Adenoviral Gene Transfer Restores Lysyl Hydroxylase Activity in Type VI Ehlers–Danlos Syndrome

Tanja Rauma,* Sanna Kumpumäki,* Richard Anderson,† Beverly L. Davidson,† Heli Ruotsalainen,‡ Raili Myllylä,‡ and Timo Hautala*§

*Department of Pharmacology and Toxicology, §Department of Internal Medicine, and ‡Department of Biochemistry, University of Oulu, Finland; †Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, U.S.A.

Type VI Ehlers–Danlos syndrome is a disease characterized by disturbed lysine hydroxylation of collagen. The disease is caused by mutations in lysyl hydroxylase 1 gene and it affects several organs including the cardiovascular system, the joint and musculoskeletal system, and the skin. The skin of type VI Ehlers–Danlos syndrome patients is hyperelastic, scars easily, and heals slowly and poorly. We hypothesized that providing functional lysyl hydroxylase 1 gene to the fibroblasts in and around wounds in these patients would improve healing. In this study we tested the feasibility of transfer of the lysyl hydroxylase 1 gene into fibroblasts derived from rats and a type VI Ehlers–Danlos syndrome patient (in vitro) and into rat skin (in vivo). We first cloned human lysyl hydroxylase 1 cDNA into a recombinant adenoaviral vector (Ad5RSV-LH). Transfection of human type VI Ehlers–Danlos syndrome fibroblasts (about 20% of normal lysyl hydroxylase 1 activity) with the vector increased lysyl hydroxylase 1 activity in these cells to near or greater levels than that of wild type, unaffected fibroblasts. The adenoviral vector successfully transfected rat fibroblasts producing both β-galactosidase and lysyl hydroxylase 1 gene activity. We next expanded our studies to a rodent model. Intradermal injections of the vector to the abdominal skin of rats produced lysyl hydroxylase 1 mRNA and elevated lysyl hydroxylase 1 activity, in vivo. These data suggest the feasibility of gene replacement therapy to modify skin wound healing in type VI Ehlers–Danlos syndrome patients. Key words: collagen/connective tissue/ inherited disease. J Invest Dermatol 116:602–605, 2001

MATERIALS AND METHODS

Cell culture Hydroxylsine-deficient human skin fibroblasts (CRL1195) (Susman et al, 1974) were obtained from the American Type Culture Collection (Manassas, VA). These cells and locally established rat and human skin fibroblasts were cultured in Dulbecco’s modified Eagle’s medium (Gibco BRL, Rockville, MD) supplemented with 10% fetal bovine serum, 28 μM ascorbate, 2 mM glutamate, 100 U per ml penicillin, and 100 μg per ml streptomycin.

Construction of adenoviruses A 3040 nucleotide (nt) BamHI-EcoRI fragment of human LH cDNA LH3A clone (Hautala et al, 1992) containing polyadenylation signal was subcloned into adenovirus shuttle...
plasmid. This shuttle plasmid and the Ad5 backbone, sub360, were cotransfected into HEK293 cells. Ad5RSV-LH was purified using conventional techniques (Jones and Shenk, 1979; Rowe et al., 1983) by the University of Iowa Gene Transfer Vector Core. Cell lysates from infected cells were evaluated for LH activity as described below. Recombinant Ad5RSV-LH was plaque-purified and concentrated using CsCl centrifugation. Ad5RSVβgal has been described in detail elsewhere (Davidson et al., 1994).

