ODEs and Wiman–Valiron theory in the unit disc

P.C. Fenton a, John Rossib,∗

a University of Otago, Dunedin, New Zealand
b Virginia Tech, Blacksburg, VA, USA

ARTICLE INFO

Article history:
Received 10 November 2009
Available online 4 January 2010
Submitted by D. Khavinson

Keywords:
Power series
Wiman–Valiron theory
Analytic function

ABSTRACT

An asymptotic equality of Wiman–Valiron type is proved for the derivatives of analytic functions in the unit disc and applied to ODEs with analytic coefficients.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

For a power series \(f(z) = \sum_{n=0}^{\infty} a_n z^n \), the maximum term is \(\mu(r) = \mu(r, f) = \max_{n \geq 0} |a_n| r^n \) for \(r \geq 0 \), and the central index, denoted by \(N(r) = N(r, f) \), is the integer \(n \) for which the maximum is attained. (In case of ambiguity we pick the largest such \(n \).) We recall that \(N \) is non-decreasing and piecewise constant [7, p. 318]. We say that \(f \) is fully indexed if \(N \) assumes every non-negative integer value, and in that case \(R_n \) is an indexing sequence if \(N(R_n, f) = n \) and the maximum term at \(R_n \) is unique, for all \(n \).

If \(f \) is entire and \(\zeta \) is such that \(|f(\zeta)| = M(1, f) \), then for every positive integer \(q \),

\[
 f^{(q)}(\zeta) = (1 + o(1))(N(1, f))^{\frac{q}{2}} f(\zeta)
\]

(1)
as \(|\zeta| \to \infty \) outside a set of finite logarithmic measure [7, p. 341]. Here as usual \(M(1, f) = \max_{|z|=1} |f(z)| \). The relation (1) provides a rather powerful means for estimating the order of growth of solutions to linear differential equations

\[
f^{(n)} + b_{n-1} f^{(n-1)} + \cdots + b_0 f = 0
\]

(2)

with polynomial or entire coefficients \(b_0, \ldots, b_{n-1} \) [13,10]. There has been interest recently [1–3,8,9,12] in the growth of solutions of (2) near the boundary when the coefficients are assumed to be analytic in the unit disc but, as has been pointed out [2, pp. 285–286], [12, Section 2], the analysis is constrained by the lack of anything like (1) in the unit disc.

Our intention here is threefold: to show that for functions in the unit disc, results of the first author and Strumia [6] can be used to establish (1) for \(|\zeta| \) in a relatively thick subset of the interval \((0,1)\); to illustrate the effectiveness of (1) in the unit disc by giving quick proofs of results that otherwise require detailed argument; and to obtain growth estimates for solutions of (2) when the coefficients are analytic in the unit disc and behave, in a certain sense, as polynomials do in the plane.

Our results involve the order of \(f \). The order of a positive, increasing, real-valued function \(\Phi \) on \([0,1)\) is

\[
\lim_{r \to 1^-} \frac{\log \Phi(r)}{-\log(1-r)}.
\]

* Corresponding author.
E-mail address: rossij@vt.edu (J. Rossi).
and the order of f is defined to be the order of $\log M(r, f)$. It is known [11, pp. 43, 45] that if ρ, ρ' and ρ'' are the orders of $\log M(r, f)$, $\log \mu(f, r)$ and $N(r, f)$ respectively, then
\[
\rho = \rho' = \max(0, \rho'' - 1).
\] (3)

Thus in particular if f has order $\rho > 0$ there is an increasing sequence (T_j) for which
\[
\lim_{j \to \infty} T_j = 1 \quad \text{and} \quad \lim_{j \to \infty} \frac{\log N(T_j, f)}{\log(1 - T_j)} = \rho + 1.
\] (4)

From now on the sequence (T_j) is fixed.

Let us note incidentally that (4) may fail if $\rho = 0$. For example, for $f(z) = \sum_{n=1}^{\infty} (1 - n^{-\alpha})e^{in}$, where $\alpha > 0$, we have $\log N(r) \sim -(1 + \alpha)^{-1}\log(1 - r)$.

