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We have derived and solved numerically the Boltzmann–Vlasov transport equations that includes both
two-body collisions and the chiral phase transition by mean of NJL-field dynamics. The scope is to
understand if the field dynamics supply new genuine effects on the build-up of the elliptic flow v2, a
measure of the asymmetry in the momentum space, and in particular if it can affect the relation between
v2 and the shear viscosity to entropy ratio η/s. Solving the transport equation with a constant cross
section for the condition of Au + Au collisions at

√
sNN = 200 A GeV it is shown a sizable suppression of

v2 due to the attractive nature of the field dynamics that generates the constituent mass. However the
key result is that if η/s of the system is kept fixed by an appropriate local renormalization of the cross
section the v2 does not depend on the details of the collisional and/or field dynamics and in particular
it is not affected significantly by the chiral phase transition.

© 2010 Elsevier B.V. Open access under CC BY license. 
1. Introduction

The ultra-relativistic heavy-ion collisions at high energy
√

sNN ∼
200 A GeV represent the main tool to study the formation and
the properties of the quark–gluon plasma at high temperature. The
RHIC program at BNL has shown that the azimuthal asymmetry in
momentum space, namely the elliptic flow v2, is the largest ever
seen in HIC suggesting that an almost perfect fluid with a very
small shear viscosity to entropy density ratio, η/s, has been cre-
ated [1–3]. From simple quantum mechanical considerations [4] as
well as from the study of supersymmetric Yang–Mills theory in
the infinite coupling limit a lower bound for η/s of about ∼ 10−1

is predicted [5]. Such a value is much lower than any other known
fluid and in particular smaller than the one of water and even than
the superfluid He [6].

First developments of relativistic viscous hydrodynamics [7,8]
as well as parton cascade models [9–11] indicate that even a small
η/s ∼ 0.1–0.2 affects significantly the strength of v2(pT ) especially
at pT > 1 GeV. Therefore it has become mandatory to determine
the value of η/s of the plasma created at RHIC through the study
of the relation between η/s and v2 [12]. However viscous cor-
rections to ideal hydrodynamics are indeed large and a simple
relativistic extension of first order Navier–Stokes equations is af-
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fected by causality and stability pathologies [13,14]. It is therefore
necessary to go to second order gradient expansion, and in partic-
ular the Israel-Stewart theory has been implemented to simulate
the RHIC collisions providing an upper bound for η/s � 0.4 [15].
Such an approach, apart from the limitation to (2 + 1)D simula-
tions, has the more fundamental problem that it is based on a
gradient expansion at second order that is not complete [13]. Fur-
thermore it cannot be sufficient to describe correctly the dynamics
of a fluid with large η/s as the one in the cross-over region and/or
hadronic phase which at least at RHIC still gives a non-negligible
contribution to v2 [16] that affects the determination of the η/s
itself [17].

A relativistic transport approach has the advantage to be a
(3 + 1)D approach not based on a gradient expansion that is valid
also for large viscosity and for out of equilibrium momentum dis-
tribution allowing a reliable description also of the intermediate
pT range where the important properties of quark number scaling
(QNS) of v2(pT ) have been observed [18]. In this pT region viscous
hydrodynamics breaks its validity because the relative deviation of
the equilibrium distribution function δ f / feq increases with p2

T be-
coming large already at pT � 3T ∼ 1 GeV [19].

In this perspective transport approaches at cascade level have
already been developed [9–11,20], but they miss any effect of the
field interactions responsible for the chiral phase transition or con-
finement. With this Letter we go one step further including a
transport equation self-consistently derived from the Nambu–Jona-
Lasinio (NJL) Lagrangian. This allows to study microscopically the
transport behavior of a fluid that includes the chiral phase tran-
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sition looking at its impact on the relation between the v2 and
the η/s of the system. The choice of the NJL is mainly driven
by its wide and renowned application to study the QCD chiral
phase transition by mean of effective Lagrangians, even though the
thermodynamical properties of QCD can be reproduced only qual-
itatively as briefly discussed in the following.

