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a b s t r a c t

For normally distributed data from the k populations with m × m covariance matrices
Σ1, . . . ,Σk, we test the hypothesis H : Σ1 = · · · = Σk vs the alternative A 6= H when
the number of observations Ni, i = 1, . . . , k from each population are less than or equal to
the dimension m, Ni ≤ m, i = 1, . . . , k. Two tests are proposed and compared with two
other tests proposed in the literature. These tests, however, do not require that Ni ≤ m,
and thus can be used in all situations, including when the likelihood ratio test is available.
The asymptotic distributions of the test statistics are given, and the power compared by
simulationswith other test statistics proposed in the literature. The proposed tests perform
well and better in several cases than the other two tests available in the literature.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Let xij, j = 1, . . . ,Ni, i = 1, . . . , k, be independently distributed as multivariate normal with mean vectors µi and
covariance matrices Σi, denoted as Nm(µi,Σi), where m denotes the dimension of the random vectors xij which will be
assumed to be bigger than the sample sizes,m ≥ Ni, i = 1, . . . , k. In microarray datasets,m is usually in thousands whereas
Ni are small, often much less than 50. The analysis of such datasets has often been carried out in the two-sample case under
the assumption that Σ1 = Σ2 without verifying or testing this assumption. Schott [1] and Srivastava [2,3] have proposed
tests for testing the equality of two or more covariance matrices. In this paper, we propose another test and compare its
performance with the above tests. In order to describe these test statistics, we first consider the sufficient statistics given by

x̄i =
1
Ni

Ni∑
j=1

xij, Vi =
Ni∑
j=1

(xij − x̄i)(xij − x̄i)′, i = 1, . . . , k. (1.1)

Let

V =
k∑
i=1

Vi, Si =
1
ni
Vi, ni = Ni − 1, i = 1, . . . , k, (1.2)

â1i =
1
mni
tr Vi, i = 1, . . . , k, (1.3)

â2i =
1

m(ni − 1)(ni + 2)

{
tr V 2i −

1
ni
(tr Vi)2

}
, i = 1, . . . , k. (1.4)
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We shall first consider the case of k = 2, that is, we test the hypothesis of equality of two covariance matrices:
H : Σ1 = Σ2 = Σ vs A : Σ1 6= Σ2.

Sometimes, it may also be of interest to consider only one-sided alternative such as A1 : Σ1 > Σ2, where Σ1 > Σ2
meansΣ1 −Σ2 is positive definite. For if it is known that one group has a larger covariance matrix than the other group, it
may be advisable, if feasible, to take larger sample from the group that has a larger covariance matrix to offset the largeness
to some degree.
For testing the equality of two covariance matrices, we note that S1 and S2 are unbiased estimators of Σ1 and Σ2,

respectively. However, since ni < m, these are singular matrices and hence Vi are distributed as singular Wishart,
Vi ∼ Wm(Σi, ni), ni < m, see Srivastava [4] for the distribution of a singular Wishart matrix. When ni > m, i = 1, 2,
the likelihood ratio test is based on the eigenvalues of V−11 V2. Although V

−1
1 does not exist when n1 < m we may consider

the Moore–Penrose inverse of V1. Thus, for testing the hypothesis H : Σ1 = Σ2 against the alternative A : Σ1 6= Σ2,
Srivastava [2] proposed a test based on the statistic

G2 = mb̂ tr V+1 V2, (1.5)

where V+1 is the Moore–Penrose inverse of V1, defined in Section 2, and b̂ is a consistent estimator of

b =
(trΣ/m)2

trΣ2/m
, (1.6)

Σ being the common unknown covariance matrix of the two populations under the null hypothesis that Σ1 = Σ2 ≡ Σ .
We estimate this common covariance matrixΣ by

Σ̂ =
1
n
V ≡

1
(n1 + n2)

(V1 + V2) ≡ S,

and b by b̂ = â21/â2, where n = n1 + n2 and

â1 =
1
nm
tr V , â2 =

1
(n− 1)(n+ 2)m

{
tr V 2 −

1
n
(tr V )2

}
. (1.7)

It may be noted that whenΣ1 = Σ2 = Σ , V ∼ Wm(Σ, n). It can be shown that for fixed n1 and n2, and under the hypothesis
H : Σ1 = Σ2,

lim
m→∞

G2 ∼ χ2n1n2 , (1.8)

where χ2f denotes a chi-square random variable with f degrees of freedom. It is found that this test does not perform well.
Thus, we need to consider alternative tests.
We consider a measure of distance between the hypothesis and the alternative, namely the Frobenius norm. A test based

on a consistent estimator of this distance has been proposed by Schott [1]. It is given by

J2 =
n1n2

2(n1 + n2)â2

(
â21 + â22 −

2
m
tr S1S2

)
, (1.9)

which, under the null hypothesis, is distributed as N(0, 1) as (m, n1, n2) → ∞, provided m/ni → ci ∈ (0,∞) as
(m, ni)→∞, i = 1, 2. Using a lower bound on Frobenius norm, a test based on its consistent estimator has been proposed
by Srivastava [3]. It is given by

T2 =
â21 − â22√
η̂21 + η̂

2
2

, (1.10)

where η̂2i are consistent estimators of

η2i =
4
n2i
a22

(
1+

2nia4
ma22

)
, i = 1, 2. (1.11)

Under the null hypothesis of equality of two covariancematrices, T2 is asymptotically distributed onN(0, 1) as (n,m)→∞.
Equivalently, T 22 is asymptotically distributed as chi-square with one degree of freedom, χ

2
1 , under the null hypothesis.

