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Active glycolysis and glutaminolysis provide bioenergetic stability of cancer cells in physiological conditions.
Under hypoxia, metabolic and mitochondrial disorders, or pharmacological treatment, a deficit of key metabolic
substrates may become life-threatening to cancer cells. We analysed the effects of mitochondrial uncoupling by
FCCP on the respiration of cells fed by different combinations of Glc, Gal, Gln and Pyr. In cancer PC12 and HCT116
cells, a large increase in O2 consumption rate (OCR) upon uncoupling was only seen when Gln was combined
with either Glc or Pyr. Inhibition of glutaminolysis with BPTES abolished this effect. Despite the key role of Gln,
addition of FCCP inhibited respiration and induced apoptosis in cells supplied with Gln alone or Gal/Gln. For all
substrate combinations, amplitude of respiratory responses to FCCP did not correlate with Akt, Erk and AMPK
phosphorylation, cellular ATP, and resting OCR, mitochondrial Ca2+ or membrane potential. However, we pro-
pose that proton motive force could modulate respiratory response to FCCP by regulating mitochondrial trans-
port of Gln and Pyr, which decreases upon mitochondrial depolarisation. As a result, an increase in respiration
upon uncoupling is abolished in cells, deprived of Gln or Pyr (Glc). Unlike PC12 or HCT116 cells, mouse embry-
onic fibroblasts were capable of generating pronounced response to FCCP when deprived of Gln, thus exhibiting
lower dependence on glutaminolysis. Overall, the differential regulation of the respiratory response to FCCP by
metabolic environment suggests that mitochondrial uncoupling has a potential for substrate-specific inhibition
of cell function, and can be explored for selective cancer treatment.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

A role of themitochondria is that of a ‘power plant’ of the eukaryotic
cell. The electron transport chain (ETC) conducts a cascade of RedOx re-
actions and generates proton motive force (PMF) which is utilised by
F0F1 ATP synthase (complex V) to produce ATP through the oxidative
phosphorylation (OxPhos). Being themost effectiveway of ATP produc-
tion, OxPhos is tightly regulated. The efficiency of OxPhos, defined by
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the amount of inorganic phosphate (Pi) utilised for ATP production per
amount of O2 consumed [1,2], may be affected by a number of factors,
including the level of uncoupling between inward mitochondrial H+

current and ATP synthesis. Indeed, a certain proportion of H+ is always
translocated to inside the matrix bypassing complex V, thus degrading
the mitochondrial membrane potential (ΔΨm). This so called ‘extrinsic’
uncoupling can be achieved through the activation of uncoupling pro-
teins, a nonspecific ΔΨm-dependent proton leak, general ion symport/
antiport and chemical uncouplers [3]. The weak acid protonophore
FCCP (carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone) [4],
which provides reversible uncoupling [5] and dissipates PMF in a
concentration-dependent manner, [6,7] is commonly used in the exper-
iments with isolated mitochondria and whole cells.

Isolated mitochondria are a simple and well-established model as
they are accessible to the metabolic substrates and pharmacological
compounds, and independent on complex inter-compartmental trans-
port of biomolecules, cytoplasmic metabolism and ion fluxes [8]. The
substrates feeding the Krebs cycle and complexes I–V strongly affect
respiration of isolated mitochondria [1,9]. Different combinations of
the substrates and co-factors are used for analysis of i) the functional
activity of mitochondrial enzymes and contribution of ETC complexes
to the total mitochondrial respiration; ii) H+/O, H+/ATP and Pi/O ratios;
iii) the state III (and state IV) respiration and respiratory control ratio;
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Table 1
Composition of the WM.

Components WM

1 2 3 4 5 6 7 8 9 10 11 12

D-glucose + + + +
D-galactose + + + +
L-glutamine + + + + + +
Pyruvate + + + + + +
NGFa + + + + + + + + + + + +

a Only for PC12 cells.
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and iv) mito-toxicity of the new pharmacological compounds. The O2

consumption rate (OCR) in isolated mitochondria may be set to differ-
ent levels by simple addition of the appropriate substrates and drugs
affecting respiration. Thus, maximal mitochondrial respiration can be
achieved by addition of FCCP to the mitochondria in state III [8].

However, the processes observed in isolated mitochondria may be
significantly different from that taking place in intact cells, which have
undisturbed cellular networks and environment and represent a more
physiologically relevant model for experiments on bioenergetics
and metabolism [8]. Mitochondrial respiration in cells is regulated by
many factors and the results of uncoupling under physiological condi-
tions are not easy to interpret. Changes in the transport of metabolites
and ions across the plasma membrane, a decrease in mitochondrial
and increase in cytosolic Ca2+, activation of glycolysis, cytosolic and
extracellular acidification, can all strongly affect respiratory responses
to FCCP, and even careful optimisation of FCCP concentration for each
cell type [8] may not eliminate indirect effects of this drug on cellular
respiration and function in general. Thus, dissipation of the mitochon-
drial ATP flux upon uncoupling can rapidly activate ‘non-mitochondrial’
metabolic pathways involved in production and preservation of energy
(e.g. AMPK) [10]. Therefore, shortages in basic metabolic substrates
can contribute to cellular responses to mitochondrial uncoupling and
escalate energy stress. Thus, uncoupling becomes life-threatening
when glucose (Glc) is replaced with galactose (Gal), as glycolysis can
no longer maintain steady ATP levels.

In cancer cells Glc supply becomes essential, since glycolysis
produces large amounts of ATP regardless of high availability of O2

(Warburg effect) [11]. In turn, most of the pyruvate (Pyr), instead of
conversion into Acetyl-CoA and utilisation in the Krebs cycle [12], is
converted to lactate and extruded from the cell. Some intermediates
of glycolysis (e.g. phosphoenolpyruvate) are also re-directed to anabolic
reactions producing materials for actively proliferating cancer cells
[13–15]. To further accelerate anaplerotic reactions and ATP production,
cancer cells addictively utilise glutamine (Gln), and more than half of
ATP can be produced through Gln-driven OxPhos [16–19]. As a result,
Gln-driven mitochondrial respiration in many cancer cells is active
even at high Glc levels [20], and increases further upon replacement of
Glc with Gal.

