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INTRODUCTION

Let C be a class of finite groups, closed under the formation of subgroups,
group extensions and homomorphic images. In Section 1 we develop a
cohomology theory for pairs (G, H) of pro-C-groups, (where H is a closed
subgroup of G), on the same lines as Ribes’ cohomology theory of pairs
of abstract groups [15]. If G is the colimit (push-out) of the diagram

L/ ]
S~

in the category PC of pro-C-groups, and the canonical map K — G is
injective, then we have an excision axiom (Theorem 1.10)

H™G, H, —)~ HYK,L, —), n>1.

If both canonical maps K — G and H — G are injective, then G is called
the amalgamated product of K and H over the common closed subgroup L (see
Ribes [16]), and we have

H”(G’L! _) = H"(H,L, _) @ H”(K,L, _)’ (" = 1)’
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(Proposition 1.11), as well as a Mayer—Vietoris sequence for the ordinary
cohomology groups (Theorem 1.13). Section 2 is mainly formal in nature.
We recall the definition of a category object % in a category & with pullbacks;
and when 2 is the category fop of topological spaces or the category Ptop
of pointed topological spaces, we define the concepts of a functor from €
into PC, and the colimit of such a functor. The first author learned about
such things from A. Joyal, who dealt with similar concepts in the setting
of the topos of Lawvere and Tierney. Just as a free discrete group is the
colimit of a functor with domain a discrete category and values equal to
the free group on one generator, the free pro-C-group generated by a pointed
topological space is the topological colimit of a functor: € — PC, where
% is a category object in Ptop without nonidentity maps. More generally,
the free pro-C-product defined in Gildenhuys and Ribes [7] of a family
{G, | x € X} of pro-C-groups, indexed by a pointed topological space (X, *),
with G, = (1) and x — G, locally constant outside (*), is an example of a
topological colimit of such a functor (Proposition 2.2). In Section 3 we
study the cohomology of such free pro-C-products.

Given a discrete group FUx,, %, ,..., X,,1)/(r) with one defining relator »

and minimal set {x,, %, ,..., X,;p,q} Of generators, assume that r belongs to
the normal subgroup N° = (x,, &y ,..., X,), generated in the free group
Fxy, ¥y ,-.., X;peq) by the elements x, , xy ,..., x, . Very often r becomes more

amenable when expressed in terms of the free generators x; ; = x,; 6%, 1

(0 <7 < m, jeZ) of N° For one thing it becomes shorter. If r belongs to
the subgroup F° of N° freely generated by the elements {x; ;[ #, <<j <
h; + n;; 0 <7 << m}, then r, = v~*ry* belongs to the subgroup F,° of N
freely generated by {x;;|h;, -k <j<h,+k-+n;; 0<1i<m}; and
N RO where R® = (r), can be built up from the (simpler) one relator
groups F,%/(r,) by a process of successive amalgamations followed by a
passage to the direct limit (see Karass, Magnus, and Solitar [13, p. 252]).
In the case of pro-p-groups with one defining relator, we can do something
similar, but the direct limit (or colimit) in the category of groups has to be
replaced by a topological colimit in the category of pro-p-groups (Proposi-
tion 2.3). Section 4 deals with the cohomology of pro-p-groups with single
defining relator. As an illustration of our methods, we consider the defining
relator

r = xp((x’ ¥ ((J" x), 1C))

(Example 4.5). If p = 3, Labute’s method [10] does not apply. However,
rewriting r in terms of the conjugates x; = v~xy/, it becomes more amenable

r =71y = x(xg vy, (¥77, x0)™).
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Labute’s method gives cd(F(x, , x,)/(ry)) = 2, and from our Theorem 4.4
we deduce that cd(F(x, v)/(r)) < 3.

I. A CounomoLoGY THEORY FOR PaIrs oF Pro-C-Groups

Throughout this section, C will denote a nontrivial class of finite groups,
closed under the formation of subgroups, extensions, and homomorphic
images. Note that if the order of a group in C is divisible by a prime p,
then C contains the Sylow p-groups of that group, and hence contains
all finite p-groups. It follows that the free pro-C-group on one generator
is of the form

ZC == l_[ Zp y
PES
where 7, denotes the ring of padic integers, and S is the set of primes
dividing the order of some group in C. So, Z¢ is a pseudocompact ring,
and for every pro-C-group G we can define a complete group algebra

UG = Z[[G]] = lim 2[G/U]

(U runs through the open normal subgroups of G) which is again a pseudo-
compact ring {Brumer [2, Section 4]). Let ¢ be the category of discrete
(topological) ((ZIG)-modules. Then €€ is an abelian category with enough
injectives (Brumer [2, Lemma 1.8]). Note that the discrete ((ZIG)-modules
can also be characterized as discrete G-modules A4 that are C-torsion, in
the sense that each element of 4 has finite order equal to a product of powers
of primes in S (see Brumer [2, pp. 454, 455]). Given an abelian torsion
group, i.e., a discrete Z-module, where

2= 2:=T12,,

and F is the class of all finite groups, we denote by T'(A4) (resp. T'(4)) the
submodule of 4 consisting of all elements whose orders are products of
powers of primes p € S (resp. p ¢ S). One easily sees that 4 = T'(4) @ T'(4),
and if 0 > 4" >4 —> 4" — 0 is an exact sequence of abelian torsion
groups, then so is 0 — T'(4) > T(4") »> T(4") — 0.

Let H be a closed subgroup of G, let A €| % |, and denote by M(4)
the induced module (Serre [18, Chapter I, 2.5] or Ribes [17, p. 143]). One

has an exact sequence

0— A4 MAA) — I'(4)—0
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in cC [18, I-13], MsH: €c° — €cC is an exact functor (see Ribes [17,
Proposition 7.2}]), and, by the 3 X 3 lemma [12, Lemma 5.1], I': €c¢ — € ¢
is also an exact functor.

Consider the abelian group

X(G, H, A) = {f: G > 4| f(xy) = xf(y) + f(x), f | H = 0}

of continuous crossed homomorphisms from G to A, vanishing on H.