We will prove:

Theorem 1. Suppose that $f(z) = \sum_{n=0}^{\infty} a_n z^n$ is analytic in the unit disc, of order $\rho > 0$. Given γ satisfying
\[
0 < \gamma < \frac{\rho}{2(\rho + 1)},
\] (5)

let ζ be such that
\[
|f'(\zeta)| \geq N^{-\gamma}M(|\zeta|, f),
\] (6)

where $N = N(|\zeta|, f)$. Let (T_j) be a sequence satisfying (4). Then, for every positive integer q,
\[
f^{(q)}(\zeta) = (1 + o(1)) \left(\frac{N}{\zeta}\right)^q f(\zeta)
\] (7)
as $|\zeta| \to 1^-$ outside a set E such that
\[
\lim_{j \to \infty} m(E \cap (T_j, 1))/\log(1 - T_j) = 0.
\] (8)

Corollary 1. Suppose that $f(z) = \sum_{n=0}^{\infty} a_n z^n$ is analytic in the unit disc, of order $\rho > 0$. There is a sequence ζ_j, with $|\zeta_j| \to 1^-$ as $j \to \infty$, such that $|f(\zeta_j)| = M(|\zeta_j|, f)$ for all j, and
\[
\lim_{j \to \infty} \frac{\log N(|\zeta_j|, f)}{\log(1 - |\zeta_j|)} = \rho + 1.
\] (9)

If F is a set such that
\[
\lim_{t \to 1^-} m(F \cap (r, 1))/\log(1 - r) > 0.
\] (10)

then ζ_j can be chosen so that, for all j, $|\zeta_j| \in F \setminus E$, and therefore (7) holds at $\zeta = \zeta_j$.

The left-hand side of (10) is the *lower final density* of F [6, p. 479]. The *upper final density* is the same except that the lower limit is replaced by the upper limit; if the upper and lower limits agree, the common value is the *final density*.

Assuming Theorem 1 for the moment, let us prove the corollary. By (3) and the fact that $\rho > 0$, there is an increasing sequence T_j satisfying (4). Also, from (8) and (10), there is a number ϵ_0, with $0 < \epsilon_0 < 1$, and a sequence ϵ_j satisfying $0 < \epsilon_j \leq \epsilon_0$ for all j, such that $T_j + \epsilon_j(1 - T_j) \in F \setminus E$ for all large j. Since N is increasing, a simple calculation shows that (4) holds with T_j replaced by $T_j + \epsilon_j(1 - T_j)$. We choose ζ_j such that $|\zeta_j| = T_j + \epsilon_j(1 - T_j)$ and $|f(\zeta_j)| = M(|\zeta_j|, f)$, and the conclusion follows.

Our next theorem on functions of order zero is of independent interest, in that its proof does not rely on the lemma of the logarithmic derivative.

Theorem 2. Suppose that $f(z) = \sum_{n=0}^{\infty} a_n z^n$ is analytic in the unit disc, of order zero, and that $\gamma : (0, 1) \to \mathbb{R}$ is positive and such that $\gamma(t) \to 0$ as $t \to 1^-$. If ζ is such that $|f(\zeta)| \geq N^{-\gamma(|\zeta|)}M(|\zeta|, f)$, then for every positive integer q and positive number η,
\[
\frac{f^{(q)}(\zeta)}{f(\zeta)} = O\left(\frac{1}{1 - |\zeta|}\right)^{q + \eta}
\] (11)
as $|\zeta| \to 1^-$ outside a set of zero final density.
2. Proof of Theorem 1: A lemma

We adapt the argument for entire functions ([7, p. 341ff; see also [5]) to the unit disc. We will prove:

Lemma 3. Suppose that \(f(z) = \sum_{n=0}^{\infty} a_n z^n \) is analytic in the unit disc, of order \(\rho > 0 \). Let \((T_j)\) be an increasing sequence satisfying (4) and define

\[
k_N = \lfloor \sqrt{(1 - r)^{-1} N (\log 3N)^2} \rfloor,
\]

where \(N = N(r, f) \) and \(\lfloor \cdot \rfloor \) denotes integer part. Then, for every positive integer \(q \) and every positive number \(\eta \),

\[
N^\eta \sum_{|n-N|>k_N} n^\eta |a_n| r^n \frac{1}{\mu(r, f)} \to 0
\]
as \(r \to 1^- \) outside a set \(E \) such that (8) holds.