Considering the complexity of the bioenergetic network, one can
anticipate that respiration of resting cells supplied with different sub-
stratesmay not inform correctly on their ability to respond tomitochon-
drial uncoupling in a classical way, i.e. by prominent and sustained
increase in respiration. Here, using rat pheochromocytoma PC12 cell
and other cell lines, we studied how the availability and utilisation of
majormetabolic substratesmodulate the respiratory response of cancer
cells to mitochondrial uncoupling.

2. Experimental procedures

2.1. Materials

O2-sensitive probes MitoXpress®-Xtra [21], MitoXpress®-Intra
NanO2 [22] and pH-sensitive probe pH-Xtra [23] were from Luxcel
Biosciences (Cork, Ireland). Glutaminase inhibitor, BPTES (bis-2-(5-
phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide) [24] was kindly
provided by Dr. Takashi Tsukamoto (John Hopkins University, MD).
Mitochondrial membrane potential indicator Tetramethyl rhodamine
methyl ester (TMRM), Lipofectamine 2000 and Opti-MEM I were from
Invitrogen Life Technologies (Carlsbad, CA). Plasma membrane poten-
tial indicator (PMPI) [25] was from Molecular Devices (Sunnyvale,
CA). ECL Prime Western blotting reagent was from GE Healthcare
Life Sciences (Waukesha, WI), pre-made acrylamide gels, running and
transfer buffers were from GeneScript (Piscataway, NJ), BCA™ Protein
Assay kit was from Thermo Fisher Scientific (Rockford, Ill). The
mitochondria-targeted Ca2+ biosensor, mitoCase12 [26] was from
Evrogen JSC (Moscow, Russia). CellTiter-Glo® ATP Assay was from
Promega (Madison,WI).Mineral oil (type 37)was fromCargille Labora-
tories (Cedar Grove, NJ). Dulbecco's Modified Eagle's medium (DMEM)
and Roswell ParkMemorial Institute (RPMI)media, nerve growth factor
(NGF), collagen IV, FCCP, D-glucose, D-galactose, L-glutamine, sodium
pyruvate and other reagents were from Sigma-Aldrich.

2.2. Composition of the media and experimental conditions

Rat pheochromocytoma PC12 cells, human colon cancer HCT116
cells and mouse embryonic fibroblasts (MEFs) were from American
Tissue Culture Collections (ATCC, Manassas, VA). PC12 cells were
maintained in suspension in RPMI 1640 medium supplemented with
10 mM HEPES (pH 7.2), 2 mM L-Gln, 10% horse serum (HS), 5% fetal
bovine serum (FBS), 100 U/ml penicillin/100 μg/ml streptomycin (P/S)
in humidified atmosphere of 5% CO2 and 95% air at 37 °C. HCT116 and
MEFs were maintained in the same conditions in DMEM medium
supplemented with HEPES, L-Gln, 10% FBS and P/S.

PC12 cells were differentiated as described previously [26]. Briefly,
for experiments with OCR, ECA and iO2, cells were seeded at 5 × 104

cells/well on 96-well plates (Greiner Bio One, Frickenhausen, Germany)
coated with 0.01% collagen IV, and differentiated for 3–5 days in RPMI
supplemented with NaHCO3, L-Gln, 1% horse serum, P/S, and 100 ng/ml
NGF. For live cell confocal imaging cells were seeded at 2.5 × 104 cells
per ~1 cm2 dish differentiated on glass bottom mini-dishes (MatTek,
Ashland, MA) coated with a mixture of collagen IV (0.007%) and poly-
D-lysine (0.003%). For protein analysis cells were seeded at 5 × 105

cells per well and differentiated for 5 days on 12-well plates (Corning
Life Sciences, NY) coated with collagen IV.

HCT116 and MEFs were seeded in a growing medium at 2.5 × 104

cells/well on 96-well plates (Greiner) coated with 0.01% collagen IV,
grown for 2 days prior to analysis.

Working media (WM) were prepared as follows. Powder DMEM
(Sigma, cat. No 5030) was reconstituted in deionised water and filter-
sterilised. From this plain DMEM, 12 different WM were composed by
addition of 100 nM NGF, 10 mM Glc, 10 mM Gal, 2 mM Gln and
1 mMPyr as shown in Table 1. No serumwas added. All WM contained
20 mM HEPES, pH 7.2, except for ECA measurements.

Prior to the experiments, growth or differentiation media were
replaced with one of the WM, and the cells were incubated in 5% CO2

at 37 °C for 2 h. To inhibit glutaminolysis, BPTES (10 μM) was applied
to the samples 1 h prior to and kept during the experiments. To uncou-
ple respiration, cells were treated with 1 μM FCCP, optimal for all cell
lines, as determined in separate experiment (Supplemental Fig. S1).

2.3. O2 consumption rate (OCR) assay

Measurement of OCR and iO2 (see Section 2.5) was performed using
a well-established phosphorescence quenching technique [27,28]. De-
veloped for the assessment of O2 consumption by biological specimens
on a conventional fluorescence spectrometer or plate reader [21], a
water-soluble phosphorescent O2-sensitive probe MitoXpress®-Xtra
was validated [23,29,30] and used in a number of studies [31–36].
These works demonstrate that the phosphorescence quenching is a
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simple, non-invasive and versatile quantitative approach which allows
for direct, high-throughput, real-time analysis of OCR and provides
physiologically relevant data on cell metabolism in a broad range of
test samples, from isolated mitochondria [31,37] to small organisms
[38,39].

In this study, growth or differentiation media were replaced with
WM, and cells were incubated for 2 h (BPTES was added, as required).
OCR measurements were conducted in 100 μl of air-equilibrated
WM supplemented with 200 nM MitoXpress probe as described [29],
in the presence of mitochondrial uncoupler FCCP (1 μM) or solvent
(DMSO), which were added to the cells immediately prior to the mea-
surement. Sample wells were quickly sealed with 150 μl of mineral oil
pre-warmed to 37 °C and the platewasmonitored on a TR-F reader Vic-
tor 2 (PerkinElmer Life Sciences) at 37 °C with excitation and emission
at 340 and 642 nm, respectively. Each samplewell wasmeasured repet-
itively every 3–5 min over 60–90 min, by taking two intensity readings
at delay times of 30 and 70 μs and gate time100 μs. The intensity signals
were converted into phosphorescence lifetime (τ) values as follows:
τ = (t2 − t1) / ln(F1 / F2), where F1 and F2 are the TR-F intensity
signals at delay times t1 and t2. Average O2 levels across the samples
were calculated from τ values [30], and then the OCR for each working
medium was calculated as O2 consumed by cells in 1 min per 1 mg of
total soluble protein (nmole/min⋅mg protein) [29,40]. Protein concen-
trations were measured using BCA™ Protein Assay kit.