The above two tests are based on the differences of tr Σ21 and tr Σ
2
2 . But the differences between tr Σ1 and tr Σ2 may

also throw a light on the differences between the two covariances. To devise a procedure that takes into account this fact,
we consider a measure of distance by tr Σ21/(tr Σ1)

2
− tr Σ22/(tr Σ2)

2. Thus, we propose our test based on a consistent
estimator of this measure of distance, namely,

Q2 =
γ̂1 − γ̂2√
ξ̂ 21 + ξ̂

2
2

, (1.12)

where
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γ̂i =
â2i
â21i
, i = 1, 2, (1.13)

and ξ̂ 2i are consistent estimators of

ξ 2i =
4
n2i

{
a22
a41
+
2ni
m

(
a32
a61
−
2a2a3
a51
+
a4
a41

)}
, i = 1, 2. (1.14)

Under the null hypothesis H and assumption of (A1)–(A4), which are described in Section 2, Q2 is asymptotically normally
distributed as N(0, 1) as (m, n) → ∞. Thus the test based on Q2 can be used to test one-sided hypothesis such as
H : Σ1 = Σ2 vs A : Σ1 > Σ2, since tr Σ2/(tr Σ)2 is a monotone increasing function of the ordered eigenvalues of Σ ,
see Srivastava and Khatri [5] in Corollary 10.4.2, page 317.
For testing the equality of several covariance matrices, Schott [1] proposed a test based on the statistic

Jk =
k∑
i<j

tr (Si − Sj)2

θ̂
, (1.15)

where ĉi = m/nii = 1, . . . , k and

θ̂ = 2â2

{
k∑
i<j

(ĉi + ĉj)2 + (k− 1)(k− 2)
k∑
i=1

ĉ2i

}1/2
. (1.16)

It is assumed that ĉi → ci ∈ (0,∞), as (m, ni) → ∞, i = 1, . . . , k, and 0 < limm→∞ tr Σ j/m < ∞, j = 1, . . . , 8. Under

these two assumptions, Schott [1] has shown that when the null hypothesis holds, Jk
d
→ N(0, 1) as (m, ni)→∞, where ‘d’

stands for ‘in distribution’.
The generalized version of the T 22 -statistic for testing the equality of k covariance matrices is given by

T 2k =
k∑
i=1

(â2i − ¯̂a2)2

η̂2i
, (1.17)

where ¯̂a2 is a weighted mean of â21, . . . , â2k, i.e.,

¯̂a2 =

k∑
i=1
â2i/η̂2i

k∑
i=1
1/η̂2i

, (1.18)

and η̂2i ’s are estimated values of (1.11). It is easily seen that T
2
k with k = 2 coincideswith a squared T2 in (1.10). The estimators

â2 and â4 use V = V1 + · · · + Vk, and n = n1 + · · · + nk. Asymptotically T 2k is distributed as χ
2
k−1 under the null hypothesis

that all covariance matrices are equal.
The generalization version of the Q 22 -statistic for testing the equality of k covariance matrices is given by

Q 2k =
k∑
i=1

(γ̂i − ¯̂γ )
2

ξ̂ 2i

, (1.19)

where ¯̂γ is a weighted mean of γ̂1, . . . , γ̂k, i.e.,

¯̂γ =

k∑
i=1
γ̂i/ξ̂

2
i

k∑
i=1
1/ξ̂ 2i

, (1.20)

and ξ̂ 2i ’s are estimated values of (1.14). It is easily seen that Q
2
k with k = 2 coincides with a squared Q2 in (1.12). The

asymptotic distribution of Q 2k is χ
2
k−1.

The organization of this article is as follows. In Section 2, we give some preliminary results. The problem of testing the
equality of two covariance matrices is considered in Section 3 and that of several covariance matrices in Section 4. The
comparison of power of the tests for the equality of two and three covariance matrices is done in Section 5. In Section 6, we
give proofs of Theorems 2.1 and 2.2 which give important results and may be useful in future work as no such results exist
in the literature. The conclusion is given in Section 7.
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2. Preliminaries

The Moore–Penrose inverse of a matrix A is defined by A+ satisfying the following four conditions : (i) AA+A = A,
(ii) A+AA+ = A+, (iii) (AA+)′ = AA+, (iv) (A+A)′ = A+A. The Moore–Penrose inverse is unique. We shall make the
following assumptions:

(A1) n = O(mδ), δ > 1/2,

(A2) lim
n→∞

ni/n = gi, 0 < gi < 1, i = 1, . . . , k, n =
n∑
i=1

ni,

(A3) 0 < ai0 = lim
m→∞

trΣ i/m <∞, i = 1, . . . , 4,

(A4) 0 < aij0 = lim
m→∞

trΣ ij/m <∞, i = 1, . . . , 4, j = 1, . . . , k.