DeriniTiON 1.1. The nth right derived functor of the left-exact functor
X(G, H, —) from €¢C into the category (b of abelian groups, is denoted
by H"Y{(G, H, —), and H*YG, H, A) is called the (n - 1)st cohomology
group of the pair (G, H), with coefficients in the discrete G-module A (n = 0).

We shall see that these cohomology groups are independent of C, in
the sense that we get the same groups if we view G and H as profinite groups,
and A as an object of €gS.

Lemma 1.2. One has a natural isomorphism
HomG(ZC > P(A)) = X(G’ H’ A)

The proof proceeds almost exactly as in Ribes [15], Lemma 1.1, and is
therefore omitted.

LEvMA 1.3. Let H be a closed subgroup of a pro-C-group G, and let A
be an injective object of € cC or of €x®. Then the cohomology groups H*(H, A)
are zero forn > 1.

Proof. For every open normal subgroup U of G, let
AV ={ae A |ua = a,uc U}
be the submodule of U-invariants. If 4 is an injective object of ¥, then
AU is easily seen to be an injective G/U module. By Ribes [17, Lemma 5.12],
it is an injective (HU/U)-module, and from the isomorphism
H™(H, A) == lim HYHU|U, AY)
U
of Serre [18, I, Proposition 8], we deduce that H*(H, A) = 0 for n > 1.

The same argument applies if 4 is an injective object of €g¢. |

481/29 [1-12
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ProrosITION 1.4. Let A be an object of €g°. Then T(A) is an object of
€ cC, and one has natural isomorphisms of cohomology functors

H™G, A) ~ H"G, T(4)),
H™YG, H, 4) ~ H"(G, H, T(4)) o~ H"(G, I'(4)) ~ H™G, I'(TA4))

Joralln > 1.

Proof. One easily sees that T: €% — € is an exact functor mapping
injectives to injectives, and

M#oT=ToMgH, T'oT =TT

Since both H(G, —) and H(G, T(—)) are effaceable by injectives in %y,
and I': €€ — € C is exact, the isomorphisms

HYG, =)= H"G, T(=)), HYG, (=)= HG,I(T(-))) (r=0)

follow from a standard comparison theorem (Ribes [17, Corollary 5.7]).
Lemma 1.2 yields the natural isomorphism

X(G, H, 4) ~ X(G, H, T(4)),
and we may as well assume that 4 is in € °. Using the isomorphism
Hn(G, _") = EXt&lG(ZC » —)) n 2 0

(Brumer [2, Lemma 4.2(i)]), and applying Homg,g(Zc, —) to the exact
sequence

0—A—>MHA) - I'(4)—0,
we obtain a long exact sequence

0 — Homg,g(2¢ , 4) - Homgs(2 , MgH#(A)) — Hom(Z , I'(4))
— HYG, A) - HY(G, M4(A4)) - HYG, I'(4)) - H¥G, 4)
— Hz(G, MGH(A)) > e,

By Serre [18, I-12, Proposition 10], we have natural isomorphisms
H’n(G, MGH(A)) = Hn(H’ A), n 2 0’
and if A4 is an injective object of ¥ C, then

H™G, A) = 0 = Hr(H, A)
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for all # > 1 (Lemma 1.3). From the above long exact sequence, we conclude
that H*G, I'(4)) = 0 for all n > 1, and by Lemma 1.2 and the standard
comparison theorem (Ribes {17, Corollary 5.7]), we have

HYG, I'(—)) 2 H"{(G, H, ), n=1 1

ProposiTION 1.5. Let H be a closed subgroup of a pro-C-group G, and
let A be an object of €cC. There exists a long exact sequence

0 — A5 % 4% 2 HYG, H, A) 5> HY(G, A)
2 H\(H, 4) 2> H¥G, H, A) %> -,
where the i’s are restriction maps induced by the inclusion HC G.

Proof. Substitute AS for Homg,e(Z , A), A7 for Homy,e(Z¢ , MsH(A)),
HYG, H, A) for Hom(Z., I'(4)), HYH, A) for H™G, Ms#(A4)) and
H"\(G, H, A) for HYG, I'(4)) (» > 1) in the long exact sequence of the
proof of Proposition 1.4. |

CoroLLARY 1.6. Let 1 denote the group with one element. Then

HG,1,d) ~ H¥G, ), n>2 Aec¥S..

Lemma 1.7. Let HCKCG be embeddings of pro-C-groups. Then
{HK,H, —) | n = 1} is a universal sequence of comnected functors in €g¢
(“0-foncteur universel” in the terminology of Grothendieck [8]).

Proof. The sequence is certainly exact. One easily deduces from
Lemma 1.3 and Proposition 1.5 that it is effaceable. ||

Lemma 1.8. Let X(G, A) stand for the abelian group X(G, 1, A) of
continuous crossed homomorphisms from a pro-C-group G into a discrete
OlUG-module A. Let F be a functor from a small category 1 into the category
PC of pro-C-groups. One has a natural isomorphism

X(lim F, 4) >~ lim X(F(—), 4)
of abelian groups, where, for each i€ |1|, the F(i)-module structure of A is
induced by the canonical map: F(i) — lim F.

Proof. Since A4 is a direct limit of finite (Z/G-modules, we may assume
without loss in generality that 4 is a finite (ZIG-module and an abelian
group in C. For each i€ |1, let

i F) ~ G =1limPF,  p;: lim X(F(—), 4) —~ X(F(), 4)
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be the canonical maps. There exists a unique homomorphism

n: X(G, 4) — lim X(F(—), 4)
such that
pi(n(e)) = eop: F(i) > A

forallie|I| and e € X(G, A4).
Consider the commutative diagram in PC with split exact rows

0—d—> G = G —1

|

A~ T
0 —> A —> F(i) = F(i) —> 1

where G is the space 4 X G with the product topology and with multiplica-
tion defined by

(@), g) = (a +gd, g&);
F(7) is the product space A x F(¢), with multiplication defined by

(@, h)(@', B') = (a + gi(h)a’, hE'),

and
m(a, g) =&, o(g) =(0,2), ma, ) = h, o) = (0, &),
¢, h) = (a, p(h))-
For each felim X(F(—), A) and i€ |I|, we define a map