The NJL Lagrangian is:

LNJL = ψ̄
(
iγ μ∂μ − m̂

)
ψ + g

[
(ψ̄ψ)2 +

N2
f −1∑

α=1

(
ψ̄τα iγ5ψ

)2

]
(1)

with ψ denoting a quark fields with N f flavors ψ = (u,d, . . .)t ,
τα are the generators of the SU(N f ) group acting in flavor space
with α = 1, . . . , (N2

f − 1). The m̂ = diag(mu,md, . . .) is the cur-
rent N f × N f quark mass matrix in flavor space. In the following
we will refer to the N f = 2, Nc = 3 for calculations. As is well
known the theory is non-renormalizable, hence a cut-off Λ has to
be introduced as a free parameter. The numerical results shown
in the following are derived using the Buballa parametrization:
Λ = 588 MeV, gΛ2 = 2.88, m = 5.6 MeV [21] that among the va-
riety of parameterizations entails a behavior of ε , P , c2

s closer to
the lQCD results.

A transport theory for the NJL model has been derived in the
closed-time-path formalism combined with the effective action
method [22]. The main steps of derivation are to perform a Wigner
transformation of the Dirac equation of motion and of the related
gap-equation associated to the LNJL , Eq. (1). Then one exploits
the semi-classical approximation widely used for applications in
heavy-ion collisions [23,24] evaluating the expectation value of the
four-point fermion interaction in the Hartree approximation (i.e. at
mean field level). Finally only the scalar and vector components of
the Wigner function are retained thanks to the spin saturated na-
ture of the systems we are interested in. One finally obtains the
Boltzmann–Vlasov transport equations for the (anti-)quark phase-
space distribution function f ±:

pμ∂μ f ±(x, p) + M(x)∂μM(x)∂μ
p f ±(x, p) = C(x, p) (2)

where C(x, p) is the Boltzmann-like collision integral, main ingre-
dient of the several cascade codes already developed [25,26,11];
M(x) represents the local value of the scalar mass that is gen-
erated by the chiral symmetry breaking, see Eq. (3). We notice
that respect to the already implemented cascades the NJL dynam-
ics introduces a new term associated to the mass generation. Also
Eq. (2) is formally the same as the widely used relativistic trans-
port approaches for hadronic matter like RBUU, uRQMD, RLV [24,
27,28], but with a vanishing vector field. However a key difference
is that particles do not have a fixed mass and a self-consistent
derivation couples Eq. (2) to the mass gap equation of the NJL
model that extended to the case of non-equilibrium can be written
as:

M(x) − m

4gNc
= M(x)

∫
d3 p

(2π)3

1 − f −(x, p) − f +(x, p)

E p(x)
(3)

and determines the local mass M(x) at the space–time point x in
terms of the distribution functions f ±(x, p).

Eqs. (2) and (3) form a closed system of equations constituting
the Boltzmann–Vlasov equation associated to the NJL Lagrangian
that allows to obtain self-consistently the local effective mass M(x)
affecting the time evolution of the distribution function f ±(x, p).
A seminal work on the transport equation associated to the NJL
dynamics was done in Refs. [29,30], but without a collision term,
not at finite η/s and never applied to the physical conditions of
ultra-relativistic heavy-ion collisions.
For the numerical solutions of Eqs. (2) and (3) we use a
three-dimensional lattice that discretize the space as described in
Ref. [11,26]. The standard test particle methods that sample the
distribution function f by mean of an ensemble of points in the
phase-space is employed. The normalization condition is given by:∫

dΓ f ± = ωA( Ã) = Nq(Nq) with Γ the phase space, Aα ( Ãα ) the
number of test particles (antiparticles) which are inside the con-
sidered cell and ω the proper normalization factor that relates the
test particles to the real particle number.

In such a way it is possible to get a solution of the transport
equations propagating the momenta of the test (anti-)particles by
mean of the relativistic Hamilton’s equation. For the numerical im-
plementation they can be written in the discretized form as:

pi

(
t+) = pi

(
t−) − 2δt

Mα(ri, t)

Ei(t)
�∇r Mα(ri, t) + coll.

ri
(
t+) = ri

(
t−) + 2δt

pi(t)

Ei(t)
(4)

with t± = t ± δt and δt the numerical mesh time. The term coll.
on the right-hand side of Eq. (4) indicates the effects of the colli-
sion integral as described in Ref. [26,11]. By mean of a reiterating
procedure on time steps one gets the solutions of the transport
equation coupling Eq. (4) with the gap equation, Eq. (3) that dis-
cretized on lattice and for point-like test particles becomes:

Mα − m

8gNc
= Mα

[∫
Λ

d3 p

(2π)3

1

E
− ω

�Vα

(
Aα∑

i=1

1

Ei
−

Ãα∑
i=1

1

Ẽ i

)]
(5)

where �Vα = τ AT tanhηα is the volume of each cell of the space
lattice given by AT = 0.5 fm2 the area in the transverse direction
and ηα the space–time rapidity of the center of the cell. The inte-
gral is instead the vacuum contribution to the gap-equation which
is a divergent quantity and it is regularized by a cutoff, Λ and has
a simple analytical expression.

