injective; 

(iv) the map ~~‘0: G, -+ N/R is injective; 

(v) For every k 3 k, , the obviolls maps: Gi -+ G” are injective, for 
i = 0,l ,...,pk - 1; 

(vi) the maps 6,: H0 -+ G,, and 6,‘: HI -+ G, are injective. One then 
has a natural isomorphism: 

HQ+I(N/R, A) N lim H*(G”, Kk , A), 
k>ko 

where A denotes a discrete al(N/R) -module, and q > 2. Furthermore, N/R 
and each Gk, k 3 k, , has cohomological dimension <n. 
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Proof. Clearly all the maps 3/j , sj , $’ are injective (j E Z). The pro-p- 
group G” can be obtained from the pro-p-groups G, , Gr ,..., Gp+ by a 
process of necessive push-outs, as indicated in the diagram:below. 

HI HZ H, l ** 

where PDkpl = Gk, and y,,: G, -+ PI -+ Pz -+ ... -+ P,+ = Gk. Note that 
the maps fli are injective, by (v), and we may consider them as inclusions. 
By the excision axiom (Theorem l.lO), 

H”+l(P, , G, , A) E H”+l(P, , Hz, .4), 
HR+l(P, , G3 , A) gg Hn+l(P, , H3 , A), etc., 

H”+l(@, G+, , A) E Hn+l(PB,, , HP,, , A) 

for every discrete al(N/R)-module A. Since 01~ and PI are injective, we 
can apply Theorem 1.13 to the first push-out, to obtain an exact sequence: 

... ---f H”(H, , A) -% Hn+l(Pl , A) -% H”+l(G, , A) @ Hn+‘(G, , A) --f .-.. 

Since HI is free and n 3 2, Cp is injective, and since cd(G,,) < n, and hence 
cd(Gj) < n for all j E Z, we have Hn+l(Pl , A) = 0. By the exact sequence, 

... -+ Hn(Hj+l , A) 5 H”+l(P, , H,+1 , A) -% Hn+l(Pj , A) 

A Hn+l ( Hj+1 , A) --+ *a- 
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of Proposition 1.5, we have 

H”+yPj , Hj+1 , A) E H”+‘(Pj ) A), j = 1, 2 ,..., pk - 2. 

Applying the same exact sequence to the pair (P, , G,), we obtain 

H”fl(Pj, A) E Hn+l(Pj , Gj , A)/S(Hn(Gj , A)), 1 <j<p”-I, 

and it follows from the above isomorphisms that 

Hnfl(Gk, A) = 0, i.e., cd Gk < n. 

Suppose now that A is an injective Q/Y(N/R)-module. Then, by Proposi- 
tion 1.3, Hn(Gj , A) = 0 = H”(Hj , -4) for n 3 1 and j EZ. From the above 
exact sequence of Theorem 1.13, we deduce that Hgfl(P1 , A) = 0 for 
Q >, 1, and from the exact sequence of Proposition 1.5, we deduce that 

H*+l(pj, Hj+l Y A) z H*+l(P, , A) s H*+l(P, , Gj , A)/G(H*(Gj , A)) 

for q >, 1. The isomorphisms 

H*+‘(Pj ( Gj 9 A) E HQ+‘(Pj-1) Hj 9 A), 2<j<pk-l, 

of the excision theorem (Theorem 1.10) now imply that H*+l(Gk, A) = 0 
for q > 1. The exact sequence 

... + Hl(@‘, A) 3 Hl(K, , rl) 2 H2(Gk, K, , A) % H2(Gk, A) 

+H2(K,,A)+ ... 

and the hypotheses (ii) and (iii) imply that 

H2(Gk, Kk , A) G H2(Gk, A) = 0. 

Also, if q > 2, then Hq(Kk, A) = 0 = HQ+l(Kk , A) and 

H4+l(Gk, Kk , A) gg H*+l(GX‘, A) = 0. 

So, the cohomology functor {H*+l(G”, Kk , -)}aao is effaceable by injective 
discrete 6U(NYR)-modules, and it follows from Lemma 4.1 and the standard 
comparison theorem [17, Corollary 5.71 that 

HP+~(N/R, A) N lim Ho(Gk, Kk , A) 
t>r, 

for every discrete 6Yl(N/R)-module A. If q > n, then the exact sequence 

-.* - H”(Kk , A) A H*+l(Gk, K, , A) -i, Hq+l(Gk, A) L HQ+l(Kk , A) -+ .-* 
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shows that 

H*+l(Gk, Kk , A) gg H*+l(G”, A) = 0, 

which completes the proof. 1 

Suppose from now on that m = 0 and write 

x = xg , y = Xl 3 zj = y-jxy, jE-%, n = n,. 

PROPOSITION 4.3. Suppose that r. belongs to the closed normal subgroup of 
q% , 3 ,***, z,) generated by z,, . Then Kk is free for all k > k, , and 
Res: HI(Gk, A) + HI(K, , A) is onto for every discrete fllGk-module A. 

Proof. Define an automorphism OL on 

F”(z, , z1 ,**-, .Qfn-J 

bY 

I 

zi for 0 < i < pk 
a(q) = 

z&k ) * z. for pk < i < p” + n - 1 

(see Serre [18, I-Proposition 251). Clearly, the elements yi (0 < i < pk - 1) 
are contained in the closed normal subgroup of Fk generated by a(q) = z, 
(0 < i < pk - 1). Since {LY(~) 1 i = 0, l,..., p” + 1z - l} is a basis for F”, 
we can define a map 

/3: Fk + F(zO , z1 ,..., z,J 

bY 

iw~i)) = 1;. 
if 0 < i < prz, 

a-Ilk if pk<i<pk+n-1. 