We need the following result.

Theorem A. (See [6, Theorem 1 (with \(C = 2, \kappa = 1 \))].) Suppose that \(f(z) = \sum_{n=0}^{\infty} a_n z^n \) is analytic in the unit disc and that \(F(z) = \sum_{n=0}^{\infty} A_n z^n \) is a fully indexed power series with indexing sequence \(R_n \). Suppose also that \(\epsilon \) satisfies \(0 < \epsilon < 1 \) and that \(\psi_{\epsilon} \) is a positive, non-increasing function on \((0, 1)\) such that, for some \(R \in (0, 1) \),

\[
\psi_{\epsilon}(R) \log(R_{2N}/R_0) \leq \epsilon (1 - R),
\]

where \(N' = N(R', f) \) and \(R' = e^{-\epsilon(1-R)} \). Then

\[
\frac{|a_n| r^n}{\mu(r, f)} \leq \frac{|A_n| R_n^\epsilon}{\mu(R_n, F)} \psi_{\epsilon}(r), \quad 0 \leq n \leq 2N,
\]

\[
\frac{|a_n| r^n}{\mu(r, f)} \leq \max \left\{ \frac{|A_n| R_n^{\epsilon \eta}}{\mu(R_n, F)}, \left(\frac{R_n}{R_{2N}} \right)^{\psi_{\epsilon}(r)/2} \right\}, \quad n > 2N,
\]

where \(N = N(r, f) \), for all \(r \in (0, 1) \) outside a set \(E \) such that

\[
\log\text{meas}(E \cap (R, 1)) \leq 2\epsilon (1 - R).
\]

Here logarithmic measure is \(dr/r \), so that \(\log\text{meas}(E \cap (R, 1)) \geq m(E \cap (R, 1)) \). We let

\[
A_n = \exp \left(\int_0^n \alpha(t) \, dt \right), \quad R_n = \exp(-\alpha(n)), \quad n = 0, 1, 2, \ldots,
\]

where \(\alpha(t) = (\log(t + 1))^{-1} \), and apply Theorem A with \(F(z) = \sum_{n=0}^{\infty} A_n z^n \), which is fully indexed with indexing sequence \(R_n \), as can be easily checked. Given an increasing sequence \(T_j \to 1 \) as \(j \to \infty \), we define

\[
\epsilon_j = (\log(1 - T_j))^{-1/2}
\]

and \(\psi_{\epsilon_j}(r) = \epsilon_j (1 - r) \), noting that

\[
\psi_{\epsilon_j}(R) \log(R_{2N}/R_0) \leq \psi_{\epsilon_j}(R) \log(1/R_0) = \epsilon_j (1 - R),
\]

so that (14) is satisfied for all \(R \). With \(R = T_j \), we obtain from Theorem A,

\[
\frac{|a_n| r^n}{\mu(r, f)} \leq \frac{A_n R_n^\epsilon}{A_n R_n^{\epsilon \eta}} \epsilon_j^{1-r}, \quad 0 \leq n \leq 2N,
\]

\[
\frac{|a_n| r^n}{\mu(r, f)} \leq \max \left\{ \frac{A_n R_n^{\epsilon \eta}}{A_n R_n^\epsilon}, \left(\frac{R_n}{R_{2N}} \right)^{\epsilon_j (1-r)/2} \right\}, \quad n > 2N,
\]

for all \(r \in (T_j, 1) \) outside a set of measure at most \(2\epsilon_j (1 - T_j) \) (taking account of the earlier remark on logarithmic measure). It is useful in what follows to make an additional restriction on \(r \), that \(r < T'_j \), where \(T'_j = 1 - \epsilon_j (1 - T_j) \). With this restriction, (19) and (20) hold for \(r \in (T_j, T'_j) \) outside a set \(E_j \) such that \(E_j \subseteq (T_j, T'_j) \) and \(m(E_j) \leq 2\epsilon_j (1 - T_j) \).