1 FG)—~FG), 1) = (p(f)B. B, heFG).

It is immediately verified that each ¢; is a continuous homomorphism,
and the maps @, o £;: F({) — G induce a unique morphism s: G — G such
that so@; = §; 0 ¢; for all 7€ | I|. Now,

w(s(pR))) = m(@(2:(h))) = @i(h)

for all ie|I|, and hence wos = id;. So we can write s(g) = (e(g), g),
where e: G — A4 is easily seen to be a continuous crossed homomorphism.
We define

6: lim X(F(—), 4) — X(G, A4)

by 8(f) = e. One verifies with no difficulty that 6 and 7 are inverse iso-
morphisms, and are natural in 4. [|
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ProposiTioN 1.9. Let G be the colimit (or pushout) in the category PC of
a diagram consisting of maps o H — G;, (i€l), and let ¢;: G; — G be the
canonical maps (i € I). Let o = g; o o;: H — G. One has a natural isomorphism

X(G, «H), 4) =[] X(G:, o(H), 4),
i€l
where A is a discrete (WG-module, and hence also a discrete G,-module, by
the maps ¢; .
Proof. As in the preceding lemma, we may suppose, without loss in
generality, that A4 is a finite abelian group in C. Let
2 [ X(Gi, a(H), A) ~ X(G; , ai(H), 4)
iel
be the canonical projection, and define a homomorphism
7: X(G, (H), 4) — [ | X(G:, au(H), A4),
iel

by writing p(n(e)} = e < ; for all e e X(G, o(H), 4), iel.
As in the previous proof, one has a commutative diagram in PC, with
split exact rows

0—>A——>G'_’("G—>l

RO

0—>4d—G6, G, — 1
9

where G is the product space 4 x G, with multiplication defined by

(@,8)d,g)=(a+gd,gg), adecd g'eCG
and G, is the product space 4 X G;, with multiplication defined by
(a,2)(@, &) = (a + pig)a, 8:8), a,a’'c€d, hheF().
For each fe [Ties X(G; , a(H), A), define a map ¢;: G; — G; by t(g,) =
(pfX2g:), £:). It is easily verified that each ¢, is a continuous homomorphism,

and the maps §; o t;: G; — G induce a unique morphism s: G — G such
that s o p; = §; o t; for all 7 € I. Now

m(s(pd(£:))) = m(P18:))) = oig2)
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for all i€/ and g;€ G;, and hence o5 = id; . So, we can write s(g) =
(e(£), g), where e: G — A is easily seen to be a continuous crossed homo-
morphism that is trivial on «(H). We define

0: T] X(G: , ai(H), 4) — X(G, o(H), A)

i€l

by 8(f) = e. One easily verifies that § and % are inverse isomorphisms,
and are natural in 4. |

Let HCG, LCK be pro-C-groups. Let ¢: K — G be a continuous
group homomorphism with oL C H. If 4 is a discrete ((ZIG)-module then
it possesses a natural ((ZIK)-module structure induced by ¢. Then ¢ induces
a natural homomorphism

o X(G, H, 4) - X(K, L, A)
given by
(@f)x = f(px),

which in turn induces mappings

o": HY(G, H, A) — H™K, L, A).

THEOREM 1.10 (The Excision Axiom). Let L be a common closed subgroup
of two pro-C-groups H and K, and suppose that the pushout G in PC of LC H
and L C K has the property that the canonical map: K — G is injective. Then
the morphisms

o": HYG, H, —) - HYK, L, —) (n=1)
of functors: €6 — (Y, induced by the inclusion
¢: (K,L)—> (G, H),
are isomorphisms.

Proof. 1t follows from Lemma 1.7 and the standard comparison theorem
[17, Corollary 5.7], that it suffices to show that

ot: X(G, H, —) —> X(K,L, —)
is an isomorphism. So, let M be an object of €, and suppose that f: K — M
is a continuous crossed homomorphism that annihilates L. Then, by

Proposition 1.9, f and the trivial map 0: H — M induce a continuous crossed
homomorphism %(f): G — M. Clearly, the map

n: X(K, L, M) —~ X(G, H, M)

and the restriction ¢, are inverse isomorphisms. [J
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ProrosiTiON 1.11. Suppose that C is contained in another class C' of
finite groups, closed under the formation of subgroups, homomorphic images and
extensions. Given pro-C-groups H;, i€ l, with a common closed subgroup L,

we may view H; as pro-C'-groups, and we now assume the existence of their
amalgamated product

iell
in the category PC'. Then
H™G,L, 4) =~ [ H(H; ,L, A)

el

for n > 1 and A€¥E., where the canonical projections are induced by the
tnclusions: (H;,L) — (G, L).

Proof. By Proposition 1.4, we may without loss in generality take C = C/,
and, by Lemma 1.7 and the standard comparison theorem [17, Corollary 5.7],
it suffices to refer to Proposition 1.9, which gives the result for dimension 1. ||

CoroLLary 1.12 (Neukirch [14]). Let G = H[[ K be the coproduct in

the category PC of two pro-C-groups H and K, and let A be an object of €.
Then

H*(G, 4) = HYH, A) ® H¥{K, 4)
Jorn = 2.

Proof. Put L =1 in Proposition 1.11 and apply Corollary 1.6. |

TueoreM 1.13 (A Mayer-Vietoris sequence). Assume the existence of the
amalgamated product G = H [, K in PC of two pro-C-groups H and K
over a common closed subgroup L, and let A be an object of €. Then the
Jollowing sequence is exact:

0 — X(G, 4) — X(H, 4) ® X(K, 4) > X(L, A) - H¥G, A) — -~
— H(L, A) %> H"YG, A) 2> H™Y(H, A) ® H*YK, A)
¥ H™Y(L, 4) — -+

where
4: Ho(L, 4) & H™ (K, L, A) <7, gniG, H, 4) 5 H(G, 4),

with & and j as in Proposition 1.5, ¢"*! as in Theorem 1.10; @ is the direct
sum of the maps induced in cohomology by the inclusions H “—~ G and K c— G,
Yy, v) = hi™(vy) — k3t (vy), where BT+ and h3*' are maps induced in
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cohomology by the inclusions hy:L < H and hy: L <> K respectively,
v, € H"Y(H, A), v, € H"Y(K, 4).