Then /?(rJ = 1 for all i = 0, l,...,pk - 1, and p induces a map y: Gk + 
F(z, , ~1 ,..., x,-~). This map has a right inverse 6: F(s, , z, ,..., z,J -+ Gk, 
defined by sending zi to the image of a(Zi++), (i = 0, I,..., tl - 1); and 6 
defines an isomorphism q~ of F(z, , z, ,..., z,-~) onto Kk . Given a continuous 
crossed homomorphism E: & --f -4, the map 

A: Gk -L F(z,, , z1 ,..., z,& + Kk L A 

is a continuous crossed homomorphism, whose restriction to Kk is E. It 
follows that 

is onto. 1 

Res: H1(Gk, A) --f H1(Kk, A) 
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THEOREM 4.4. Suppose that 

(i) n > 1, and y. belongs to the closed normal subgroup of F(z, , z1 , . . . , z,) 
generated by z0 ; 

(ii) G, = F(z, , z1 ,..., z,)/(YJ has cohomological dimension <q, where 
q 3 2; 

(iii) there exists a (t,p)-filtration CT, on G0 such that: 

(a) the elements gr z$, gr %r ,..., gr Z, of the corresponding mixed Lie 
algebra gr G,, are distinct, where .& denotes the image of zi in G,, ; 

(b) the sets S = {gr &, , gr %I ,..., gr %,+I> and T = {gr %r , gr Ta ,..., 
gr %,,} freely generate free mixed Lie algebras L, and L, in gr G0 ; 

(c) L, n L, is freely generated by S n T (with L, n L, = (0) if 
SnT= 0). 

Then 

cd(N/R) < q, 

and 

cd(@) < q, (k 3 kc,), cdF(x,y)/R < q + 1, 

W(N/R, A) N lim W(Gk, Kk , A) 
k>kc, 

for every j > 2 and discrete CZl(N/R)-module A. 

Proof. The second statement follows from the first, by virtue of the 
exact sequence 

1 -+ N/R -+ F(x, y)/R -+ F(y) + 1 

and Serre [ 18, I-Proposition 151. 
The element r. belongs to the Frattini subgroup of F(z,, , z1 ,..., z,), 

because of (iii). Note that (iii) is precisely the hypothesis of Gildenhuys 
[5, Theorem I], and, hence, the hypotheses (iv), (v), and (vi) of Proposi- 
tion 4.2 are satisfied. The remaining hypotheses of this Proposition are 
satisfied by virtue of Proposition 4.3, and the result follows. B 

EXAMPLE 4.5. Let r = xP((x, y), ((y, x), x)). 

Case 1: p>3. 
Let 71 = l/4, ~a = l/IO, and let w be the (x, ~,p)-filtration on F(x, y). 

Then 

so that 

4(&Y), ((Y, x),x))) = 3/4 + l/5 < 5/4 = w(xP); 

gr y = gr((x, Yh ((YY 4-a 
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and Labute [IO, Theorem 4’1 can be applied. We conclude that 

cd F(x, J’)/‘(Y) = 2. 

Case 2: p = 3. 
In this case Labute’s method fails when applied to Y. However, rewriting 

Y in terms of the conjugates xj = Y-~xJ~, we obtain 

Yo = xo3(x;1x2.1 ) (x;l, x0)3). 

Let {So} be a strictly decreasing sequence of rational numbers tending to 

l/2 = I/( P - l), and let w, be the (x, T, p)-filtration on F(r, y), where 
r = (sn , l/2). Keep n fixed for the time being. Then the image gr y. of r. 

in the corresponding free mixed Lie algebra grF(r, , .ri) is of the form 

gr r. = [gr x0 , [gr &vl , gr ~oll - [gr s1 , [gr xl , gr sll. 

By Labute [lo, Theorem 4’1, cdF(xo , .Y,)/(Y,,) = 2 and gr((r,)) is the ideal 
(gr yo) of gr F(xo , xi) generated by gr r. . Let M([,) be the free mixed Lie 
algebra generated by one symbol 5, , and let 

01: M(5,) - gr(F(xo , .q)/(yo)) z grF(xo , ~Mkr(yo)) 

be the map that sends 5, to gr x0, where gr(F(xo , xl)/(yo)) is the mixed 
Lie algebra corresponding to the quotient filtration & . Clearly OL has a 
left inverse and 

W,(q)q = qok(w,(x,)) = @(s,), 

where v is as in Lazard [l l] or Gildenhuys [5, Section 31. Similarly, 
wn(zf,““) = @(l/2). Now 

where ci~ is the (l/2, p)-filtration on F(x, , xl)/(yo). (See Gildenhuys [5, 
Section 31, where a similar argument is used.) Hence condition (iii)(b) of 
Theorem 4.4 is satisfied. From the fact that gr(F(x, , xl)/(ro)) is embedded 
in gr(aZ(F(x, , xl)/(ro))), which has no zero-divisors (see Labute, [lo, 
Theorem 4’]), we can deduce, as in Gildenhuys [5, Section 31, that condition 
(iii)(c) of Theorem 4.4 is satisfied. Conditions (i) and (iii)(a) of Theorem 4.4 
are trivially satisfied, and (ii) has already been proved, for 9 = 2. Hence 

cd(N/R) = 2, cd F(x, y)/(r) >< 3. 
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Case 3: p = 2. 
We can write r in the form 

y = X”((% Y), (Y, x2)), 

and by an argument similar to the one used in Gildenhuys [4] we deduce 
that Y and x2 generate the same closed normal subgroup F(x, y), and hence 
NW, y)/(r)) = co. 
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