Lemma 2.1. Let V ∼ Wm(Σ, n), ai = tr Σ i/m, i = 1, . . . , 4. Then under the assumptions (A1) and (A3), unbiased and
consistent estimators of a1 and a2 as (n,m)→∞ are respectively given by â1 and â2 defined in (1.7).

The following two lemmas on asymptotic normality of â2 and γ̂ = â2/â21 are given in Srivastava [6].

Lemma 2.2. Let V ∼ Wm(Σ, n), â2 as defined in (1.7), and ai = tr Σ i/m, i = 1, . . . , 4. Then under the conditions (A1) and (A3)

lim
(n,m)→∞

P{(â2 − a2)/η ≤ x} = Φ(x)

whereΦ(x) denotes the cumulative distribution function of a standard normal random variable, and η = ηi with ni = n.

Lemma 2.3. Let V ∼ Wm(Σ, n), γ̂ = â2/â21 with â1 and â2 as defined in (1.7), and ξ = ξi with ni = n. Then under the
conditions (A1) and (A3)

lim
(n,m)→∞

P{(γ̂ − γ )/ξ ≤ x} = Φ(x),

where γ = a2/a21.

In order to apply Lemmas 2.2 and 2.3,we need consistent estimators of η and ξ , that is of ai, i = 1, . . . , 4.While consistent
estimators of a1 and a2 are available in Srivastava [6], and stated in Lemma 2.1, in the next two theorems we give consistent
estimators of a3 and a4, the proofs are given in Section 6. These two theorems may be of great help in varieties of other
problems where consistent estimators of the third and fourth moments are needed, as no such results are available in the
literature.

Theorem 2.1. Let V ∼ Wm(Σ, n), and a3 = tr Σ3/m. Then, under the condition (A3), and as (n,m) → ∞, n = O(mδ),
δ > 1/3, a consistent estimator of a3 is given by

â3 =
1

n(n2 + 3n+ 4)

{
1
m
tr V 3 − 3n(n+ 1)mâ2â1 − nm2â31

}
,

where â1 and â2 have been defined in (1.7).

It can be shown that an unbiased and consistent estimator of a3 is given by

â3u =
n

(n− 1)(n− 2)(n+ 2)(n+ 4)

{
1
m
tr V 3 − 3(n+ 2)(n− 1)â2â1 − nm2â31

}
.

Theorem 2.2. Let V ∼ Wm(Σ, n), and a4 = tr Σ4/m. Then, under the condition (A3), and as (n,m) → ∞, n = O(mδ),
δ > 1/2, a consistent estimator of a4 is given by

â4 =
1
c0

(
1
m
tr V 4 −mc1â1 −m2c2â21â2 −mc3â

2
2 − nm

3â41

)
,

where

c0 = n(n3 + 6n2 + 21n+ 18), c1 = 2n(2n2 + 6n+ 9),
c2 = 2n(3n+ 2), c3 = n(2n2 + 5n+ 7).

(2.1)

Using these consistent estimator of â3 and â4, consistent estimators of ηi and ξi are obtained in this paper.
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3. Testing the equality of the two covariance matrices

Let xij be independently distributed as Nm(µi,Σi), i = 1, 2, j = 1, . . . ,Ni. When Ni > m the likelihood ratio test does
not depend on the sample mean vectors x̄i but only on the sample covariance matrices n−1i Vi, ni = Ni− 1. In fact, it depends
only on the eigenvalues of V−11 V2. Thus, we shall consider only those tests that are based on Vi, i = 1, 2.

3.1. A test based on the eigenvalues

We shall assume without loss of generality that n1 ≥ n2. Since ni < m, the inverse of Vi does not exist. Thus, instead
Srivastava [2] considered the Moore–Penrose inverse of V+1 and proposed a test for testing the equality of two covariance
matrices based on the statistic G2 in (1.5) with b̂ = â21/â2, where â1 and â2 are defined in (1.7). The asymptotic distribution

of G2 under the hypothesis, asm→∞ is χ2n1n2 for fixed n1 and n2 : G2
d
−→ χ2n1n2 . Following Srivastava [2], the proof can be

obtained. The G2-statistic, however, does not perform well, and thus we shall not consider this test any further.