The space–time dependence of the mass Mα(r, t) = m −
2g〈ψ̄ψ〉 influences the momenta of the particles because the fi-
nite gradient of the condensate generates a force which changes
the momentum of a particle proportionally to �∇r〈ψ̄ψ〉, see Eq. (4).
The last is negative because the phase transition occurs earlier
in the surface of the expanding QGP fireball. Therefore the phase
transition which take place locally results in a negative contribu-
tion to the particle momenta that makes the system more sticky
respect to a free massless gas.

2. Shear viscosity to entropy density ratio

The effect of the NJL mean-field can be evaluated looking at the
so-called interaction measure normalized by T 4, ε−3P

T 4 , that gives
the deviation from the free gas relation between the energy den-
sity ε and the pressure P that is also a measure of the breakdown
of conformal symmetry. In lattice QCD it is known to be quite large
with a peak at Tc and a non-negligible value up to T ∼ 2–3Tc . In
Fig. 1(left) its behavior is shown for three different NJL parameter-
izations. Quantitatively the QCD behavior is correctly reproduced.
In the following we will use the Buballa parametrization that gives
the largest values closer to lQCD where however the peak is found
to be about a factor two larger at Tc . This means that the numer-
ical results on the impact of the mean field in the dynamics of
RHIC collisions is reduced respect to a more realistic case.

Our final goal is to study a fluid at fixed shear viscosity to en-
tropy ratio η/s extending the study started at cascade level [11,10].
There the strategy was to normalize locally the cross section in
order to fix the η/s according to the simple relation σ · η/s =
〈p〉/15n valid for a massless gas. Here because of the NJL field
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Fig. 1. Left: Interaction measure shown as a function of temperature T for three different NJL parameter sets. Right: The η/s and ζ/s for the Buballa parametrization as a
function of T for various cases as indicated in the legend. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
Letter.)
the particles acquire a mass hence both the viscosity and the en-
tropy density are modified respect to the simple massless case.
We briefly discuss the η and s for a system of massive particles
deriving the pertinent formula to renormalize the cross section σ
in order to keep fixed locally the η/s. Both η and s have been
derived for a thermodynamical system and has been studied also
for the case of the NJL model [31]. Here we derive expressions in
terms of quantities that can be used easily also in the numerical
solution of the transport equations. A widely used formula for η is
deduced from the relaxation time approximation, like in Ref. [31].
After integration by parts it is possible to write the shear viscos-
ity for the general case of massive relativistic particles in terms of
average quantities that can be easily evaluated numerically:

η = τ
n

15

[
4

〈
p2

E

〉
+ M2

〈
p2

E3

〉]
(6)

where τ = [n〈σtr vrel〉]−1 is the relaxation time, i.e. the time inter-
val between two collisions, and n is the total local density. One
can easily see that in the ultra-relativistic limit (M → 0) the well-
known formula for the shear viscosity, η = 4

15 〈p〉/σtr , is recovered.
The entropy density cannot be related simply to the local den-

sity, s ∼ 4n, as for the massless case. A suitable method to evaluate
locally s during the dynamical evolution of the collision is based
on the use of the thermodynamical relation sT = ε + nT that shift
the problem to the evaluation of ε,n, T . These are easily calcu-
lated analytically (as for Fig. 1) but also numerically summing up
the number of the test-particles and their energy in each α-cell.
To evaluate the temperature we exploit the general formula for a
massive gas:

e

M
= 3

z
+ K1(z)

K2(z)
(7)

with e the energy per particle, ε/n, and Kn(z) the modified Bessel
functions of the second kind, z = M

T . We know e and M directly
from the code hence we can use Eq. (7) to extract z = M

T and
therefore the temperature. We have checked that the procedure
works well performing calculation in a box with particles dis-
tributed according to a Boltzmann equilibrium distribution.