The proof is formally the same as in Eilenberg and Steenrod [3, Theo-
rem 15.3(c), p. 43].

Remark 1.14. Barr and Beck have proved (see {1, Section 7, p. 297 and
Section 9, p. 310]) that the analogue of Theorem 1.13 is valid in a very
general setting in the presence of Proposition 1.11, namely for a class of
categories tripleable over sets, and triple cohomology. The category PC is
tripleable over sets (see Kennison and Gildenhuys [9]); however, we did not
try to ascertain whether the usual cohomology groups of pro-C-groups are
obtainable from this triple.

2. ToprorLoGicaL CoriMmrts oF Pro-C-GRoOUPS

Let 2 be a category with pullbacks. A category object in & is a 6-tuple
€ = (F, X, o, B, p, m), where p: X C— F is a monomorphism in %, « and 8
are maps F — X, called the domain map and codomain map, respectively,
such that ap = Bp = idy;

M—F

Lok

F——X

is a pullback in 2, and m: M — F, called composition, is a map satisfying
certain more or less obvious conditions. We are only interested in the case
where 2 is the category top of topological spaces, or the category Ptop
of pointed topological spaces, in which case these conditions can be expressed
by requiring that U% be a (small) category, where the objects of U€ are
the elements of X, the maps are the elements of F, the identity map on
x € X is u(x), the domain (resp. codomain) of f € F is the object af f) (resp.
B(f)), and composition o is defined as follows. Suppose that f, f' € F and
of’) = B(f). Let 1 = {1} be the terminal object in %, and define g: 1 — F,
g:1—>F be g(l) =f, g(1) =f'; then g and g’ determine a unique map
h: 1 — M, and we let f' o f = m(h(1)). In order for U& to be a category,
we need among other things that o(f’ o f) = a(f) and B(p" © p) = B(p). We
will call U% the underlying category of €.

Let C be a class of finite groups, closed under the formation of subgroups,
finite products and homomorphic images.

A functor: € — PC from a category object € = (F, X, «, 8, u, m) of the
category # = top (resp. # = Ptop) into the category PC of pro-C-groups
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is a pair T = (w, 7), where @: E — (X, x) is a map in # such that for every
x € X, the fiber G, = nY({x}) (resp. G, = nY({x, *})) is a pro-C-group and
G, ¢— E is a morphism in #;

oHE) — E BHE) —— E
F —*»>X F—f X

are pullback diagrams in # and r: o*(E) — B*(E) is a map in £, with
B'r = o and the property that UT: U€ — PC, defined as follows, is a
functor in the usual sense. For every object x € X of UG, write (UF)(x) = G,,.
For each t€ G, and feF with o(f) = x,, B(f) = x5, let i 1 — a*(E) be
the map induced by 1 — E, 1+t and 1 — F, 1+ f. Then B(B'(=(¥(1)))) =
B(F) = %, s0 that B(r(i(1)) € 7 X({xy , 4}) = G, . So, (UT)(f): Gy, — G,
is well defined by writing (UT)(f)(£) = B"(+(}(1))).

A morphism ¢: T = (m,7) > T’ = (7', ') of functors from a category
object € of # into PC is a map ¢: E— E' in #, where m: E— X and
w't E' — X, such that »'¢ = =, the following diagram commutes

oH(E) ——> BX(E)

] |

a(E') —"— B¥(E")

and the restriction of ¢ to the fiber G, above x € X defines a morphism:
G,— G, in PC. Here G, =nY{x}), G = (') ({x}) (resp. G, =
7 ({x, x}), G, = (7')({x}) if # = top (resp. Ptop).

One easily sees that the functors from the category object € of £ into
PC, and morphisms of these functors, form a category P%¥.

To every pro-C-group G, there corresponds a constant functor K(G) =
(m, 7): € — PC, where = is the projection from the product Go X of G
and X in 2, onto X, and

7:a%Go X) = GoF — GoF = pXGo X)

is the identity map.

A pair (G, 1) consisting of a pro-C-group G and a morphism %: T — K(G)
in #¥ is said to be a topological colimit of a functor T: € — P if for every
other pro-C-group G’ and morphism ¢: T — K(G"), there exists a unique
morphism §: G — G’ in PC, such that K(f)y = ¢.
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ProrosiTiON 2.1. Let T: 6 — PC be a functor from a category object €
of @ into the category PC of pro-C-groups, where P is the category top or
the category Ptop. Then the topological colimit of T exists and is unique up
to isomorphism.

Proof. Let UT:U% — PC be the corresponding underlying functor,
and L its colimit in PC. Let ¢ = (F, X, o, 8, p,m), T = (m,7), m: E — X.

For each x € X, one has a canonical morphism
Mot Ge— L

of pro-C-groups, where G, = n~'({x}) if Z = top and G, = 7' ({x, x}) if
P = Ptop and = is the distinguished point of X.

We define v: E — L by v(e) = n,(,(¢). Let @ be the family of open normal
subgroups N of L, such that v-}(gN) is open in E, for every coset gV of N
in L. Let G = limy.oL/N (with G = (1) if @ = ). For each Ne®,
let py: G — L/N be the canonical projection of G onto the discrete group
L/N. Then the maps py o v: E — L[N are continuous and induce a morphism
7' E— G in #. The maps " and 7 induce a map 7 from E into the product
G+ X of G and X in &, and 7 defines a morphism 5: T — K(G) in #¥.
One easily verifies that the pair (G, ) is a topological colimit of 7. Uniqueness
is clear. |

ProrosiTiON 2.2. Let (X, x) be a pointed compact Hausdorff totally
disconnected space, and let {G,|xe X} be a family of pro-C-groups with
G, = (1), and such that the map x— G, is locally constant on X\{x}. Then
the free pro-C-product (see Gildenhuys and Ribes [7]) of these pro-C-groups
is a topological colimit of a functor from a category object of Ptop into PC.

Proof. We recall the definition of the étale space £ = V, , G, . As a
pointed set, E is the coproduct of the pointed sets (G,, 1), x€ X. For all
x € X\{x}, there exists a so-called constant open neighborhood U of x in
X\{x}, with G,, = G, for all x, y € U, and for such a set U we define

pv: U X G,— E, (w,ty—~ted,, (wt)elU X G,.