2.4. Lactate-specific extracellular acidification assay (L-ECA)

The ECA was measured as described [29]. Firstly, the growth or dif-
ferentiation media were replaced with 150 μl WM containing 10 mM
HEPES and put into CO2-free conditions at 37 °C for 2 h to release
absorbed CO2. Then the media was replaced with unbuffered WM
(without HEPES) and put back into CO2 free conditions for 1 h (incuba-
tion with BPTES was performed as necessary). After that, 100 μl of
unbuffered WM containing 1 μM pH-Xtra probe and the stimulants
(FCCP or DMSO) were added to experimental wells and the plate was
measured on the Victor 2 plate reader at 37 °C for 60–90 min in the
TR-Fmodewith excitation/emission at 340/615 nm. Two TR-F intensity
signals weremeasured at delay times of 100 and 300 μs and ameasure-
ment window of 30 μs. The emission lifetime τ was calculated as
described for the OCR and converted in pH values [23]. The latter were
used to calculate an amount of protons extruded by cells in 1 min per
1 mg of total soluble protein (H+, mole/min⋅mg protein). Protein
concentrations were measured using BCA™ Protein Assay kit.

2.5. Intracellular O2 measurement

Developed and validated for the monitoring of O2 concentration
within the cell as large molecules [30,40–43], intracellular phosphores-
cent O2 probes were further improved and currently represent cell-
penetrating small molecule [44–46] and nano-particle [22,47] based
structures. The probes allow for precise quantitative real-timemonitor-
ing of cell oxygenation levels at different conditions [48,49], and of rapid
transient changes in respiration upon cell treatment [26,42]. Described
in detail and validated in [22,47], MitoXpress®-Intra NanO2 probe rep-
resents a non-toxic convenient sensor, working with high throughput,
reproducibility and efficiency in plate reader and fluorescence micro-
scope platforms, as reviewed in [27,28]. Most recently, the probe was
effectively applied for hypoxia research [34,48].

In this study, cells were incubated in themedium containing 10 μg/ml
NanO2 probe for 18–24 h at 37 °C [22], then washed with DMEM
supplemented with 1% HS (supplied with NGF for PC12 cells) and with
WM (150 μl). Then WM were replaced by a fresh aliquot (200 μl) and
the cells were incubated at 37 °C (BPTES was added when needed).
Two hours later WM were replaced with a fresh aliquot (200 μl), and
plate was transferred to Victor 2 reader TR-F reader placed at 20.9% O2

or in a hypoxia chamber (Coy Laboratory Products, Grass Lake, MI)
pre-set to 4.5% O2. Monitoring of iO2 was performed similarly to OCR
measurements at 37 °C with 340 nm excitation and 642 nm emission
spectra. The O2 concentrations and cell deoxygenation rates were calcu-
lated as described [22].

Briefly, the plate was incubated in the reader for 10 min and then
monitored for ~20 min to achieve steady-state oxygenation of resting
cells, then the plate was quickly withdrawn from the reader, 1 μM
FCCP was added to the cells (20 μl of 10× stock solution) and monitor-
ing was resumed for further 30 min.

2.6. Monitoring of ΔΨp, ΔΨm and mitochondrial Ca2+

PC12 cell at were seeded at 2.5 × 104 cells per cm2 and differentiated
for 4–5 dayswithNGF on glass bottommini-dishes (MatTek) coatedwith
a mixture of collagen IV (0.007%) and poly-D-lysine (0.003%). Transfec-
tion with mitoCase12 plasmid was carried out using Lipofectamine
2000 and Opti-MEM Imedium (Invitrogen), as per manufacturer proce-
dure. Loading with fluorescent sensors TMRM (20 nM) and PMPI
(1:200) was performed for 30 min in Opti-MEM I medium with Ca2+

concentration adjusted to 2 mM. During the measurements, TMRM
and PMPI were maintained in solution at 20 nM and 1:1000 dilution,
respectively.

Confocal live cell fluorescence imaging was conducted on Olympus
FV1000 confocal laser scanning microscope with controlled CO2,
humidity and temperature. The mitoCase12 probe was excited at
488 nm (2.5–5% of maximal laser power) with emission collected at
500–540 nm. TMRM and PMPI probes were excited at 543 nm (2.5%
and 1%, respectively) collecting emission with a 555–600 nm filter.
The probes were mostly used individually, although in some ex-
periments TMRM and mitoCase12 were used simultaneously. Since
mitoCase12 can decrease the TMRM staining (when expressed at very
high levels), only the cells with unaffected TMRM signal were selected
for analysis. Acquisition of each spectral signal was done in sequential
laser mode with emission gates adjusted to avoid overlaps.

ΔΨm and ΔΨp were depolarised with 1 mM FCCP and 100 mMKCl
[42], respectively. In all experiments the differential interference con-
trast and fluorescence images were collected kinetically with a 60× oil
immersion objective in two planes using 0.5 μm step and 20–30 s
intervals. The resulting z-stacked images were analysed using FV1000
Viewer software (Olympus), Excel, Adobe Photoshop and Illustrator.