LH activity assay

5 × 10⁶ cultured human skin fibroblasts or rat skin samples (50–100 mg) were homogenized in a buffer containing NaCl 0.2 M, glycine 0.1 M, Triton X-100 0.1%, Tris-HCl (pH 7.5) 0.02 M at 4°C and centrifuged at 12,000 g for 10 min. A 50 µl fraction of soluble protein of cell lysates or tissue samples was mixed with collagenase peptide substrate [¹⁴C]lysine-labeled protocollagen prepared in cultures of tendon cells (120,000 cpm) or nonradioactive GLKGEPGRKGEKG-peptide in final concentration of 0.5 µg/ml and brought up to 1 ml volume with reaction buffer [Tris-HCl (pH 7.8) 50 mM, bovine serum albumin 1 mg per ml, catalase 0.1 mg per ml, dithiothreitol 0.1 mM, ascorbate 1 mM, FeSO₄ 0.05 mM, 2-oxo-glutarate 0.5 mM]. The mixture was incubated for 30 min at 37°C and then for 5 min at 95°C (Kivirikko and Myllyla, 1982). A fraction of reaction mixture was hydrolyzed with 6 M HCl and analyzed for amino acid composition using Applied Biosystems 421 Amino Acid Analyzer. In experiments with [¹⁴C]proteins/peptide substrates, the amino acid analyzer was connected to a fraction collector and fractions corresponding to lysine and hydroxylysine were measured for radioactivity. The protein concentration in each sample was determined (Bio-Rad Laboratories, Hercules, CA) and LH activity is expressed as percentage of hydroxylated lysine residues normalized for sample protein concentration.

Detection of mRNAs for LH

Total RNA from cultured cells or tissue samples was extracted using guanidium thiocyanate followed by CsCl gradient centrifugation. RNA was treated with DNase (Pharmacia Biotech) for 1 h in order to remove contaminating DNA, after which 1 µg of RNA was reverse transcribed according to the manufacturer's instructions (First-Strand cDNA Synthesis Kit, Pharmacia Biotech). LH sequences were amplified using oligonucleotide primers 5’-GGCATTTGGGATGAGCTCT- and 5’-GGTTGGTGTCAGGACATGGAAC- (ATGAAC). This primer sequence is identical in rat and human cDNA (Kivirikko and Myllyla, 1982). A fraction of reaction mixture was hydrolyzed with 6 M HCl and analyzed for amino acid composition using Applied Biosystems 421 Amino Acid Analyzer. In experiments with [¹⁴C]-proteins/peptide substrates, the amino acid analyzer was connected to a fraction collector and fractions corresponding to lysine and hydroxylysine were measured for radioactivity. The protein concentration in each sample was determined (Bio-Rad Laboratories, Hercules, CA) and LH activity is expressed as percentage of hydroxylated lysine residues normalized for sample protein concentration.

Virus injection into rat skin

Sprague-Dawley rats were anesthetized with intraperitoneal injection of fentanyl citrate 0.315 mg per ml, 0.1% hydroxypropyl methylcellulose, 0.1% nitrofurazone. Skin biopsies were weighed and cut in small pieces, and the tissues were sectioned and analyzed with a microscope for β-galactosidase expression.

RESULTS

Correction of LH activity in vitro

We first demonstrated that the recombinant adenovirus carrying human LH cDNA (Ad5RSV-LH) corrects the LH activity in EDS VI skin fibroblast cultures. Figure 1 shows that cells transfected with the control virus produced 0.4% ± 0.2% lysine hydroxylation (10%–15% of normal skin fibroblasts), which equals previously reported LH activity levels (Sussman et al., 1974). The fibroblasts transfected with 50 pfu per cell Ad5RSV-LH produced 2.3% ± 0.1% hydroxylation (85% of normal skin fibroblasts), and 100 pfu per cell further elevated the hydroxylation level to 3.4% ± 0.2% (128% of normal skin fibroblasts). The LH activities shown in Fig 1 were obtained using [¹⁴C]lysine-labeled protocollagen as a substrate, explaining the low level of lysine hydroxylation. This is due to the fact that not all lysine residues of type I collagen can be hydroxylated by LH. The hydroxylation rate analyzed with collagenous peptide substrate optimal for LH activity was significantly higher (3.7% for control virus, 18.6% for 50 pfu per cell, and 24.0% for 100 pfu per cell Ad5RSV-LH). The data demonstrate that the Ad5RSV-LH significantly increased the LH activity in vitro in EDS VI skin fibroblast cultures.