A subset W of E is open iff

(i) for every constant open subset U of X, the set pp{( W) is open
with respect to the product topology on U x G, (xe U);

(ii) if W contains the distinguished point | of E, there is a neighborhood
V of % in X, such that G, C W whenever ye V.

The map 7: E —> X is defined by #(1) = * and n(e) = x if e € G,\{1}.
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Let € be the category object (X, X, idy ,dy, idy , idy) of Ptop. Clearly
T = (m,idy): € —PC is a functor. There is a bijective correspondance
between maps 9: T — K(G), (1: E — G o X) of functors in PC¥ and maps
7': E — G in Ptop whose restrictions to the fibers = *({x, x}), x € X, are

morphisms of pro-C-groups. The pair (G, %) is a free pro-C-product of

{G, | xe X} iff for each morphism ¢ from E into the underlying pointed
space of a pro-C-group H such that ¢ | 77Y({x, %}) is a morphism in PC,
there exists a unique morphism ¢: G — G’ of pro-C-groups such that
Yy on’ = . Clearly this condition is equivalent to (G, n) being a colimit
of . ||

We will now look at pro-p-groups G = F(x,, %y ,..., ¥n01)/(r) (m = 0)
with one defining relator r, which belongs to the Frattini subgroup F* of
F =F(xg, %y yeeey Xppyq). (If 7 ¢ F*, then G is free.) Changing the basis of F,
if necessary, we may assume without loss in generality that r belongs to the
closed normal subgroup N = (% , %, ,..., Xn,) of F, generated by x , %y ,..., %, .
We write R = (r) and x;; = x;/,,0x0,,, (1€{0, 1,..., m},j € Z,). We know
that N is the free pro-C-group generated by the homeomorphic image

{xi,,-EN| iE{O, l,..., m},jezp}

of the product {0, 1,..., m} X 21, of the discrete space {0, 1,..., m} and the
underlying space of the ring of padic integers, under the map

wX—>N, (@))%,

(See Gildenhuys and Lim [6, Corollary 2.2].) It follows that IV is also freely
generated by w(X), where X = {0, 1,...,m} X Z, and Z has the p-adic
topalogy. We now suppose that r belongs to the closed subgroup C of N
generated by x;;, j =k b+ L by + 1, 7, 2 0,i =0, 1,..,m. (If r
is a (finite) word in the generators X, , &, ,..., X7 , this assumption is always
justified.) Since we can replace the basis x,, %, ,..., ¥,,; by the basis
{0, x a8 =0,1,,m U {x,  }

if necessary [18, I-Proposition 2.5], we may assume without loss in generality
that #; = 0 for all { = 0, 1,..., m. Let r, = &), ,7a, ., (j€2,) and identify
the free pro-p-group

Fy = F(x9,0 5 X0,1 1+ X010 5 %0,0 30+ Xo,ny 3005 Xm,0 2+s Xm,n,,)

with its obvious image C in N. For every jeZ,, the free pro-p-group F;
generated by the finite set

{%nsth=0,1,,m,5i=0,1,..,m},
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can also be identified in an obvious way with a closed subgroup of N,
containing 7; . For every je Z, one has a natural map

st G; = F{(r;) > NIR
(in general not injective, see Gildenhuys [5, Remark (i)]). For each jeZ,,
let H; be the free pro-p-group generated by the set
{xi'h+j | 0 < h < n,- - 1; i = 0, 1,..., m}.

For each j€ Z,,, there are two maps
8: H; > G, 8/ H; — G4

that send each x; ; to its natural image in G; and G;_; , respectively.

ProrosITION 2.3. The closed normal subgroup N|R of G is a topological
colimit of a functor T: € — P,, from a category object € of top into the category
P, of pro-p-groups, where the underlying category U€ of € is represented by
the infinite diagram

and the underlying functor UT: U€ — P, maps this diagram onto the diagram

- H, H_, H, H, H, -
G, G, G, G, G, G,

Proof. Let
C=ZUZIVIVZZIVZ, xPp um),

where Z has the padic topology and the symbol U denotes the coproduct
in top. Let E, (resp. E,) be the product G, x Z (resp. Hy X Z) in top. The
maps m: By —Z and my: E,— Z are projections and 7: E = E, U E, —
Z W Z is their coproduct. The functor T: € — P, is of the form T = (=, 7).
Note that for each j€Z one has an isomorphism ¢;: G,— G; and an
isomorphism 7;: Hy — H, . The pro-p-group G; (resp. H;) is identified with
the fiber 77%({j}) (resp. w3 *({s})). It is now clear how 7, a, 8, 1, and m are to be
defined, in order for the conditions of Proposition 2.3 to be satisfied.
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There exists a unique map 7,: E; — N|R that sends e€ G; C E to y;(e)
(i.e., the image &; y of x; ;, , 0 << 7 < m, § << h < n; + j, is sent to its natural
image in N/R), and has the property that %, | G;: G; — N/R is a morphism
in P, for each jeZ. For every open normal subgroup W of N/R, there
exists a natural number £, such that the images of x, , and x, ; are congruent
mod W, whenever A = ¢ mod p*Z, 0 < ¢ << m. Hence,

yi{o)(€)) = yio,(e)) mod W

whenever j = ¢t mod p¥Z, e G,, and 7, is continuous. Moreover, it has
the property that #, | G;: G; — NJR is a morphism in P, for each jeZ.
Similarly, one has a map 7,: E, — N/Rthatsendsx; ,e H;CE,,0 <i < m,
J<h<mn+j—1 toits natural image in N/R, and has the property
that =, | H; is a morphism in P, for each je Z. The maps 7, and 5, now
induce a map %': E— N/R in top, and the maps 5" and = induce a map
n: E— (N[R) x (Z W Z), which can be viewed as a morphism: 7' — K(N/R)
in P,¥. We proceed to verify that 4: T — K(N/R) satisfies the universal
property of a topological colimit. So, let ¢: T — K(G') be a morphism
in P,¥; then the composition of ¢: E— G’ X (Z U Z) and the projection
G’ X (Z U Z)— G’ gives a morphism ¢": E— G’ in fop. For every open
normal subgroup V of G’, there exists a natural number & such that if
k == j mod p*Z, then ¢'(¥; ;) = ¢'(%;;) and ¢'(x; ) = ¢’(x; ;) mod V, where
%; denotes the image of x;, in some G;CE, CE (j<h<j+mn,
0 <7 <m), and x,, has been identified with its image in H;CE,CE
(J<h<<j+mn—1, 0<i<m. Since N is freely generated by the
topological space {x;,|0 <7 <m, heZ}, there exists a unique map
6,: N — G'[V that sends x;, to the image of ¢'(x;,) in G/V. Moreover,
the restriction of ¢’ to each fiber G; is a continuous homomorphism; hence
8,(r;) = 1 forallje 2,, and 6, induces a map 8,’: N/R — G’[V. The maps
8, now induce the desired map ¢: NJR — G’ = lim G'/V, for which
$on' = ¢, and hence K(p) o = ¢: T — K(G’) in P,¥. The uniqueness
of ¢ is easily verified. ||