We estimate the left-hand side of (13) using (19) and (20). Without loss of generality, we assume that \(N(T_j, f) \geq 3 \) for all \(j \). We have
\[
R_{N}/R_{2N} = \exp\left(-\int_{N}^{2N} \frac{dt}{(t+e)(\log(t+e))^2}\right) \leq e^{-(3/10)(\log 3N)^{-2}}
\]
(21)

and, for \(n > 2N \),

\[
\frac{A_nR_{N}^n}{A_N R_{N}^n} = \exp\left(\int_{N}^{n} \alpha(t) dt - (n - N)\alpha(N)\right) = \exp\left(\int_{N}^{n} (n - t)\alpha^\prime(t) dt\right)
\]

\[
\leq \exp\left(-\int_{N}^{n} \frac{n - t}{(t+e)(\log(t+e))^2} dt\right)
\]

\[
\leq \exp\left(-\frac{n}{3} \int_{N}^{n} \frac{dt}{(t+e)(\log(t+e))^2}\right)
\]

\[
\leq \exp\left(-\frac{2n/3}{4N/3} \int_{N}^{n} \frac{dt}{(t+e)(\log(t+e))^2}\right)
\]

\[
\leq e^{-(1/21)n(\log(7N/3))^{-2}} \leq e^{-(1/25)n(\log 3N)^{-2}},
\]

(22)

using the fact that \(N \geq 3 > e \). From (20) then, we certainly have

\[
|a_n|^{-n} \leq \mu(r, f)e^{-\nu j n}, \quad n > 2N,
\]
(23)

where \(\nu_j = \nu_j(r) = (1/25)e_j(1-r)(\log 3N)^{-2} \), for \(r \in (T_j, T_j^\prime) \ \setminus E_j \). This holds for any increasing sequence \(T_j \) and any function \(f \), whatever its order.

For the remainder of the proof we assume that \(f \) has order \(\rho > 0 \), as in the hypotheses of Lemma 3, and that \(T_j \) satisfies (4). Given \(\rho_0 \) satisfying \(0 < \rho_0 < \rho \), we have, for \(r \in (T_j, T_j^\prime) \),

\[
\frac{\log N(r, f)}{-\log(1-r)} \geq \frac{\log N(T_j, f)}{-\log(1-T_j)} = \frac{\log N(T_j, f)}{-\log(e_j(1-T_j))} \geq 1 + \rho_0
\]

(24)

for all large \(j \), from (18). Let us note too that, from (18) and (4),

\[
\epsilon_j \geq (\log N(T_j, f))^{-1/2} \geq (\log N(r, f))^{-1/2},
\]

(25)

for \(r \in (T_j, T_j^\prime) \) for all large \(j \). Thus, from (24) and (25),

\[
\nu_j > (1/25)\epsilon_j N^{-1/(\rho_0+1)}(\log 3N)^{-2} > (1/25)N^{-1/(\rho_0+1)}(\log 3N)^{-5/2},
\]
(26)

for \(r \in (T_j, T_j^\prime) \ \setminus E_j \) for all large \(j \).

Now, for \(t \in (0, 1) \),

\[
\sum_{n=2N+1}^{\infty} n^q |a_n|^{n} \leq K \frac{N^{q}t^{2N}}{1-t} \left(1 + \frac{1}{2(1-t)N}\right)^{q+1},
\]

(27)

where \(K = K(q) \) [4, Lemma 9]. We take \(t = e^{-\nu_j} \). Since \((1 - e^{-\nu_j})N \to \infty \) as \(j \to \infty \), from (26), and also

\[
\frac{N^{q}e^{-2\nu_j/N}}{1-e^{-\nu_j}} = \frac{N^{q}e^{-\nu_j(2N-1)}}{e^{\nu_j}-1} \leq N^{q}e^{-\nu_j}N^{q+1/(\rho_0+1)} \exp\left(-(1/25)N^{\rho_0/(\rho_0+1)}(\log 3N)^{-5/2}\right),
\]

we have using (23)

\[
\sum_{n=2N+1}^{\infty} \frac{n^q |a_n|^{n}}{\mu(r, f)} \leq 50K (\log 3N)^{5/2} N^{q+1/(\rho_0+1)} \exp\left(-(1/25)N^{\rho_0/(\rho_0+1)}(\log 3N)^{-5/2}\right),
\]