Detection of LH mRNA

We incubated cultured rat skin fibroblasts with Ad5RSV-LH and demonstrated human LH mRNA in cell lysates 48 h later using PCR as described in Materials and Methods. Our protocol amplified a 661 nt band from both rat and human sequences. The two species were distinguished with a unique HindIII restriction site; the rat sequence was cut into 506 and 155 fragments whereas the human sequence was undigested. Figure 2 (lane A) demonstrates that the 661 nt band for human LH mRNA dominates in Ad5RSV-LH transfected rat skin fibroblast cultures. The 661 nt band is clearly more intense than the 506 nt band, suggesting strong human LH mRNA expression from the gene transferred with Ad5RSV-LH. Control cells that received equal amounts of Ad5RSVβgal showed no β-galactosidase activity.
Figure 2. Detection of LH mRNA. Cultured rat skin fibroblasts were transfected with 50 pfu per cell of Ad5RSV-LH (lane A) or Ad5RSVβgal (lane B) and analyzed 48 h later. A 661 nt fragment of human and rat LH was amplified from cDNA template as described in Materials and Methods. HindIII digestion cuts the rat sequence into 155 and 506 nt fragments whereas the 661 nt human sequence amplification product remains undigested. On lane A, the 661 nt band for human LH mRNA is significantly stronger than the 506 nt product for rat sequences, demonstrating strong expression from Ad5RSV-LH. Rat skin samples injected with Ad5RSV-LH (lanes C and D) demonstrate human LH mRNA (661 nt fragment) and a very faint 506 nt band for rat sequences. Several amplification reactions were pooled in order to demonstrate the 506 nt band (lanes E and F) in control samples that received Ad5RSVβgal. The arrows indicate positions of the 661, 506, or 155 nt markers.

Figure 3. Adenoviral β-galactosidase gene transfer in rat skin. Ad5RSVβgal (5 × 10⁸ pfu in 50 μl volume) was injected into rat abdominal skin in order to demonstrate adenoviral gene transfer. Tissue samples were stained for β-galactosidase expression 48 h later.

Rat skin samples were analyzed for LH mRNA after Ad5RSV-LH or Ad5RSVβgal injection. Lanes C and D in Fig 2 show a 661 nt band for human and a very faint 506 nt band for rat LH mRNA after Ad5RSV-LH injection. Products of several amplifications were pooled to demonstrate the rat LH mRNA in control (Ad5RSVβgal) skin samples (lanes E and F). The data clearly demonstrate that Ad5RSV-LH gene transfer produces specific human LH expression in vivo. The amplification protocol, however, was not optimized for quantitative analysis.

Adenoviral β-galactosidase gene transfer in rat skin In order to demonstrate the recombinant adenovirus gene transfer into rat skin, we injected 5 × 10⁸ pfu of Ad5RSVβgal into abdominal skin and the skin samples were stained for β-galactosidase expression 48 h later. The skin sections that received Ad5RSVβgal had blue nuclei demonstrating successful adenoviral gene transfer. Figure 3 shows typical nuclear intensively blue β-galactosidase staining.

LH activity in rat skin We injected 5 × 10⁸ pfu of Ad5RSV-LH in 50 μl volume into the abdominal skin of healthy Sprague-Dawley rats. The first rats were analyzed immediately for basal LH activity using collagenous peptide substrate and normalized for protein concentration in the tissue sample. The hydroxylysine content in skin samples was not significantly different between the Ad5RSV-LH and control virus groups on day 14 (p < 0.05); all other time points show no statistically significant difference. There is no significant difference in lysine hydroxylation on day 14 compared with the initial value on day 0.

Table I. Skin amino acid composition was analyzed 0, 7, 14, or 28 d after Ad5RSV-LH or Ad5RSVβgal gene transfer

<table>
<thead>
<tr>
<th>Day</th>
<th>Ad5RSV-LH</th>
<th>Ad5RSVβgal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>7.90 ± 0.77</td>
<td>4.70 ± 0.14</td>
</tr>
<tr>
<td>7</td>
<td>5.20 ± 0.71</td>
<td>4.60 ± 1.13</td>
</tr>
<tr>
<td>14</td>
<td>6.98 ± 1.52</td>
<td>6.25 ± 0.21</td>
</tr>
<tr>
<td>28</td>
<td>4.80 ± 2.26</td>
<td>6.75 ± 0.21</td>
</tr>
</tbody>
</table>

*The table shows the number of hydroxylysine residues per 1000 amino acids ± SD. Amino acid analysis was repeated at least three times in each condition. Statistical difference is seen between the LH and control virus groups on day 14 (p < 0.05); all other time points show no statistically significant difference. There is no significant difference in lysine hydroxylation on day 14 compared with the initial value on day 0.