3. O~ THE CoHOMOLOGY OF FREE Pro-C-Probpucts ofF Pro-C-GRroups

Let C be a nontrivial class of finite groups, closed under the formation
of subgroups, extensions and homomorphic images, and let (X, x) be a
pointed compact Hausdorff totally disconnected topological space. Let
{G, | x € X} be a family of pro-C-groups, such that G, = (1) and x> G,
is locally constant outside {*}. There exists a family R of open equivalent
relations R on X such that G, = G, whenever xRy and not xR+. Writing

481/29/1-13
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G,z = G, and GR® for the coproduct of the finite set {G,; | xR e X/R}
of pro-C-groups (here xR denotes the equivalence class of x), we have an
isomorphism

11 G, = lim G*,
xeX ReR

where the left side denotes the free pro-C-product of the family {G, | x& X}
(see Gildenhuys and Ribes [7, Proposition 2.1]).

ProrosITION 3.1. For every discrete (1IG-module A, where (FIG = Z J[[G]]
(see Section 1), one has a natural isomorphism

H"(HGx,‘*i):li_.m @© HYGyp,A%), n2>=2,

e X ReR zReX/R

where
AR ={ac A ka = a, ke Kg}

is the submodule of invariants under the kernel Ky of the canonical projection:

G=1[G.—~Gr= [] Gy,

xeX x€X/R

and the G.p module structure on AR is induced by the canonical inclusion
G, & G-,

Proof. 'The natural isomorphism

@ HYG.z, AR) =~ H™(GR, A)

oReX/R

is an immediate consequence of Corollary 1.12, and the result now follows
from Serre [18, I-Proposition 8]. {

CoroLLARY 3.2 (Neukirch [14]). If G is the restricted free pro-C-product
of a family {Gy},ex of pro-C-groups, then one has a natural isomorphism:

HYG, A) =~ @ HG,,4), n>2

reX

where A is a discrete ([lG-module.

Proof. Let X = X U {x} be the one point compactification of the
discrete space X, and G, = (1), then

G = [] G, = lim 6™,

xeX ReR
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and R admits a cofinal subset R’ of equivalence relations whose equivalence
classes either contain * or consist of a single element of X. Clearly

HYG, A) =~ lim & HYGur, A) = @ HYG., 4)- 1|
ReR’

xTReX/R xeX

4. ConoMoLOGY OF Pro-p-GrouPs WITH SINGLE DEFINING RELATOR

We keep the notation of Section 2. For every natural number %, let F¥
be the free pro-p-group generated by

{10 <j<pi+m—1,0<i<m

We identify F* in an obvious way with a closed subgroup of N. Let
(o » 71 yees Tpt_q) be the closed normal subgroup of F* generated by
oo Ty seees Ty » and let

/( 07 ’rpk—l)'

Let k, be a fixed natural number such that p¥e > n; for all £ =0, 1,.
For k > k,, write

Zip*Z = {0, 1,...,p* — 1}
and for 7 € Z/p*Z, write
ri =mlr)eE, =Fx; 10 <i<m 0<j<pr—1),
and D, = E,[(ry, ry,.-., Tpx_,), Where
m N =F;;|0<i<mjel,)—>E,

is induced by the canonical projection =': Z, — Z[p*Z, i.e., r; is obtained
from r; by writing 7; as a limit of sequence of words =, in the letters

X5 3 X0,i+1 3+++3 X0,54mg 3 X1, 30005 X1,54n; 30o-5 Xm,i sy Xy itny,

and replacing x; ; by x; , where 4 is the image in Z/p*Z of je 2, . Let K,
be the closed subgroup of G* generated by the images of the elements

xY o 0<j<n—1, 0KLi<m.

6,5+ 058,5 ?

Clearly N/R = lim D, (see also Gildenhuys [5]).
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Lemma 4.1. Let A be a discrete (U(N|R)-module, where (U(N|R) =
2,[[N/R]). Then A can be viewed as a discrete (UG*-module by the obvious
map G* —~ N|R, and one has a natural isomorphism

X(N/R, 4) ~ lim X(G* K, 4),

K>k
where the direct limit is taken with respect to the maps defined in the proof below.

Proof. If j =k =k, the map X(G* K,,A4A)— X(G',K;,d) is
induced by a map g; ;: G’ — G¥, which in turn is induced by ¢; ,: F/ — F*,
defined as follows. If & > p/, let q; (%) == %; p_pi e, and if

he{0, 1,..,p) — 1} = 2Z[p'Z,

let ¢ be the image of Ain Z[p*Z = {0, 1,..., p* — 1}, and define g; (x;,2) = 2, .
Since each r, € F/ (0 << h < p! — 1) involves sequences of letters

X509 xi,l yreey xi,ni (0 < l < m)

of length < n; << p*o < p%, one has g¢; ,(r;) = r;, and the induced map
g;.: G' — G* is therefore well defined.

Suppose now that y € X(IV/R, A). Since y is continuous, there exists a
natural number & > kg such that y(¥;} - #; ;) = 0 wheneverj = kA mod p*Z,,,
where %;; denotes the image of x;, in N/R. So, the composite

8,:G,—~ NR> A4
is a continuous crossed homomorphism that annihilates X, . If

o X(G¥, Ky , A) — lim X(G*, K, , A)

k>kq
denotes the canonical map, then it is immediately verified that

9: X(N/R, 4) — lim X(G*, K, , 4)
k>ko

is well defined by 8(y) = o(8;), (where k depends on y), and 6 is a homo-
morphism of abelian groups.