(28)

for \(r \in (T_j, T_j^\prime) \ \setminus E_j \) for all large \(j \).
Finally, for \(k_N < |n - N| \leq N \),
\[
\frac{A_nR_N^n}{A_NR_N^n} = \exp \left(- \int \frac{(n - t) \, dt}{N \, (t + e)(\log(t + e))^2} \right)
\leq \exp\left(-\frac{6N^{-1}(\log 3N)^{-2}(n - N)^2}{(k_N + 1)^2(6N^{-1}(\log 3N)^{-2})} \right)
\leq \exp\left(-\frac{1/6(1 - r)^{-1}(\log 3N)^2}{1} \right),
\]
from (12), and therefore
\[
\left(\frac{A_nR_N^n}{A_NR_N^n} \right)^{(1-r)} \leq e^{-(1/10)(\log 3N)^2}.
\]
From this, (19) and (25),
\[
\sum_{k_N < |n - N| \leq N} n^q |a_n|^r \mu(r, f) \leq 2N e^{-(1/10)(\log 3N)^{3/2}}
\]
for \(r \in (T_j, T'_j) \setminus E_j \) for all large \(j \).

It follows from (28) and (29) that (13) holds as \(r \rightarrow 1^+ \) in \(\bigcup_{j=1}^{\infty} (T_j, T'_j) \setminus E_j \). If \(E \) is the complement of this set in \((0, 1) \), then \(E \cap (T_j, 1) \subseteq E_j \cup (T'_j, 1) \) and therefore \(m(E \cap (T_j, 1)) \leq m(E_j) + (1 - T'_j) < 3\epsilon_j(1 - T'_j) \), which completes the proof of Lemma 3.

3. Proof of Theorem 1

We write \(\sum_{|n - N| \leq k_N} a_n z^n = z^{N-k_N} P_N(z) \), where \(P_N \) is a polynomial of degree at most \(2k_N \). From (6) and Lemma 3 with \(q = 0 \),
\[
f(\zeta) = (1 + o(1))\zeta^{N-k_N} P_N(\zeta)
\]
as \(|\zeta| \rightarrow 1^- \) outside \(E \); also, again using Lemma 3 with \(q = 0 \), we have
\[
M(\zeta, P_N) = (1 + o(1))|\zeta|^{k_N-N} M(|\zeta|, f)
\]
as \(|\zeta| \rightarrow 1^- \) outside \(E \). Now,
\[
f^{(q)}(\zeta) = \frac{d^q}{d\zeta^q} \left(\zeta^{N-k_N} P_N(\zeta) \right) + O \left(\sum_{|n - N| > k_N} n^q |a_n||\zeta|^p \right)
\]
\[
= \frac{d^q}{d\zeta^q} \left(\zeta^{N-k_N} P_N(\zeta) \right) + o(f(\zeta))
\]
as \(|\zeta| \rightarrow 1^- \) outside \(E \), from Lemma 3. Also, with \(C^q_\ell \) the usual binomial coefficient,
\[
\frac{d^q}{d\zeta^q} \left(\zeta^{N-k_N} P_N(\zeta) \right) = \sum_{\ell=0}^q C^q_\ell (N - k_N) \ldots (N - k_N - q + \ell + 1) \zeta^{N-k_N-q+\ell} P_N^{(\ell)}(\zeta)
\]
\[
= (1 + o(1))N^q \zeta^{N-k_N-q} P_N(\zeta) + O \left(\sum_{\ell=1}^q N^q \zeta^{N-k_N} P_N^{(\ell)}(\zeta) \right)
\]
\[
= (1 + o(1))(N/\zeta)^q f(\zeta) + O \left(\sum_{\ell=1}^q N^q \zeta^{N-k_N} P_N^{(\ell)}(\zeta) \right)
\]
as \(|\zeta| \rightarrow 1^- \) outside \(E \), using (30). From (31), Lemma 6.1 of [5] and (6),
\[
P_N^{(\ell)}(\zeta) = O \left(k_N^{\ell} z^{N-k_N-N} M(|\zeta|, f) \right) = O \left(k_N^{\ell} z^{N-k_N-N} f(\zeta) \right)
\]
as \(|\zeta| \rightarrow 1^- \) and thus, from (30),
\[
\sum_{\ell=1}^q N^q \zeta^{N-k_N} P_N^{(\ell)}(\zeta) = O \left(f(\zeta) \sum_{\ell=1}^q N^q \zeta^{N-k_N} P_N^{(\ell)}(\zeta) \right)
\]
as $|\zeta| \to 1^-$ outside E. Since, from (12) and (24),
\[
N^{-1}k_N \leq \sqrt{(1 - |\zeta|)^{-1}N^{-1}(\log 3N)^2} \leq N^{-\rho_0/(2(\rho_0 + 1))}(\log 3N)^2 < 1, \tag{36}
\]
for all $|\zeta| \in (T_j, T'_j)$ for all large j,
\[
\sum_{\ell=1}^{q} N^{q-\ell+\gamma}k_{N}^{j} \leq qN^{q+\gamma}k_{N}. \tag{37}
\]
We choose ρ_0 sufficiently close to ρ that $\rho_0/(2(\rho_0 + 1)) > \gamma'$, which is possible from (5), and conclude from (36) and (37) that $\sum_{\ell=1}^{q} N^{q-\ell+\gamma}k_{N} = o(N^q)$ as $|\zeta| \to 1^-$ outside E. Theorem 1 follows from this, (32), (33), (34) and (35).