Gene transfer. Figure 3 shows typical nuclear intensively blue β-galactosidase staining.

LH activity in rat skin We injected 5 × 10⁸ pfu of Ad5RSV-LH in 50 μl volume into the abdominal skin of healthy Sprague-Dawley rats. The first rats were analyzed immediately for basal LH activity using collagenous peptide substrate and normalized for protein concentration in the tissue sample. The hydroxylysine content in skin samples was not significantly increased after the gene transfer (Table I) demonstrating that endogenous LH activity is sufficient to produce fully hydroxylated skin collagen.
DISCUSSION

The most common mutation causing EDS VI is a large duplication in the LH gene caused by homologous recombination between Alu sequences in the introns 9 and 16 (Hautala et al, 1993; Pousi et al, 1994; Heikkinen et al, 1997). This duplication rearrangement is estimated to account for 19% of the diseased LH alleles and it is also found in the patient of this study (Pousi et al, 1994). The basal LH activity in the skin fibroblasts of the patient is about 20% compared to a healthy control individual (Sussman et al, 1974). AdiRSV-LH gene transfer elevates LH activity up to the levels found in normal skin fibroblasts. It is probable that restoration of the LH function leads to correction of mechanical properties of collagen that may correlate with the severity of the disease symptoms in EDS VI.

There is no genetically defective animal model available for LH deficiency. This prevents us from addressing the question of the real biologic effect on collagen function in LH-deficient tissues in vivo. AdiRSV-LH gene transfer, however, produced human LH mRNA and an increased LH activity in rat abdominal skin. Analysis of skin collagen showed no significant increase in lysine hydroxylation after AdiRSV-LH gene transfer. It should noticed, however, that major skin collagens (types I and III) have a very low number of hydroxylated lysine residues compared with other collagen types (Kivirikko et al, 1992). Our experiment demonstrates very clearly that endogenous LH activity is not a rate-limiting component in lysine hydroxylation reaction in healthy skin tissues.

Harvey et al demonstrated that first generation adenoviral vector persisted in human skin for at least 28 d with mild/moderate local cellular inflammation (Harvey et al, 1999). In our study, the elevated LH activity was still evident 2 wk after the virus injection in two animals. This should allow reasonable time for initiation of successful wound healing. Studies on adenoviral gene transfer have demonstrated loss of transgene expression due to immune response against the vector or the transgene product. It is probable that LH overexpression will gradually diminish and it may not be possible to achieve permanent correction with the vector used in this study. Adenoviral vector can be used to test the principle of LH enzyme replacement, but other vectors, such as AAV or recombinant retroviruses, may provide lasting levels of expression.

Gene therapy for inherited diseases of connective tissue has proved to be difficult, although there are some examples of successful strategies (Vailly et al, 1998; Hengge et al, 1999; Seitz et al, 1999; Soman et al, 1999). The majority of diseases of collagen metabolism exhibit a dominant inheritance pattern and in general the defective structural protein disturbs the function of a product of a healthy allele. In contrast to most inherited collagen diseases, heterozygous relatives of EDS VI patients demonstrate that products of defective LH allele should not interfere with the wild type enzyme. Therefore, EDS VI is a good candidate disease to consider for therapeutic gene transfer. Unfortunately, the major symptoms of EDS VI as well as other inherited connective tissue diseases arise during embryonic development and curative treatment may no longer be possible in a newborn. Our data support the possibility, however, that gene transfer may offer alleviation for local symptoms of EDS VI.

We thank Dr. Heikki Ruskoaho for his generous support and Dr. Heikki Tokola and Dr. Joe Cotten for helpful discussions and careful revision of the manuscript. We acknowledge the University of Iowa Gene Transfer Vector Core for providing the recombinant adenovirus. This work was supported by the Academy of Finland and the Oulu University Hospital.