3.2. Two tests based on an estimator of a distance

For testing the hypothesisH : Σ1 = Σ2 = Σ against the alternativeA 6= H , that is the alternative that eitherΣ1−Σ2 ≥ 0
orΣ2 −Σ1 ≥ 0, where for a matrix A, A ≥ 0 denotes that A is at least positive semi-definite (p.s.d), we define the square of
the distance by

d2 =
1
m
tr (Σ1 −Σ2)2, (3.1)

It can be shown that d is a distance function. It may be noted that d2 is known as Frobenius norm whose many interesting
properties have been investigated by Ledoit and Wolf [7]. Now

d2 = a21 + a22 −
2
m
tr (Σ1Σ2).

Using consistent estimators of a21, a22 and tr (Σ1Σ2), as given in Srivastava [6] and stated in Section 2, Schott [1] proposed
a test based on the statistic J2, which under the hypothesis H is asymptotically distributed as N(0, 1) under the assumptions
(A3)–(A4) andm/ni → ci ∈ (0,∞), i = 1, 2, as (m, n)→∞. We note that

d2 ≥ a21 + a22 − 2(a11a22)1/2 = (a
1/2
21 − a

1/2
22 )

2
≥ 0.

Thus, we may consider a test statistic based on a consistent estimator of a21 and a22, namely â21 − â22. Thus, Srivastava [3]
considered the statistic T2, which under the hypothesisH and assumptions (A1)–(A4) is asymptotically distributed asN(0, 1)
for (m, n)→∞.

3.3. The proposed test

We note that when Σ1 = Σ2, then tr Σ1 = tr Σ2, tr Σ21 = tr Σ
2
2 , etc. Thus we must have, under the null hypothesis,

γ1 = γ2, where

γi =
trΣ2i /m
(trΣi/m)2

, i = 1, 2.

A consistent estimator of γi is given by (1.13). Under the null hypothesis γ̂i is asymptotically normally distributedwithmean
γi and variance ξ 2i given in (1.14), see Theorem 3.1 of Srivastava [6]. Thus we propose a test based on the test statistic Q2
given in (1.12) where ξ̂ 2i are consistent estimators of ξi, obtained by substituting consistent estimators of âi, i = 1, . . . , 4.
The asymptotic distribution of Q2 as (n,m)→∞ is N(0, 1) under the null hypothesis that the two covariance matrices are
equal. Equivalently Q 22 is asymptotically distributed as χ

2
1 .

4. Testing the equality of several covariance matrices

In this section we consider the problem of testing the hypothesis

H : Σ1 = · · · = Σk ≡ Σ, say (4.1)

against the alternative

A : Σi 6= Σj for at least one pair (i, j), i 6= j, i, j = 1, . . . , k,
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based on Ni independent observations xij from the ith population, i = 1, . . . , k, j = 1, . . . ,Ni. When Σi = Σ for all i, we
estimateΣ by

Σ̂ =
1
n
V =

1
n
(V1 + · · · + Vk), n = n1 + · · · + nk. (4.2)

We now describe the generalized version of the three tests J2, T2, and Q2 for testing the hypothesis

H : Σ1 = · · · = Σk vs A 6= H.

For k groups, the Frobenius norm is given by

d2 =
1
m

k∑
i<j

tr (Σi −Σj)2.

Using a consistent estimator of d2, Schott [1] proposed the test Jk which is normally distributed as N(0, 1) under the null
hypothesis, assumptions (A1)–(A4), and lim(m,ni→∞)m/ni = ci ∈ (0,∞), i = 1, . . . , k.
To describe the generalized version of T2 and Q2, or equivalently of T 22 and Q

2
2 as the alternative is two-sided, we remind

the reader that in the definition of various terms such as γi, ηi, ξi or their estimates remain the same. Thus i runs from 1 to
k, V = V1 + · · · + Vk, n = n1 + · · · + nk etc.
From Lemma 2.2, it follows that under the hypothesis H , â2i are independently normally distributed with commonmean

a2 and variances η2i . The common mean a2 is estimated by weighing â2i with the weights inversely proportional to its
estimated variances. That is, we estimate a2 by ¯̂a2 given in (1.18), which is also a consistent estimator of a2. Let

¯̂a
∗

2 =

k∑
i=1
â2i/η2i

k∑
i=1
1/η2i

=
1′Dâ2
1′D1

, (4.3)

where 1 = (1, . . . , 1)′, a k-vector of ones, D is a k× k diagonal matrix, D = diag(1/η21, . . . , 1/η
2
k), and â2 = (â21, . . . , â2k)

′.

Note that Cov(â2) = D−1. We derive D1/2(â2 − a21)
d
→ Nk(0, Ik) as (n,m) → ∞ under the null hypothesis, where

0 = (0, . . . , 0)′, a k-vector of zeros. Moreover, we have {Ik − 11′D/(1′D1)}′D{Ik − 11′D/(1′D1)} = D − D11′D/(1′D1).
Thus, we get

T 2k =
k∑
i=1

(â2i − ¯̂a2)2

η̂2i

p
=

k∑
i=1

(â2i − ¯̂a
∗

2)
2

η2i

= (â2 − ¯̂a21)′D(â2 − ¯̂a21) =
(
â2 −

11′Dâ2
1′D1

)′
D
(
â2 −

11′Dâ2
1′D1

)
= â′2

(
D−

D11′D
1′D1

)
â2 = â′2D

1/2
(
Ik −

D1/211′D1/2

1′D1

)
D1/2â2.