The behavior of η/s for a thermodynamical system is shown in
Fig. 1(right) for a massless free gas (dashed line) and for the NJL
(solid line). In both cases the cross section is fixed to σ = 10 mb.
The dot-dashed line indicates the lower bound for η/s. We see
that with a constant cross section σ = 10 mb the η/s is even
lower than the 1/4π at high T . The lower light lines show the
behavior of bulk viscosity to entropy ratio ζ/s in the NJL model
for two cases one with σ = 10 mb (green solid line) as above and
the other for an η/s fixed at the 1/4π value (dot-dashed line). Of
course for the massless case the bulk viscosity is zero, while for
non-vanishing masses there is a link between the η and ζ through
the relaxation time τ . The last results in a smaller growth of ζ/s
when η/s is fixed respect to the case when σtr is fixed. However
in both cases we can see that only at T < 1.1Tc we have a non-
vanishing ζ/s. This is due to the fact that the ζ is expected to
be proportional to the deviation of the sound velocity from 1/3,
(c2

s − 1/3)2 that in the NJL model is known to occur only very
close to Tc . More importantly for our purposes is that in the NJL
the ζ/s remains order of magnitudes lower that first extrapola-
tion from lQCD [32] and also much lower than the smaller values
used for first studies with viscous hydrodynamics [19,33]. Accord-
ing to this study ζ/s has a small impact on elliptic flow [19] even
if already moderate values, ζ/s ∼ 0.04, can better reproduce the
fine structure of v2(pT ) mass-ordering [33]. However for NJL es-
pecially at 4πη/s = 1 the value is so small that we can judge
safe to discard any role of ζ/s in the following results for the
elliptic flow considering also that we will not discuss the mass-
ordering.

We notice that Eqs. (6) and (7) supply the formula for the nor-
malization of the cross section in each α-cell in order to keep fixed
η/s of the system:

σtr,α = 1

15

Tα

〈vrel〉
4〈p2/E〉α + M2

α〈p2/E3〉α
(εα + nα Tα)η/s

(8)

for a massless gas M → 0 (p = E , ε ∼ 3nT ) and Eq. (8) reduce to
the simple relation σtr,α = 4π

15 〈p〉α/nα used in Refs. [11,34,10,14]
for η/s = 1/4π . Eq. (8) will allow to extend such studies of a fluid
at finite viscosity to the case of partons with finite mass.

3. Elliptic flow

We have run the simulations for Au + Au at
√

sNN = 200 A GeV
and b = 7 fm. The density distribution in coordinate space is given
by the standard Glauber model. The maximum initial temperature
is T = 340 MeV and the initial time is τ0 = 0.6 fm/c as usually
done also in hydrodynamical calculations. We follow the dynami-
cal evolution of quarks, anti-quarks and gluons. The last has been
included, even if they are not explicitly present in the NJL model,
with the aim of using a realistic density for both the total and
the (anti-)quark density in the simulation of the collisions. How-
ever gluons do not actively participate in the evaluation of the
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Fig. 2. Left: Average elliptic flow as a function of time for Au + Au collisions in the mid-rapidity region |y| < 1 at b = 7 fm. Right: time evolution of the average transverse
momentum for the same case as in the left panel. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this Letter.)
chiral phase transition, but they simply acquire the mass of the
quarks not contributing to its determination according to the NJL
model. The justification for this choice relies on the quasi-particle
models that are fitted to lQCD thermodynamics [35,36]. One finds
a similar behavior of M(T ) for both gluons and quarks approxi-
mately. Of course for a more quantitative calculation a more careful
treatment would be needed but it is not relevant to the main
objective of the present seminal work, considering also that any-
way the NJL model cannot be used for an accurate quantitative
study.

In Fig. 2(left) it is shown the time evolution of the average ellip-
tic flow 〈v2〉 for a constant transport cross section of σtr = 10 mb
a typical value that is able to reproduce the amount of v2 ob-
served in experiments [20]. Comparing the two solid lines (black
and green) we can see that the NJL mean field cause a decrease of
〈v2〉 of about 15%. The reduction of 〈v2〉 can be expected con-
sidering that the NJL field produce a scalar attractive field that
at the phase transition results in a gas of massive particles. In
Fig. 3, we show also the elliptic flow at freeze-out as a func-
tion of the transverse momentum pT . One can see that the role
of the mean field even increases with momentum affecting also
particles at a pT quite larger than the energy scale of the scalar
condensate 〈ψψ̄〉 ∼ 300 MeV. This is due to the fact that a high-
pT particle collides mainly with the much more abundant parti-
cles in the bulk. These have an average momentum comparable to
the strength of the scalar field: pT ∼ 2T ∼ Mc . Therefore the ef-
fect of the scalar field extends thanks to collisions into a range
quite larger than one would naively think and the interplay be-
tween collisions and mean field is fundamental. We find that the
presence of an NJL-field that drives the chiral phase transition sup-
press the v2(pT ) by about 20% at pT > 1 GeV. This would imply
the need of a parton scattering cross section σtr even larger than
that estimated with the cascade model which was already quite
larger than the pQCD estimates [25,37]. On the other hand the
mean field modifies both the local entropy density reduced by the
mass generation, and the shear viscosity that increases as shown
in Fig. 1(right). Therefore even if the cross section is the same with
and without the NJL field the system evolves with a different η/s.
Considering that one of the main goal is to determine the η/s of
the QGP we have investigated what is the action of the mean field
once the η/s of the system is fixed to be the same by mean of the
cross section renormalization according to Eq. (8). Therefore we
have run simulations with and without the NJL-field but keeping
constant locally the η/s.
Fig. 3. As in Fig. 2 for the elliptic flow as a function of pT . (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this Letter.)