2.7. Protein isolation and Western blot analysis

The cells were differentiated on 12-well plate and pre-incubated for
2 h in different WM. The media were replaced with the fresh aliquots
(2 ml per well), and the cells were incubated at 37 °C for 4 h in 6 WM
(see Results section) with or without 1 μM FCCP. Whole cell lysate pro-
teins were prepared as described [49]. Briefly, cells were washed twice
with PBS containing phosphatase inhibitors and lysed for 15 min on ice
with lysis buffer, containing 150 mM NaCl, 1 mM EDTA, 1% IGEPAL®
CA-630, 50 mM HEPES (pH = 7.5) and protease inhibitors (Roche,
Ireland). After lysate clarification by centrifugation for 10 min at
16,000 g and 4 °C, protein concentrations were measured using
BCA™ Protein Assay kit and normalised. Proteins were separated by
8% and 4–20% polyacrylamide gel electrophoresis (GenScript, NJ and
Bio-Rad, CA), transferred onto a 0.2 μmImmobilon™-P PVDFmembrane
(Sigma) using wet mini-transfer system Hoefer™ TE 22 (Hoefer, CA)
and probed with antibodies against PARP (Poly(ADP-ribose) polymer-
ase), LC3A/B, phospho-p44/42 Erk, phospho-AMPKα, phospho-Akt,
phospho-mTOR (all from Cell Signalling, catalogue numbers, respective-
ly: 9542, 9101, 4108, 2535, 4060, 2971) and α-tubulin (Sigma, T5168).
Incubations with antibodies were performed in 5% fat-free milk or 5%
BSA in TBST overnight at 4 °C (primary) and 2 h at room temperature
(secondary). Blots were visualised and analysed with HRP-conjugated
secondary antibodies (Sigma) and ECL prime reagents using the LAS-
3000 Imager (FujiFilm, Japan) and Image Reader LAS-3000 2.2 software.
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Quantitative image analysis was performed with ImageJ program using
α-tubulin signals for normalisation. Images were processed with Picasa,
Photoshop, and Illustrator programs.

To normalise the results of metabolic assays for total protein content
in different samples, proteins were prepared as above and measured
using BCA™ Protein Assay kit.

2.8. ATP measurement

Analysis of total cellular ATP was performed using CellTiter-Glo®
assay, following the manufacturer's protocol. Briefly, cells were seeded
and treated as described in Sections 2.2 and 3 and were lysed with
CellTiterGlo® reagent. After intensive shaking for 2 min, the samples
were transferred into wells of white 96-well plates (Greiner Bio One)
and read on a Victor 2 (PerkinElmer) plate reader under standard lumi-
nescence settings.

2.9. Statistics

Statistical analysis was performed using the results of 3–6 indepen-
dent experiments. Confidence levels of 0.01 and 0.001 were deemed as
statistically significant. To ensure data accuracy and fidelity, the major-
ity of the experiments were performed in 3–8 replicates.

The levels of OCR, ECA, iO2 and ATP were normalised to the total pro-
tein content in the samples. ATP levelswere normalised to ATP content in
untreated cells in Glc/Pyr/Gln medium, which was defined as 1 a.u. Fluo-
rescence intensities on the confocal images (PMPI, TMRM, mitoCase12)
were examined in kinetic mode analysing 5–20 cells in 3 independent
experiments. The differences between the mean values were evaluated
using two-tailed Student t-test (equality of variances in the samples
was first estimated using Levene's test). The differences in iO2, TMRM,
mitoCa2+ (in Δ%) were evaluated using Mann–Whitney U-test.

3. Results

3.1. Effect of metabolic substrate composition on the respiratory response
to FCCP

A highly metabolically active cell line with equally well developed
glycolytic and mitochondrial ATP fluxes [29], PC12 cells are commonly
used for studies on bioenergetics of cancer and neuronal cells [50–52].
Mitochondrial uncoupling with FCCP continuously increases respira-
tion, and activates glycolysis in PC12 cells supplied with Glc, Pyr and
Gln [42]. Here, we pre-incubated differentiated PC12 cells in 12 different
workingmedia (WM, Table 1) for 2 h to achievemetabolic ‘adaptation’,
and then treated them with 1 μM FCCP.

Cell oxygenation is inversely related to their respiratory activity, and
changes in intracellular O2 (iO2) report on themagnitude of the respira-
tory response to stimulation [29,30]. We found that the highest basal
OCR was provided by Gln combined with Pyr (with or without Gal).
Consuming O2 at a rate of ~5 nM/min per 1 mg of total soluble protein,
the cellmonolayermaintained iO2 at 95 ± 5 μM(Fig. 1A). Cells utilising
Gln plus Glc/Pyr or Gal also exhibited high respiratory activity (over
4 nM/min per 1 mg of protein) and were strongly deoxygenated. The
other WM were scored according to cells respiration as follows:
Gln N Pyr, Pyr/Gal, Glc/Gln ≫ Gal, no substrates. In WM containing
Pyr or Gln, addition of Glc decreased respiration.

Upon addition of FCCP we observed four types of respiratory re-
sponses, classified according to the changes in cell oxygenation ΔiO2 =
iO2(t) − iO2(0), where iO2(0) and iO2(t) are the O2 concentrations in the
cell monolayer before and at any time point after FCCP addition, respec-
tively. Changes in iO2 agreed with the data on OCR (Table 2), calculated
for the initial linear phase of the experiments (Supplemental Fig. S2).

The first type was characteristic for the cells supplied with Gln com-
bined with either Glc or Pyr (Fig. 1B, C). Cell deoxygenation was deep
and continuous (over 1 h), suggesting steady increase in mitochondrial
respiration. Equally large ΔiO2 were observed in the cells exhibiting
high (Gal/Pyr/Gln, Pyr/Gln) and moderate (Glc/Gln, Glc/Pyr/Gln) OCR
at rest.

The second type, a significant inhibition of respiration characterised
by progressive reoxygenation,was seen in the cells suppliedwith Pyr or
Gln (with or without Gal). Initial minor transient decrease in iO2 could
be observed. A decrease in respiration in the cells supplied with Gln or
Gal/Gln was particularly surprising, since ‘resting’ OCR in these cells
was high (Fig. 1A).

The third type, amoderate transient drop in iO2, was observed in the
cells supplied with Glc/Pyr. After partial restoration, iO2 remained
slightly decreased for up to 1 h, indicating that OCR was continuously
increased.

The forth type, no changes or slow progressive increase in iO2, was
observed in the cells supplied with Glc and in the low-respiring cells
deprived of all substrates or supplied with Gal.

Strong decrease in respiration observed in the cells supplied with
Gal/Gln or Gln suggested possible inhibition of cellular function and
cell death. Using microscopy and Western blotting analysis, we found
that treatment with FCCP for 4 h caused partial detachment of cell
from collagen-coated surface and active apoptosis, as indicated by
PARP degradation [53] (Fig. 1D). LC3 I/II ratio [54] was decreased in all
cells treated with FCCP, pointing to an activation of autophagy.