Note that {Ik − D1/211′D1/2/(1′D1)}(D1/2a21) = 0. Hence, T 2k is asymptotically distributed as chi-square with k− 1 degrees
of freedom, χ2k−1 since Ik−D

1/211′D1/2/(1′D1) is an idempotent matrix. Thus we propose T 2k as a test statistic for testing the
equality of k covariance matrices, that is, for testing H : Σ1 = · · · = Σk against the alternative A 6= H . We state this result
in the following theorem.

Theorem 4.1. Let Vi be independently distributed as Wm(Σ, ni), V = V1 + · · · + Vk, n = n1 + · · · + nk, â2i and ¯̂a2 defined in
(1.4) and (1.18) respectively, and η̂i are consistent estimators of ηi. Then the statistic T 2k defined in (1.17) is distributed as χ

2
k−1

under the assumption (A1)–(A4) as (m, n)→∞.

To obtain the generalized version of Q2 to test the equality of k covariance matrices, we define the estimator of the
common value of γ1 = · · · = γk = γ by ¯̂γ given in (1.20), and propose the test statistic Q 2k in (1.19). Following the step of
Theorem 4.1 in obtaining the distribution of T 2k , we obtain the following theorem.

Theorem 4.2. Let Vi be independently distributed as Wm(Σ, ni), V = V1 + · · · + Vk, n = n1 + · · · + nk, γ̂i and ¯̂γ defined in
(1.13) and (1.20) respectively. Then under the assumptions (A1)–(A4), Q 2k

d
→ χ2k−1 as (m, n)→∞.



M.S. Srivastava, H. Yanagihara / Journal of Multivariate Analysis 101 (2010) 1319–1329 1325

5. Comparison of power of various tests and Attained Significance Level with the nominal value 0.05

To demonstrate how our tests perform, we carry out several simulations. We first consider the two-sample case for the
test statistics J2, T2, Q2 we define the Attained Significance Level (ASL) as

α̂J2 =
# of J2H > zα

r
, α̂T2 =

# of T 22H > χ21,α

r
, α̂Q2 =

# of Q 22H > χ21,α

r
,

respectively, where r is the number of replications, zα is the upper 100α% point of the N(0, 1) distribution, and χ2f ,α is the
upper 100α% point of the chi-square distribution with f degrees of freedom. The ASL is used to get an idea of how close the
empirical distributions of J2, T 22 , and Q

2
2 are to their asymptotic ones. Here, J2H , T2H , and Q2H are values of the test statistics

computed from data simulated under H .
Based on the empirical distributions constructed from the above simulations, we define ẑα as the upper 100α% point of

the empirical distribution of J2 and χ̂21,α,i, i = 1, 2 as the upper 100α% point of the empirical distributions of T
2
2 and Q

2
2 ,

respectively. We then define the Attained Power of J2, T 22 , and Q
2
2 as

β̂J2 =
# of J2A > ẑα

r
, β̂T2 =

# of T 22A > χ̂21,α,1

r
, β̂Q2 =

# of Q 22A > χ̂21,α,2

r
,

respectively. Here, J2A, T 22A, and Q
2
2A are values of the test statistics computed from data simulated under A.

In our simulation, we selected r = 1000. Let Ω = diag(ω1, . . . , ωm), where ω1, . . . , ωm ∼ i.i.d. Unif (1, 5), and
∆j (j = 0, 1, 2) be am×mmatrix whose (a, b)th element are defined by (−1)a+b{0.2× (j+ 2)}|a−b|

1/10
We considered the

following hypothesis testing setup:

H : Σ1 = Σ2 = Σ = Ω∆0Ω,

A : Σ1 = Σ and Σ2 = Ω∆2Ω.

We computed the ASL under H and Attained Power under A. Table 1 presents the ASL and Attained Power for the tests
J2, T 22 , and Q

2
2 for our hypothesis testing setup. In Table 2, we present the results for k = 3. We consider the hypothesis and

the alternative as follows:

H : Σ1 = Σ2 = Σ3 = Σ = Ω∆0Ω,

A : Σ1 = Σ, Σ2 = Ω∆1Ω, and Σ3 = Ω∆2Ω.

We find that all three tests have good performance for largem. The power of T 2k , however, is low for small sample sizes, and
the power of Jk is also lowwhen n1 = n2 = 10 and n1 = n2 = n3 = 10. The power ofQ 2k is higher than that of T

2
k . The reason

why the power of Q 2k becomes better than that of T
2
k may be that the Q

2
k -statistic measures the difference of covariances

by both tr Σi and tr Σ2i although the T
2
k -statistic measures the difference of covariances by only tr Σi. Moreover, in the all

cases, the ASL of Jk greatly exceeds 0.05. Its difference tends to be large when the sample size increases. As for the ASL, the
test based on T 2k will be the best among three tests. The reason why the ASL of T

2
k is better than that of Q

2
k may be that an

estimation of η2i standardizing T
2
k is easier than that of ξ

2
i standardizing Q

2
k , because ξ

2
i depends on many terms than η

2
i .