The results for 4πη/s = 1 are shown by dashed lines in Figs. 2
and 3, the (black) dashed line is the case with only the collision
term (cascade) while the (green) dashed line is the case with the
field. We can see that once the η/s is fixed there is essentially no
difference in the calculations with and without a field dynamics
included. This is seen for both the average 〈v2〉 and the v2(pT )

in Figs. 2(left) and 3 respectively. This is a key result that shows
that even in a microscopic approach that distinguishes between
the mean field and the collisional dynamics the v2(pT ) is mainly
driven by the η/s of the fluid. In other words we have found
that in a microscopic approach the η/s is the pertinent parame-
ter and the language of viscous hydrodynamics is appropriate. Of
course this does not mean that v2(pT ) in the transport theory is
the same of the viscous hydrodynamics one, but that, and even
more importantly, the direct relation between v2(pT ) and η/s is
quite general and their relation is not modified by the NJL field
dynamics. We have checked that this is valid also at other impact
parameter (b = 3,5,9 fm) and for larger η/s up to π−1. This is of
course very important for the determination of η/s by mean of the
data on elliptic flow and confirms the validity of the studies pur-
sued till now even if they miss an explicit mean field dynamics
and/or the chiral phase transition.

However we notice that while the v2(pT ) appears to be to-
tally independent on the presence of the NJL-field once the η/s
is kept fixed, the time evolution of 〈v2〉 still shows a slightly re-
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duced elliptic flow at t ∼ 3–5 fm/c. A similar difference can be
observed also in the time evolution of the transverse momentum
〈pT 〉 shown in Fig. 2(right). One may ask what is the physical
origin of such differences. In principle there are two parameters
affecting the v2(pT ) and the 〈pT 〉: the sound velocity cs and the
bulk viscosity ζ . As discussed previously it is safe to discard the
possibility of any significant influence of the finite ζ/s on our re-
sults considering its tiny value in the NJL, see Fig. 1(right). It is
instead reasonable that the weak decrease is due to the decrease
of the sound velocity for NJL at T < 1.1Tc . It is well known that
c2

s decreases from 1/3 that is the value of a massless free gas and
that this cause already in ideal hydrodynamics a decrease of the
elliptic flow [38]. On the other hand when the bulk of the system
reaches this region most of the v2(pT ) has already been built-up
hence the effect of a moderate decrease of cs is quite weak and
could explain the small difference still visible in the time evolu-
tion of 〈v2〉 and 〈pT 〉.

4. Conclusion

The novelty of the present work is to be the first study within
a transport approach of a fluid at finite η/s that includes the field
dynamics of the chiral phase transition. Generally we find that at
fixed cross section the effect of the NJL field is to reduce the el-
liptic flow by about a 20%. More importantly we can state that
the presence of the NJL dynamics does not change the relation be-
tween the elliptic flow and the η/s that remains the same as in
the cascade models and at low pT is very close to the one from
hydrodynamics [9,11,10,34]. If such a finding is confirmed also for
a more general class of interacting quasi-particle models it will
make much safer and solid the determination of η/s by v2(pT ). In
fact as we have shown the relation is independent on the micro-
scopic details of the interaction once the EoS and/or the c2

s (T ) has
been fixed. This will be investigated in the next future, in fact the
kinetic theory and the numerical implementation presented here
can be easily extended to quasi-particle models that are fitted to
reproduce the energy density and pressure of lQCD results. In such
a case it will be possible also to study the elliptic flow with a real-
istic behavior of cs(T ) and the effect of a finite and sizable ζ/s on
the elliptic flow complementing the study from viscous hydrody-
namics that are subject to problems for not too small ζ/s and/or
for pT > 3T [19].
Acknowledgements

This work for V. Baran is supported in part by the Romanian
Ministry for Education and Research under the CNCSIS contract
PNII ID-946/2007.