3.2. Metabolic substrates regulate interplay between respiration and other
bioenergetic parameters and pathways upon uncoupling with FCCP

To explain the striking differences in the respiratory responses to
FCCP, we analysed effects ofmetabolic substrates on a number of bioen-
ergetic parameters, such as ATP levels, glycolytic activity, ΔΨm and
mitochondrial Ca2+.

We did not find significant differences in resting ATP levels, except
for the cells deprived of all substrates or supplied with Gal alone
(Fig. 2A). Only a minor decrease in ATP levels was observed within
60 min after the addition of FCCP to the cells supplemented with Glc
in any combination (Fig. 2B). In contrast, without glycolytic ATP flux,
cellular ATP decreased dramatically within 10 min after the addition
of FCCP. Detectable by L-ECA analysis only in the cells supplied with
Glc, glycolytic activity was inversely related to OCR (Figs. 2C and 1A).
Upon uncoupling, L-ECA markedly increased in the samples containing
Glc/Gln or Glc/Pyr/Gln, which produced a strong continuous respiratory
response to FCCP (Fig. 1B, C).

No correlation between ATP levels and ΔiO2 was seen upon
uncoupling (10 min: r = 0.13, p = 0.28; 60 min: r = 0.08, p = 0.46),
suggesting that ATP does not regulate the respiratory response to
FCCP. Indeed, equally strong responses were observed in the cells with
the highest (Glc/Gln) and the lowest (Pyr/Gln) ATP levels, while in the
presence of Glc (high ATP) or Gal alone (low ATP) the responses were
very low.

Likewise, changes in respiration did not depend on ΔΨm and mito-
chondrial Ca2+ levels, which were probed by TMRM and mitoCase12
[26] staining, respectively. Using confocal live cell imaging, we observed
similar levels in ΔΨm polarisation in all resting cells, except for the
cells suppliedwith only Gal or deprived of all substrates (Fig. 3A).With-
in 2–5 min after FCCP addition,ΔΨmandmitochondrial Ca2+ drastical-
ly decreased in a similarmanner (Fig. 3B and C, Supplemental Table S1).
Plasma membrane potential (ΔΨp), probed by PMPI, was not affected
by FCCP. It should be noted, that in cells deprived of substrates, the
ΔΨp was substantially depolarised at rest (Supplemental Fig. S3).

Substantial changes in iO2 and perturbed ATP and ion turnover could
affect major pathways involved in hypoxia signalling and energy main-
tenance.We performedWestern blotting analysis of AMPKα and Erk1/2
(p44/p42) phosphorylation in the samples treated with FCCP for 4 h
(Fig. 3D) and found that Erk pathway was strongly affected by mito-
chondrial uncoupling. The levels of p42 Erk (Tyr204)/p44 Erk
(Thr202), Akt (Ser473) and mTOR (Ser2448) phosphorylation were
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significantly decreased in the cells supplied with Glc (particularly with
Glc/Pyr/Gln and Glc/Gln), and increased in the cells fed with Gal/Pyr/
Gln (except for m-TOR). AMPKα phosphorylation in all samples treated
with FCCP was slightly lower than in non-treated controls. In the cells
supplied with Gal/Gln, phosphorylation of the aforementioned proteins
was not observed.

3.3. Role of glutaminolysis in the respiratory response to FCCP

In agreement with a dominating role of Gln in bioenergetics of can-
cer cells [18,19], we observed the most prominent respiratory response
to FCCP only in the cells suppliedwith Gln. To further address the role of
glutaminolysis in the cellular response to uncoupling, we used BPTES, a
specific inhibitor of kidney-type glutaminase (GLS1). An inhibition of
Table 2
Changes in OCR upon mitochondrial uncoupling with FCCP.

WM No addition Pyr Gln Pyr/Gln

Glc 5 11 51 48
Gal −63a −16 −25 27
No sugar N/Aa −59 −96 23

Data shown in Δ%.
a OCR at rest is very low.
GLS1 was achieved by incubation of the cells with 10 μM BPTES for
1 h prior to and during the experiments. This concentration was
shown to inhibit glutaminolysis by 80% in solubilised extracts of rat
kidney liver mitochondria [24].

BPTESwas seen to have nomajor effect on cellular ATP in resting cells
(Table 3), demonstrating that residual GLS1 activity maintained suffi-
cient energy levels in the cells deprived of Glc. Uponuncoupling, GLS1 in-
hibition leads to a faster decrease in ATP in these cells (see also Fig. 2B),
highlighting the importance of glutaminolysis for energy balance.

In the WM containing Gln, treatment with BPTES only slightly af-
fected ‘resting’ levels of OCR and iO2 (Fig. 4A and C, Table 4). Upon
uncoupling the effect of BPTES was seen clearly: the response of the
first type was almost completely abolished (see also Fig. 1). Moreover,
in the cells supplied with Gal/Pyr/Gln or Pyr/Gln (Fig. 4B, C), re-
oxygenation was observed, which was similar to the second type
response in WM containing Gal/Pyr or Pyr, respectively (Fig. 1C). In
themediawithout Gln, respirationwasnot affected byBPTES treatment,
demonstrating high specificity of the drug.

Analysing the effect of GLS1 inhibition on the rate of glycolysis in the
media supplemented with Glc, we found that treatment with BPTES
increased L-ECA rate in resting cells supplied with Glc/Gln/Pyr and
Glc/Gln (2.6-fold and 1.5-fold, respectively), suggesting significant acti-
vation of glycolysis (Fig. 4D). L-ECA rate in uncoupled cells was almost
unaffected.
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3.4. Cell specificity of the responses to FCCP

In human colon cancerHCT116 cells, a commonmodel for studies on
cancer cell metabolism, we anticipated similar to PC12, Gln-dependent
respiratory responses to FCCP. In contrary, in non-cancer MEFs,
immortalised with SV40 large T antigen [55,56], glutaminolysis can be
strongly activated by Myc oncogene [16], suggesting relatively low
rate of Gln utilisation in resting MEFs. Based on these observations we
expected a specific pattern of the response to uncoupling in MEFs, dis-
tinct from that observed in cancer cells.