The difficulty in getting a fast convergent estimator of η2i makes the convergence of the test statistic Q
2
k to the chi-square

distribution slow but still better than the convergence of Jk to normal. Taking into consideration the attained ASL as well
as power, it appears that the test based on Q 2k may be preferred as the ASL for the Jk test is significantly higher than the
prescribed level most of the times unlessm is very large.

6. Proofs of Theorems 2.1 and 2.2

In order to prove the consistency of the estimates of â3 and â4, we need the following lemma.

Lemma 6.1. Let V ∼ Wm(Σ, n). Then

(a) E(V 2) = n(n+ 1)Σ2 + n(trΣ)Σ,
(b) E(V 3) = n(n2 + 3n+ 4)Σ3 + 2n(n+ 1)(trΣ)Σ2 + n(n+ 1)(trΣ2)Σ + n(trΣ)2Σ,
(c) E(V 4) = n(n3 + 6n2 + 21n+ 18)Σ4 + n(3n2 + 9n+ 14)(trΣ)Σ3 + 3n(n+ 1)(trΣ)2Σ2

+ n(2n2 + 5n+ 7)(trΣ2)Σ2 + n(3n+ 2)(trΣ)(trΣ2)Σ + n(n2 + 3n+ 4)(trΣ3)Σ + n(trΣ)3Σ .

Proof of Lemma 6.1. The proof of (a) is given by Srivastava and Khatri [5] in Problem 3.2. Following in the same manner,
the proofs of (b) and (c) can be obtained. �

From the above lemma, the following corollary is easily obtained.
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Table 1
ASL (under H) and Attained Power (under A) of J2 , T 22 and Q

2
2 .

m n1 = n2 ASL Power
J2 T 22 Q 22 J2 T 22 Q 22

20 10 0.085 0.054 0.091 0.474 0.243 0.855
20 0.107 0.066 0.076 0.892 0.352 0.968
40 0.082 0.050 0.052 1.000 0.633 1.000
60 0.094 0.051 0.053 1.000 0.753 1.000

40 10 0.081 0.053 0.081 0.403 0.271 0.918
20 0.096 0.054 0.061 0.748 0.479 0.992
40 0.107 0.059 0.061 0.999 0.785 1.000
60 0.094 0.053 0.058 1.000 0.908 1.000

60 10 0.072 0.050 0.060 0.424 0.342 0.910
20 0.099 0.054 0.059 0.849 0.603 0.968
40 0.096 0.051 0.047 1.000 0.893 1.000
60 0.103 0.045 0.051 1.000 0.974 1.000

100 10 0.091 0.059 0.072 0.440 0.343 0.922
20 0.084 0.045 0.046 0.946 0.619 0.997
40 0.093 0.061 0.069 1.000 0.848 1.000
60 0.120 0.066 0.066 1.000 0.952 1.000

200 10 0.071 0.039 0.046 0.629 0.487 0.923
20 0.082 0.042 0.047 0.962 0.742 0.997
40 0.092 0.048 0.043 1.000 0.959 1.000
60 0.097 0.046 0.050 1.000 0.995 1.000

Table 2
ASL (under H) and Attained Power (under A) of J3 , T 23 and Q

2
3 .

m n1 = n2 = n3 ASL Power
J3 T 23 Q 23 J3 T 23 Q 23

20 10 0.081 0.069 0.034 0.952 0.424 0.760
20 0.093 0.060 0.044 1.000 0.737 0.956
40 0.102 0.053 0.047 1.000 0.961 1.000
60 0.091 0.043 0.045 1.000 0.996 1.000

40 10 0.085 0.075 0.026 0.606 0.240 0.835
20 0.087 0.050 0.028 1.000 0.451 0.976
40 0.089 0.052 0.039 1.000 0.751 0.999
60 0.103 0.059 0.048 1.000 0.876 1.000

60 10 0.083 0.073 0.022 0.464 0.182 0.869
20 0.098 0.065 0.044 0.986 0.244 0.980
40 0.101 0.054 0.045 1.000 0.472 1.000
60 0.105 0.045 0.039 1.000 0.657 1.000

100 10 0.069 0.066 0.026 0.571 0.249 0.860
20 0.111 0.066 0.046 0.963 0.408 0.984
40 0.099 0.048 0.039 1.000 0.760 1.000
60 0.111 0.061 0.050 1.000 0.870 1.000

200 10 0.077 0.062 0.025 0.591 0.291 0.890
20 0.097 0.059 0.040 0.992 0.441 0.995
40 0.092 0.058 0.043 1.000 0.813 1.000
60 0.108 0.054 0.049 1.000 0.948 1.000

Corollary 6.1. Let V ∼ Wm(Σ, n). Then

(a) E(trV 2) = n(n+ 1)trΣ2 + n(trΣ)2,
(b) E(trV 3) = n(n2 + 3n+ 4)trΣ3 + 3n(n+ 1)trΣ2trΣ + n(trΣ)3,
(c) E(trV 4) = c0trΣ4 + c1(trΣ3)trΣ + c2trΣ2(trΣ)2 + c3(trΣ2)2 + n(trΣ)4,

where c0, c1, c2, and c3 have been defined in (2.1).