To define its inverse, suppose that € € X(G*, K, , A), (k = k). Its image
generates a finite abelian subgroup A’ of 4 and, since the action of N/R
on A is continuous, one can find a natural number j > & such that ¥, ,a’ =
%; ' whenever t = s. mod P2, and a' € A, where &;, and %, denote
the images of x;, and ;, in N/R. It follows that 4’ is a D;-module.
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Moreover, the image of b = ecgq;;: G' — A is contained in 4’, and ¢
annihilates the elements

— .5
ei,h - xi,h X

O<hn—1, 0Ki<m,

ih+p??
where ¥; , now denotes the image of x,; in G'. If g€ G/, then
Pe7leing) = (I — g7%en8) ¥(2) + 87(ern) = 0.

Thus ¢ annihilates conjugates of ¢; , , products of conjugates of ¢; , and their
inverses, and limits of sequences of such products. It follows that ¢ induces
a continuous crossed homomorphism

7€)t NJR — D, = G/[M — A4'C 4,

where M is the closed normal subgroup of G’ generated by the elements
(0 <h <n —1,0 < i< m),and NJR— D; >~ G'/M are the obvious
maps. One easily verifies that the maps

M X(G*, K, Ay— X(N|R, A4)
induce a homomorphism
7 lim X(G*, Ky, 4) — X(NR, A),

and that n and @ are inverse isomorphisms, natural in 4. |

ProposiTION 4.2.  Suppose that

(1) G, has cohomological dimension < n, where n > 2;

(i) for all k > ky, K; is freely generated by the images of x7jx; .,
in G*, where 0 <j <mn;,— 1,0 <i < m

(i) for every k = ky and discrete (UG*-module M, the restriction
map Res: HYG*, M) — HYK, , M) is injective;

(iv) the map y: Gy — NJR is injective;

(v) For every k > k,, the obvious maps: G, — G* are injective, for
t=01,.,p"—1;

(vi) the maps &;: Hy— G, and 8,': H — G, are injective. One then
has a natural isomorphism:

H™Y(NJR, 4) = lim H{G*, K}, 4),

K>k

where A denotes a discrete (VI(N|R)-module, and q > 2. Furthermore, N|R
and each G*, k > k, has cohomological dimension <n.
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Proof. Clearly all the maps y;, §;, 8, are injective (j€Z). The pro-p-
group G* can be obtained from the pro-p-groups G,, Gy ,..., Gx_; by a
process of necessive push-outs, as indicated in the diagram*_below.

Hs e

/\/\ ;

\//

where P, = G*, and y;: Gy — Py — P, — - —> P,_; = G*. Note that
the maps B; are injective, by (v), and we may consider them as inclusions.
By the excision axiom (Theorem 1.10),
H™Y(P,, Gy, A) = H" (P, H;, 4),
Hm+{(Py , Gy , A) == H*Y(P,, H; , A), etc.,
HYYG* G\, A) > HY (P, , ,H ., , A)

ﬁk——l y P

for every discrete (ZI(N/R)-module 4. Since «, and B, are injective, we
can apply Theorem 1.13 to the first push-out, to obtain an exact sequence:

— HYH, , Ay 4> H™Y(P,, 4) -2~ H"Y(G, , 4) @ H*Y G, , A) —

Since H, is free and n > 2, @ is injective, and since cd(G,) < n, and hence
cd(G,) < n for all je Z, we have H*(P; , A) = 0. By the exact sequence,

- — H™(H,,y , A) > H™YP; , H;,, , A) > HY(P;, A)
S HY(H,, , A)—
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of Proposition 1.5, we have
H\P; ,H;,,, Ay~ H*YP;, 4), j=12,..,p¢—2
Applying the same exact sequence to the pair (P;, G;), we obtain
H"Y(P;, Ay~ H"\(P;, G, , A)BHG;, 4)), 1 <j<p—1,
and it follows from the above isomorphisms that
H™(G*, 4) =0, Le., cd G*F < n.

Suppose now that 4 is an injective (Z/(N/R)-module. Then, by Proposi-
tion 1.3, H(G; , A) = 0 = H*H;, A)forn > 1 and j € Z. From the above
exact sequence of Theorem .13, we deduce that H*(P,, 4) =0 for
g > 1, and from the exact sequence of Proposition 1.5, we deduce that

HYY(P;, Hyy , A) = HWY(P;, ) == HYY(P;, G, A)[3(HY(G; , 4))
for ¢ > 1. The isomorphisms
H@Y(P;, Gy, A) = H*"Y(P;y, H;, ), 2<j<pi—1,

of the excision theorem (Theorem 1.10) now imply that H*{(G* 4) =0
for g > 1. The exact sequence

- — HY{(G*, 4) 2% HY(K, , A) > H¥G*, K, , A) > H¥G*, 4)
— H¥K, , A)— -
and the hypotheses (ii) and (iif) imply that
H¥G* K., A) ~ H¥G*, 4) = 0.
Also, if ¢ > 2, then H(K,,, 4) = 0 = H*Y(K,,, 4) and
H*Y(G*, K, , A) >~ H*Y(G*, A) = 0.

So, the cohomology functor {H**}(G*, K, , —)}s>, is effaceable by injective
discrete ZI(N”R)-modules, and it follows from Lemma 4.1 and the standard
comparison theorem [17, Corollary 5.7] that

H™(N/R, 4) ~ lim H(G* K, , A)

K>k,
for every discrete (ZI(IN/R)-module 4. If g == n, then the exact sequence

e — HY(K, , A) > H*YG*, K, , ) 5> H* (G, 4) > HW(K,,, A) — -
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shows that
HetY(G*, K, , A) > H™YG*, A) = 0,

which completes the proof. ||

Suppose from now on that m = 0 and write
X=Xy, Y=15x, % =yixy, jel,, n=nmng.

ProrosiTION 4.3. Suppose that r, belongs to the closed normal subgroup of
F(zy, 2y 5., 3,) generated by z,. Then K, is free for all k > ky, and
Res: HYG*, A) -~ HYK, , A) is onto for every discrete (IIG*-module A.