Indeed, HCT116 cells exhibited high overall resemblance with PC12
cells in OCR and oxygenation levels at rest and upon uncoupling (Fig. 5).
The most pronounced decrease in iO2 upon FCCP treatment was
observed in the cells supplied with Gln with either Pyr or Glc (with or
without Gal), however in the presence of Glc this effect was less prom-
inent than in PC12 cells (Fig. 5A, C). Akin to PC12 cells, HCT116 cells
could not withstand uncoupling when supplied with Gln or Gal/Gln;
although iO2 levels were low at rest, they noticeably increased upon
addition of FCCP, suggesting a decrease in OCR. Treatment with BPTES
caused a large reduction of the responses in all cells supplied with
Gln and normally strongly increasing respiration upon uncoupling.
However, HCT116 exhibited lower sensitivity to BPTES than PC12 cells.

In MEFs, the response to uncoupling was generally more rapid and
transient (Fig. 5B, C). Although Gln remained important for generating
pronounced responses to FCCP, they were quite specific and could be
classified as: 1) type one—rapid increase in respiration, followed by par-
tial or complete restoration of ‘resting’ iO2 levels (Gln in all combina-
tions with Glc and Pyr, as well as Glc/Pyr); 2) type two—decrease in
respiration and cell reoxygenation (no substrates, Gln and Pyr alone or
in combination with Gal); and 3) type three—no significant changes in
respiration and iO2 (Glc or Gal alone). Unlike PC12 and HCT116 cells,
the most prominent response to FCCP was observed in MEFs supplied
with Glc/Pyr/Gln (down to 20 μM iO2), andGLS1 inhibition only partial-
ly decreased the response to uncoupling. Moreover, MEFs deprived of
Gln and supplied with Glc/Pyr were capable of generating continuous
positive response to FCCP (Fig. 5C).

4. Discussion

The contribution of a metabolic substrate to mitochondrial respira-
tion is determined by its transport across cell membranes and efficiency
of utilisation by corresponding pathway(s).

Cells generate ATP mainly through glycolysis and OxPhos. The ab-
sence of Glc can be compensated by increased OxPhos flux and mito-
chondrial respiration, provided that Pyr and Gln are available. Gln is a
key metabolite required for energy production and anaplerotic reac-
tions in cancer cells [16]. In many cell types it is efficiently utilised
through glutaminolysis, giving rise to over 50% of cellular ATP and
maintaining respiration at high levels [20].

In agreement with this, we observed highest OCRs in the cells
supplied with Gln and Gln/Pyr (Fig. 1A). In all media containing Pyr or
Gln, respiration was decreased in the presence of Glc because ATP pro-
duction was partially shifted from OxPhos to glycolysis. Without Pyr or
Gln added to the medium, respiration was supported by Glc oxidation.

SustainedH+ transport across the innermitochondrialmembrane by
FCCP rapidly and sustainably dissipates the ΔΨm and ΔpH [5]. In these
conditions ATP is no longer produced by the mitochondria; instead,
mitochondrial complex V consumes ATP working in reversed mode on
the restoration of ΔpH. As a result, glycolysis must be activated to com-
pensate for the loss of OxPhos flux and to supply complex V with ATP.
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Analysis of total ATP revealed striking differences in the levels of en-
ergy stress experienced by the cells upon uncoupling.When deprived of
Glc, PC12 cells rapidly lost ATP (Fig. 2), while in the presence of Glc ATP
levels remained almost unchanged. This although expected, demon-
strates that ‘respiratory performance’ of uncoupled mitochondria, sur-
prisingly, does not depend on cellular ATP, which is often used as a
marker of cell viability. Indeed, no correlation was found between ATP
levels and the magnitude of the respiratory responses to FCCP, and
Table 3
Effect of GLS1 inhibition on ATP levels in the cells at rest and upon uncoupling.

WM and treatment Glc/Pyr/Gln Glc/Pyr Glc/Gln

Resting 0.99 1.04 1.04
Uncoupled 1.07 1.11 1.04

Data are shown as BPTES(+)/BPTES(−) ratio in arbitrary units (a.u.).
even after dramatic decreases in ATP (by up to 85% within 10 min)
cells supplied with Gln plus Pyr were capable of maintaining a high
respiration rate for more than 1 h.

The most pronounced responses were observed in WM containing
Gln combinedwith Glc or Pyr, which agrees with ‘Gln addiction’ of can-
cer cells (Figs. 1, 4, 5, Supplemental Fig. S2). However, considering the
dominant role of glutaminolysis in cancer metabolism, a decrease in
respiration upon uncoupling of the cells supplied with Gln or Gal/Gln
Glc Gal/Pyr/Gln Gal/Gln Pyr/Gln Gln

1.02 1.06 0.89 0.95 0.88
1.14 0.78 0.56 0.37 0.43
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was unexpected. Although ‘resting’O2 consumption rate in these cells is
very high, FCCP not only inhibits mitochondrial function, but also
induces apoptosis (Fig. 1D).

To explain this phenomenon, we reviewed Gln transport and
utilisation pathways. As shown schematically (Supplemental Fig. S4),
Gln is transported into the cytosol via a Gln transporter SN1 and
amino acid transporters ASCT1/ASCT2, all of which involve Na2+ co-
transport and may potentially be affected by the ΔΨp depolarisation.
Since upon uncoupling no effect on the ΔΨp was seen, non-specific
effects of FCCP on Gln transport across plasma membrane can be ruled
out (Supplemental Fig. S3).

Mitochondrial transport of Gln and its derivatives is versatile. Since
differentiated PC12 cells exhibit similarities with neuronal cells, trans-
port via mitochondrial glutamine carrier, typical for brain tissues [57]
is particularly relevant (Fig. 6). Although electroneutral, Gln uptake by
the mitochondria in neurons depends on the ΔpH, and therefore can
be suppressed by inhibiting (rotenone) and uncoupling (FCCP) themito-
chondria [58]. Gln can also be converted by cytosolic glutaminase into
glutamate (Glu), which then enters the mitochondria through either
Glu carriers or Glu–Asp antiporters, the latter are a part of the malate–
aspartate (Mal–Asp) shuttle [59]. Shuttle activity is directed to the trans-
location of the reducing equivalents (NADH) from the cytosol, where
they are produced mainly through glycolysis and Pyr decarboxylation,
Table 4
Effect of GLS1 inhibition on OCR in the cells at rest and upon uncoupling.