It has been shown in Srivastava [6] that consistent unbiased estimators of ai = trΣ i/m, i = 1, 2 are given by âi. To obtain
a consistent estimator of a3, one may use consistent estimators of a1 and a2 in (b), and obtain an expression of â3, which is
the same as given in Theorem 2.1. But proving the consistency of â3, that is, the proof of Theorem 2.1 still remains. To prove
it, we need the following lemma which can be proved by using the results of chi-square distributions and the moments of
quadratic forms.
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Lemma 6.2. Let u1, . . . , um be i.i.d. Nn(0, In),wij = u′iuj. Then

(a) E(wrii) = n(n+ 2) · · · (n+ 2r − 2), r = 1, 2, . . . ,
(b) E(w2ij) = n, i 6= j,
(c) E(wiiw2ij) = n(n+ 2), i 6= j,
(d) E(wijwjkwki) = n, i 6= j 6= k,
(e) Var(w3ii) = 6n(n+ 2)(n+ 4)(3n

2
+ 30n+ 80),

(f) E(w2iiw
4
ij) = 3n(n+ 2)(n+ 4)(n+ 6), i 6= j,

(g) E(w3iiwjjw
2
ij) = n(n+ 2)

2(n+ 4)(n+ 6), i 6= j,
(h) E(w4iiw

2
jj) = n

2(n+ 2)2(n+ 4)(n+ 6), i 6= j,
(i) E(wjkwklwlj)2 = n(n+ 2)(n+ 8), j 6= k 6= l,
(j) E(w4ij) = 3n(n+ 2), i 6= j,
(k) E(w3ijwjkwkiwkk) = 3n(n+ 2)

2, i 6= j 6= k.

The following lemma gives an alternative expression of E(tr V 3).

Lemma 6.3. An alternative expression of E(trV 3) is given by

E(trV 3) = n(n+ 2)(n+ 4)
m∑
i=1

λ3i + 3n(n+ 2)
m∑
i6=j

λ2i λj + n
m∑

i6=j6=k

λiλjλk, (6.1)

where λ1 ≥ · · · ≥ λm are the eigenvalues of this covariance matrixΣ .

Proof of Lemma 6.3. We have V ∼ Wm(Σ, n). Thus, we can write V = YY ′, where Y = (y1, . . . , yn) and yi are
i.i.d. Nm(0,Σ). Let Γ be an orthogonal matrix such that ΓΣΓ ′ = Λ, where Λ is a m × m diagonal matrix, Λ =
diag(λ1, . . . , λm) and λi are the eigenvalues of Σ . Then, if E = (ε1, . . . , εn), where εi are i.i.d. Nm(0, Im), Y = Σ1/2E ,
andΣ1/2Σ1/2 = Σ . Thus

V = Σ1/2EE ′Σ1/2 = Γ ′Λ1/2Γ EE ′Γ ′Λ1/2Γ = Γ ′Λ1/2UU ′Λ1/2Γ ,

where U ′ = E ′Γ ′ = (u1, . . . , um) and ui are i.i.d. Nn(0, In). Thus wii = u′iui are i.i.d. χ
2
n , i = 1, . . . ,m. Let wij = u′iuj. This

gives

tr V 3 =
m∑
i=1

λ3i w
3
ii + 3

m∑
i6=j

λ2i λjwiiw
2
ij +

m∑
i6=j6=k

λiλjλkwijwjkwki. (6.2)

Hence, from Lemma 6.2, we obtain the expectation in (6.1). �

6.1. Proof of Theorem 2.1

We note

â2 =
1
mn2

{
tr V 2 −

1
n
(tr V )2

}
+ O∗2,

and

â3 =
1
mn3

(
tr V 3 − 3n2â1â2 − nmâ31

)
+ O∗3

=
1
mn3

{
tr V 3 −

3
n
tr V tr V 2 +

2
n2
(tr V )3

}
+ O∗3, (6.3)

where O∗2 and O
∗

3 denote terms which tend to 0 under the conditions (A1)–(A4). Following the notation in the proof of
Lemma 6.3, we can write

tr V tr V 2 =
m∑
i=1

λ3i w
3
ii +

m∑
i6=j

λ2i λj(w
2
iiwjj + 2wiiw

2
ij)+

m∑
i6=j6=k

λiλjλkwiiw
2
jk, (6.4)