Proof. Define an automorphism « on
Fk(z’o N zl yesey zpk+"_1)
by
[ 2; for 0 <<i<<pr

<
oc(zi)z Zi__lpk'zi for Pk<i<Pk+”_l
(see Serre [18, I-Proposition 25]). Clearly, the elements 7, (0 << ¢ < p* — 1)
are contained in the closed normal subgroup of F* generated by of2;) = 2;
(0 <i << p*—1). Since {a(2;) £ =0, 1,...,p* + n — 1} is a basis for F¥,
we can define a map
B: F* — F(2y, 2y yeuey Zpy)

by

gl if 0<7<ph
B(a(zi)) = '-zi_pk if Pk <i< Pk dn—1,

Then B(r;) =1 for alt £ =0, 1,..., p* — 1, and B induces a map y: G* —
F(zy, 21 ,-.; 8y—4). This map has a right inverse 8: F(3,, 21 ,..., 85—y) — G¥,
defined by sending 2; to the image of o(2;, %), (f =0, 1,...,7 — 1); and &
defines an isomorphism ¢ of F(zy, 2, ,..., 3,1) onto K. Given a continuous
crossed homomorphism e: K; — A4, the map

Ar G 2> F(2y 5 2y yeue; ¥pg) —> K — 4

is a continuous crossed homomorphism, whose restriction to K, is e. It
follows that

Res: HY(G¥, 4) — HY(K,,, A)

isonto. |
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Turorem 4.4. Suppose that
(i) n > 1, andrybelongs to the closed normal subgroup of F(z, , 2y ,..., 2,)
generated by z, ;
(i) Gy = F(2q, 21 +ees 2n)/(ry) has cohomological dimension <q, where
q9=2;
(ili) there exists a (t, p)-filtration & on G, such that:
(a) the elements gr %, , gr &, ,..., gt 3, of the corresponding mixed Lie
algebra gr G, are distinct, where Z; denotes the image of =, in Gy ;

(b) thesets S ={grz,, gt ,..gr & and T ={gr7 ,grs,..,
gr &,} freely generate free mixed Lie algebras Ly and Ly in gr Gy ;

(¢) LgN Ly is freely generated by SN T (with Ly N\ Ly = (0) of
SNT = g).
Then
cd(N/R) < ¢, cd(G*) < ¢, (k = ky), cd F(x, y)/R < ¢+ 1,

and
Hi(N|R, 4) ~ lim H{(G*, K, , A)

Y

for every j = 2 and discrete (U(N/R)-module A.

Proof. The second statement follows from the first, by virtue of the
exact sequence

1 — N/R— F(x,y)/|R — F(y) — 1

and Serre [18, I-Proposition 15].

The element 7, belongs to the Frattini subgroup of F(z,, 2y ,..., 2,),
because of (iii). Note that (iii) is precisely the hypothesis of Gildenhuys
[5, Theorem 1], and, hence, the hypotheses (iv), (v), and (vi) of Proposi-
tion 4.2 are satisfied. The remaining hypotheses of this Proposition are
satisfied by virtue of Proposition 4.3, and the result follows. ||

ExampLE 4.5. Letr = x?((x, ), (¥, x), x)).

Case 1: p > 3.
Let 7y = 1/4, 7, = 1/10, and let w be the (x, r, p)-filtration on F(x, y).
Then

o(((x, ), (3, %), %)) = 3/4 + 1]5 < 5[4 = w(x?);
so that
grr = gr((x, ¥), ((, x), %))
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and Labute [10, Theorem 4'] can be applied. We conclude that

cd F(x, v)j(r) = 2.

Case 2: p = 3.
In this case Labute’s method fails when applied to . However, rewriting
r in terms of the conjugates x; = y~/xy/, we obtain

ry = xos(x; EOR (xl_l) EN

Let {s,} be a strictly decreasing sequence of rational numbers tending to
1/2 = 1/(p — 1), and let w, be the (x, 7, p)-filtration on F(x, y), where
7 = (5, , 1/2). Keep n fixed for the time being. Then the image gr r, of 7,
in the corresponding free mixed Lie algebra gr F(x,, x,) is of the form

grro = [grxg, [groy, grxo]] — [gray, [gra, gr].

By Labute [10, Theorem 4], cd F(x,, x;)/(ro) = 2 and gr((r,)) is the ideal
(gr 7o) of grF(x,, x;) generated by grry. Let M(§,) be the free mixed Lie
algebra generated by one symbol ¢, , and let

a: M(&) — gr(F(xo , %1)/(r0)) == gr F(xy , ,)/(gr(7,))

be the map that sends &, to gr&,, where gr(F(xy, x,)/(r,)) is the mixed
Lie algebra corresponding to the quotient filtration &, . Clearly o has a

left inverse and
&%) = PH(@n(&)) = #(s0)s

where ¢ is as in Lazard [11] or Gildenhuys [5, Section 3]. Similarly,
@, (&) = ¢*(1/2). Now

(%) = lim g¥(s,) = ¢*(1/2) = a(%"),

where & is the (1/2, p)-filtration on F(x,, x,)/(r). (See Gildenhuys [5,
Section 3], where a similar argument is used.) Hence condition (iii)(b) of
Theorem 4.4 is satisfied. From the fact that gr(F(x,, x;)/(r,)) is embedded
in gr(QU(F(x, , %,)/(re))), which has no zero-divisors (see Labute, [10,
Theorem 4']), we can deduce, as in Gildenhuys [5, Section 3], that condition
(iii)(c) of Theorem 4.4 is satisfied. Conditions (i) and (iii)(a) of Theorem 4.4
are trivially satisfied, and (ii) has already been proved, for ¢ = 2. Hence

cd(N/R) =2,  cdF(x, y)(r) < 3.
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Case 3: p = 2.

We can write 7 in the form

r = 2%(x, 3), (3, ¥%)),

and by an argument similar to the one used in Gildenhuys [4] we deduce
that » and &% generate the same closed normal subgroup F(x, ), and hence

cd

10.

11.

12.

13.

14.

15.

16.

17.

18.

(F(x, y)(r)) = oo.
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