WM and treatment Glc/Gln/Pyr Glc/Gln Glc/Pyr Glc Gal/Gln/P

Resting 0.97 0.96 1 0.88 0.93
Uncoupled 0.56 0.22 1 1 0.12

Data are shown as BPTES(+)/BPTES(−) ratio in arbitrary units (a.u.).
into themitochondria across themitochondrial membrane, which is im-
permeable for NADH. In Glc/Pyr-deprived cells, transport of the cytosolic
Gln derivatives through the Mal–Asp shuttle is inhibited due to a defi-
ciency in cytosolic NADH. Moreover, Glu–Asp antiporters are electro-
genic and require electrochemical potential across the mitochondrial
membrane [60], which is perturbed in uncoupled cells. In turn, Glu car-
riers [61] translocate Glu into the mitochondrial matrix in a symport
with H+, and therefore this pathway is also inhibited upon dissipation
of ΔpH with FCCP. Taken together, without Glc and Pyr supply, when
the Mal–Asp shuttle activity is decreased, uncoupling can partially in-
activate mitochondrial Gln and Glu carriers and decrease respiration,
as demonstrated in our experiments.

FCCP can also affect the pathways recruiting Glc and Pyr in OxPhos.
Transported into the cell through GLUT-1 and GLUT-4, Glc is converted
to Pyr, which can be also delivered into the cell via the H+-linked
monocarboxylate transporter (MCT). Since in our experiments FCCP
did not affect theΔΨp, transport of Glc and Pyr across the plasmamem-
brane should not change much. From the cytosol Pyr enters the mito-
chondria by means of H+-coupled symport through the mitochondrial
pyruvate carriers (MPC) (Fig. 6) [62,63], and is converted to acetyl-
CoA and α-ketoglutarate (α-KG) by pyruvate dehydrogenase and
pyruvate carboxylase, respectively. The rate of Pyr transport into the
mitochondria through MPC is PMF-dependent and decreases upon its
yr Gal/Gln Gal/Pyr Gal Gln/Pyr Gln Pyr −

0.66 1.04 0.93 0.95 0.86 1.09 N/A
0.47 0.97 0.90 0.11 0.2 0.94 N/A
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dissipation [63], which occurs in all themedia upon uncoupling (Fig. 3).
This can explain why no significant increase in mitochondrial respira-
tion is observed upon addition of FCCP to the cells supplied only with
Glc, Pyr or Glc/Pyr. A detailed quantitative comparative analysis of activ-
ity of the transporters involved in Gln and Pyr uptake in intact and
uncoupled mitochondria would be very interesting.

However, other factors can also contribute to the ‘non-classical’ re-
spiratory responses to FCCP in the cells supplied with Glc and deprived
of Gln [64–66]. It has been shown that in the presence of Gln, Glc trans-
port can be activated by α-KG (produced through glutaminolysis
and the Krebs cycle), which causes transcriptional repression of the
thioredoxin-interacting protein (TXNIP) through interaction with
MondoA protein. Upon Gln deprivation or inhibition of glutaminolysis,
the levels of α-KG in the cells are decreased, and therefore MondoA
activates TXNIP expression, leading to a decrease in Glc uptake. The
mechanism is based on Glc-dependent nuclear accumulation of
MondoA and formation of MondoA:MIX (Max-like protein X) complex,
which is known as transcriptional activator of TXNIP.

Additionally, a dramatic decrease in mitochondrial Ca2+ upon
uncoupling (Fig. 3) can lead to the partial inhibition of the Krebs cycle
enzymes pyruvate, isocitrate and α-ketoglutarate dehydrogenases
[67], thus decreasing the amount of the reducing equivalents fed into
the electron transport chain and ultimately down-regulating ATP pro-
duction. Cell toxicity of FCCP, related to its ability to interact with mito-
chondrial thiols and aminothiols (cysteine, glutathione (GSH)) [68] and
to reduce expression of genes associatedwith cell stress protection [69]
can also be differently modulated by metabolic substrates. Similarly,
substrate composition may be an important factor regulating FCCP-



 TCA
 cycle

Pyr

Pyr Glu

Glu

Glu

Gln

Gln Mal Mal

AspAsp
α-KG α-KG

H+

F0F1

H+

Acetyl-CoA

ETC

H+

H+

NADHNAD
+

ADP

ATP

  Gln
carrier

OAAOAA

Glu

  Malate-
   a-KG
antiporter

 Glu-Asp
antiporter

MPC

Na+

Ca2+

mNCX

ΔΨm

ΔpH

F
C

C
P

H+

H+

GLS

GLS

Gln
GLS

  Glu
carrier

H+

Glu

Ca2+

Fig. 6. Proposed effects of FCCP on the transport of themetabolic substrates across themitochondrial membrane and efficiency of their utilisation (a simplified scheme). Gln is transported
into themitochondria via a Gln carrier, or is converted by glutaminase (GLS) into Glu which enters the mitochondria either throughMal–Asp shuttle or Glu carrier, to give rise toα-KG in
thematrix. Pyr is transported into thematrix by themitochondrial Pyr carrier (MPC). 1 μMFCCP dissipatesΔpH and depolarisesΔΨm, thus decreasing the rates of Gln andGlu delivery to
the mitochondria.

60 A.V. Zhdanov et al. / Biochimica et Biophysica Acta 1837 (2014) 51–62
induced ROS-dependent apoptosis in cancer cells, since Gln is one of the
precursors of an antioxidant GSH [70]. FCCP has been shown to decrease
the level of GSH and activity of themitochondrial superoxide dismutase
in a number of cancer cell lines, causing an increase in ROS levels after
48 h of treatment, which was associated with cell death [71,72].