(tr V )3 =
m∑
i=1

λ3i w
3
ii + 3

m∑
i6=j

λ2i λjw
2
iiwjj +

m∑
i6=j6=k

λiλjλkwiiwjjwkk. (6.5)
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By substituting (6.2), (6.4) and (6.5) into (6.3), we can write â3 as

â3 = â
(1)
3 + â

(2)
3 + â

(3)
3 + â

(4)
3 + O

∗

3, (6.6)

where

â(1)3 =
1
mn3

(
1−

3
n
+
2
n2

) m∑
i=1

λ3i wii,

â(2)3 =
3
mn3

(
1−

2
n

) m∑
i6=j

λ2i λj

(
wiiw

2
ij −

1
n
w2iiwjj

)
,

â(3)3 =
1
mn3

m∑
i6=j6=k

λiλjλk

(
wijwjkwki −

1
n2
wiiwjjwkk

)
,

â(4)3 = −
3
mn4

m∑
i6=j6=k

λiλjλk

(
wijw

2
jk −

1
n
wiiwjjwkk

)
.

We note that

E(â(1)3 ) =
1
mn3

(
1−

3
n
+
2
n2

)
E

(
m∑
i=1

λ3i wii,

)
= a3 + O(n−1),

Var(â(1)3 ) =
1
m2n4

(
1−

3
n
+
2
n2

)2 m∑
i=1

λ6i Var(w
3
ii)

=
1
m

m∑
i=1

λ6i O(m
−1n−1)→ 0, as (n,m)→∞.

Thus, in probability â(1)3
p
→ a3 as (n,m)→∞, where ‘p’ stands for ‘in probability’.

To prove the theorem, we need to show that the remaining terms on the right side of (6.6) go to zero as (n,m) → ∞.
The expected value of â(2)3 is

E(â(2)3 ) =
3
mn3

(
1−

2
n

) m∑
i6=j

λ2i λjE
(
wiiw

2
ij −

1
n
w2iiwjj

)
= 0.

Similarly, Cov(rij, rkl) = 0 for (i 6= j) 6= (k 6= l), where rij = wii(w2ij − wiiwjj/n). Hence,

Var(â(2)3 ) =
9
m2n6

(
1−

2
n

)2 m∑
i6=j

λ4i λ
2
j Var(rij)

=
9
m2n6

(
1−

2
n

)2 m∑
i6=j

λ4i λ
2
j (n− 2)

(
1−

1
n

)
E(w4ii)

=
9
n

(
a2a4 −

1
m
a6

)
O(1) = O(n−1).

Hence â(2)3
p
→ 0 as (n,m)→∞.

The third term â(3)3 is given by â
(3)
3 =

∑m
i6=j6=k λiλjλksijk/(mn

3), where sijk = wijwjkwki−wiiwjjwkk/n2. It can easily be seen

that E(â(3)3 ) = 0 and Cov(si1j1k1 , si2j2k2) = 0 for (i1 6= j1 6= k1) 6= (i2 6= j2 6= k2). Hence

Var(â(3)3 ) =
1
m2n6

m∑
i6=j6=k

λ2i λ
2
j λ
2
kVar(sijk) =

1
m3

m∑
i6=j6=k

λ2i λ
2
j λ
2
kO(mn

−3),

from Lemma 6.2 as

Var(sijk) =
(
1+

2
n

)
(n3 − n2 + 4n− 4) = O(n3).

Similarly E(â(4)3 ) = 0 and Var(â
(4)
3 ) = O(mn

−4) can be shown. Thus, all the remainder terms go to zero and â3
p
→ a3 if

n = O(mδ), δ > 1/3, as (n,m)→∞. �
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6.2. Proof of Theorem 2.2

We first note that we can write

tr V 4 = tr

(
m∑
i=1

λ2i wiiuiu
′

i +

m∑
i6=j

λiλjwijuiu′j

)2

=

m∑
i=1

λ4i w
4
ii +

m∑
i6=j

λ2i λ
2
j wiiwjjw

2
ij + 4

m∑
i6=j

λ3i λjw
2
iiw
2
ij + 2

m∑
i6=j6=k

λiλjλ
2
kwijwjkwkiwkk

+ 2
m∑

i6=j6=k

λiλ
2
j λkw

2
ijw
2
kj +

m∑
i6=j

λ2i λ
2
j w
4
ij +

m∑
i6=j6=k6=l

λiλjλkλlwijwklwjkwli.

By combining the terms from â1, â2, and â3, it can be shown as in the case of â3, that â4 is a consistent estimator of a4 for
n = O(mδ), δ > 1/2. �

7. Concluding remarks

In this article, we considered four tests for testing the equality of k ≥ 2 covariance matrices. One of them, namely the G
test does not perform well. All the remaining three tests, namely, Jk, T 2k , and Q

2
k tests perform well whenm or n is large. For

small n and m, the tests Jk and Q 2k perform well from the power consideration. The Average Significance Level (ASL) of the
Jk test fluctuates considerably, often much larger than the specified level. Thus, taking into consideration the power as well
as ASL, the Q 2k test may be preferred over Jk test.
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