References

[1] STAR Collaboration, J. Adams, et al., Nucl. Phys. A 757 (2005) 102.
[2] PHENIX Collaboration, K. Adcox, et al., Nucl. Phys. A 757 (2005) 184.
[3] E. Shuryak, Prog. Part. Nucl. Phys. 62 (2009) 48.
[4] P. Danielewicz, M. Gyulassy, Phys. Rev. D 31 (1985) 53.
[5] P. Kovtun, D.T. Son, A.O. Starinets, Phys. Rev. Lett. 94 (2005) 111601.
[6] R.A. Lacey, et al., Phys. Rev. Lett. 98 (2007) 092301.
[7] P. Romatschke, U. Romatschke, Phys. Rev. Lett. 99 (2007) 172301.
[8] H. Song, U.W. Heinz, Phys. Rev. C 78 (2008) 024902, arXiv:0805.1756.
[9] Z. Xu, C. Greiner, H. Stocker, Phys. Rev. Lett. 101 (2008) 082302.

[10] D. Molnar, arXiv:0806.0026 [nucl-th], 2008.
[11] G. Ferini, M. Colonna, M. Di Toro, V. Greco, Phys. Lett. B 670 (2009) 325.
[12] H.-J. Drescher, A. Dumitru, C. Gombeaud, J.-Y. Ollitrault, Phys. Rev. C 76 (2007)

024905.
[13] P. Romatschke, arXiv:0902.3663, 2009.
[14] P. Huovinen, D. Molnar, Phys. Rev. C 79 (2009) 014906.
[15] H. Song, U.W. Heinz, arXiv:0812.4274, 2008.
[16] T. Hirano, U.W. Heinz, D. Kharzeev, R. Lacey, Y. Nara, Phys. Lett. B 636 (2006)

299.
[17] V. Greco, M. Colonna, M. Di Toro, G. Ferini, Nucl. Phys. A 834 (2010) 273.
[18] R.J. Fries, V. Greco, P. Sorensen, Annu. Rev. Nucl. Part. Sci. 58 (2008) 177.
[19] H. Song, U.W. Heinz, arXiv:0909.1549, 2009.
[20] Z.-w. Lin, C.M. Ko, Phys. Rev. C 65 (2002) 034904.
[21] M. Buballa, Phys. Rep. 407 (2005) 205.
[22] W.M. Zhang, L. Wilets, Phys. Rev. C 45 (1992) 1900.
[23] A. Dellafiore, F. Matera, Phys. Rev. C 44 (1991) 2456.
[24] B. Blattel, V. Koch, U. Mosel, Rep. Prog. Phys. 56 (1993) 1.
[25] D. Molnar, M. Gyulassy, Nucl. Phys. A 697 (2002) 495.
[26] Z. Xu, C. Greiner, Phys. Rev. C 71 (2005) 064901.
[27] S.A. Bass, et al., Prog. Part. Nucl. Phys. 41 (1998) 255.
[28] C. Fuchs, H.H. Wolter, Nucl. Phys. A 589 (1995) 732.
[29] A. Abada, J. Aichelin, Phys. Rev. Lett. 74 (1995) 3130.
[30] I. Mishustin, O. Scavenius, Phys. Lett. B 396 (1997) 33.
[31] C. Sasaki, K. Redlich, Phys. Rev. C 79 (2009) 055207.
[32] F. Karsch, D. Kharzeev, K. Tuchin, Phys. Lett. B 663 (2008) 217.
[33] P. Bozek, arXiv:0911.2397 [nucl-th].
[34] V. Greco, M. Colonna, M. Di Toro, G. Ferini, Prog. Part. Nucl. Phys. 62 (2009)

562.
[35] P. Levai, U.W. Heinz, Phys. Rev. C 57 (1998) 1879.
[36] P. Castorina, M. Mannarelli, Phys. Rev. C 75 (2007) 054901.
[37] Z.-W. Lin, et al., Phys. Rev. C 72 (2005) 064901.
[38] R.S. Bhalerao, J.-P. Blaizot, N. Borghini, J.-Y. Ollitrault, Phys. Lett. B 627 (2005)

49.


	Does the NJL chiral phase transition affect the elliptic flow of a fluid at fixed eta/s?
	Introduction
	Shear viscosity to entropy density ratio
	Elliptic flow
	Conclusion
	Acknowledgements
	References