A decrease in NAD(P)H levels and ROS production (at early stages of
FCCP treatment) [73,74], changes in ATP and Ca2+ turnover—all can
mutually modulate activity of the major pathways involved in cell me-
tabolism and energy production. Upon FCCP treatment we found signif-
icant decrease in the phosphorylation of Erk p44/p42 (Thr202/Tyr204),
Akt (Ser473), AMPKα (Thr-172) and mTOR (Ser2448) in all cells fed
with Glc in combinations with Gln and Pyr (Fig. 3D). A decrease in Erk
and Akt phosphorylation was more pronounced in the cells supplied
with both Glc and Gln, capable of producing a strong respiratory re-
sponse. We cannot explain these effects, however most probably they
are ATP-independent, because ATP levels in the presence of Glc were
not affected by uncoupling. On the other hand, an increase in NAD(P)/
NAD(P)H ratio and cytosolic Ca2+, as well as a decrease in ROS produc-
tion may largely affect phosphorylation of these proteins. Surprisingly,
in cells supplied with Gal/Gln/Pyr we observed a decrease in AMPKα
phosphorylation, which is known to increase with an elevation of
AMP/ATP ratio, ADP and ROS levels [75,76]. We believe that, since in
these cells FCCP reduced both ATP and ROS, a decrease in the latter
might have compensated for a decrease in the former. In contrast,
Erk and particularly Akt phosphorylation in the medium containing
Gal/Gln/Pyr was increased. We propose that such a strong elevation of
phospho-Akt suggests an attempt to increase glycolysis (though not
feasible without Glc), which is regulated by Akt in cancer cells [77]. In
the cells supplied with Gal/Gln and treated with FCCP, protein phos-
phorylation was barely detectable, which can be related to a massive
increase of apoptosis (Fig. 1D). Interplay between metabolic substrates,
activity of themajor pathways and respiration upon uncoupling require
further investigation.

Overall, our results demonstrate that for significant response to
uncoupling to be achieved both Gln and Pyr (including Pyr produced
from Glc) are required, as FCCP can strongly decrease influx of these
metabolites into the mitochondrial matrix.

In agreement with the concept of ‘shared’ contribution of the
OxPhos and glycolysis in the maintenance of cellular ATP pool, L-ECA
analysis demonstrated that glycolytic activity was inversely related to
OCR. Thus, the rate of lactate extrusion from the cells supplied with
Glc/Gln/Pyr was the lowest, since OxPhos in these cells was the highest
among the cells grown in the presence of Glc (Fig. 2). Upon uncoupling,
the most prominent increase in glycolysis is observed in the cells sup-
pliedwith Gln,whichmay be associatedwith an increased Glc transport
in these cells (through MondoA pathway). On the other hand, these
cells exhibited strong sustained response to FCCP, which may require
additional ATP production through glycolysis. However, this is doubtful,
because the cells deprived of Glc with extremely low ATP levels are
able to produce even stronger respiratory responses to uncoupling
(Figs. 1, 2).

Although in the presence of Gln or Gln/Gal respiration drops upon
uncoupling, Gln metabolism is the major contributor to the response
to FCCP in both cancer cell lines (PC12 andHCT116). Thiswas confirmed
in the experiments with BPTES, which downregulates glutaminolysis
through specific inhibition of GLS1. Interestingly, in the presence of
BPTES ‘resting’ respiration was only slightly decreased, while the re-
sponse to FCCP was almost completely abolished. This suggests that
residual GLS1 activity (~20% of themaximal level [24]) is only sufficient
to maintain resting but not the maximal respiration rates. Moreover,
respiration in PC12 cells supplied with Gln and treated with BPTES
dropped below the resting levels upon uncoupling. Glycolytic activity
in resting cells supplied byGlc/Pyr/Gln or Glc/Glnwas elevated tomain-
tain ATP levels upon GLS1 inhibition (Fig. 4, Table 3). Upon FCCP treat-
ment, L-ECA increased only in the cells supplied with Glc/Gln/Pyr. This
could be credited to increased glycolysis and exogenous Pyr resulting
in overall increase in Pyr which is converted into lactate, thereby
contributing to L-ECA rate.

The respiratory responses of HCT116 cells to uncoupling were simi-
lar to that of PC12, with a smaller effect seen when GLS1 was inhibited.
The respiration decreased but not blunted like in PC12 cells. This could
be due to relatively low sensitivity of HCT116 cells to BPTES treatment
(compare Figs. 4A and 5A) due to high expression of GLS2 [78], a p53-
inducible liver type glutaminase, which is resistant to BPTES [79].

Resting and uncoupled respiration of MEFs were also substrate-
dependent. However, the responses to FCCP differed significantly from
the two cancer lines. In the optimal media (Fig. 5), FCCP induced less
sustained and pronounced increase in respiration, than in the cancer



61A.V. Zhdanov et al. / Biochimica et Biophysica Acta 1837 (2014) 51–62
cells. Although Gln remained very important for active respiration, the
contribution of Glc and Pyr to the respiratory response was more sub-
stantial than in PC12 and HCT116 cells. Illustrating this phenomenon,
the most pronounced decrease in O2 was observed in the cells supplied
with Glc/Pyr/Gln, similar to the response in PC12 and HCT116 cells
supplied with Gal/Pyr/Gln (Figs. 1B, 5A). Highlighting the decreased
contribution of glutaminolysis to the uncoupling response in these
cells, MEFs supplied with Glc/Pyr produced positive response to FCCP
(Fig. 5C). Finally, an inhibition of GLS1 caused only partial decrease in
the response to uncoupling, indicating thatMEFswere capable of gener-
ating a Gln-independent response to FCCP stimulation. However, fur-
ther comparative analysis of apoptosis, activity of the major metabolic
and signalling pathways upon mitochondrial uncoupling in cancer and
non-cancer cells is required.

Taken together, these data demonstrate that respiratory response
to FCCP and O2 levels in uncoupled cells are strongly modulated by
the availability of metabolic substrates. Although difficult to translate
directly to in vivo models, the conditions used in this work resemble
a number of common (patho)physiological conditions including:
i) reduced supply of nutrients and O2 during ischemia/stroke [80];
ii) age-related decrease in glutamine synthase activity in astrocytes
which supply neurons with Gln [81]; iii) hypoglycaemia in the patients
with liver carcinoma [82] and diabetes mellitus [83]; and iv) cancer-
associated changes in expression levels of themitochondrial uncoupling
proteins [84]. Cancer cells have altered metabolism and mitochondrial
function [18], and pharmacological uncoupling has particular relevance
to the development of drugs for cancer therapy, related tomitochondri-
al damage [71,72]. Here we show that cancer cells can be distinguished
by specific response to FCCP, which strongly depends on the supply
and utilisation of Gln and Glc. Such a specificity of the response dem-
onstrates a potential application of mitochondrial uncoupling for
substrate-dependent impairment of cancer metabolism.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.bbabio.2013.07.008.
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