4. Proof of Theorem 2

Given a positive integer l, write $Q_l(z) = \sum_{n=0}^{2l} a_n z^n$, so that
\[
f^{(q)}(z) = Q^{(q)}_l(z) + O \left(\sum_{n=2l+1}^{\infty} n^q|a_n||\zeta|^n \right). \tag{38}
\]
As we noted earlier, (23) holds for $r \in (T_j, T'_j) \setminus E_j$ for any increasing sequence T_j, even when f has order 0. Thus, given $l \geq N$, we obtain, from (23) and (27) with $t = e^{-v_j}$,
\[
\sum_{n=2l+1}^{\infty} n^q|a_n||\zeta|^n \leq \sum_{n=2l+1}^{\infty} n^q e^{-v_j n} \\
\leq K \frac{n^q e^{-2v_j l}}{1 - e^{-v_j}} \left(1 + \frac{1}{2l(1 - e^{-v_j})} \right)^{q+1} \\
\leq K l^q v_j^{-1} e^{-lv_j} \left(1 + \frac{e^{v_j}}{2lv_j} \right)^{q+1}, \tag{39}
\]
for $|\zeta| \in (T_j, T'_j) \setminus E_j$ for all j. Now, for $|\zeta| \in (T_j, T'_j) \setminus E_j$,
\[
v_j = (1/25)(1 - |\zeta|) \left(\log \frac{1}{1 - T_j} \right)^{-1/2} (\log 3N)^{-2} \\
= (1/25 + o(1))(1 - |\zeta|) \left(\log \frac{1}{1 - |\zeta|} \right)^{-1/2} (\log 3N)^{-2}
\]
as $j \to \infty$. Also, since f has order 0, we have, from (3), $N(|\zeta|, f) \leq (1 - |\zeta|)^{-1+o(1)}$, and therefore
\[
v_j = (1 - |\zeta|)^{1+o(1)} \tag{40}
\]
as $j \to \infty$, for $|\zeta| \in (T_j, T'_j) \setminus E_j$. Given a positive number η, we let $l = v_j^{-1-\eta}$ and note that $l \geq N$ for all large j, so that (39) holds. Thus, for any $\eta > 0$,
\[
N^q \sum_{n=2l+1}^{\infty} n^q|a_n||\zeta|^n = o(\mu(|\zeta|, f)) \quad \tag{41}
\]
as $j \to \infty$, for $|\zeta| \in (T_j, T'_j) \setminus E_j$. It follows from (41) with $q = 0$ that $f(\zeta) = (1 + o(1)) Q_l(\zeta)$, and also that $M(|\zeta|, Q_l) = (1 + o(1)) M(|\zeta|, f)$ as $j \to \infty$, for $|\zeta| \in (T_j, T'_j) \setminus E_j$. Further [5, Lemma 6.1], $M_l(r, Q^{(q)}_l) = O(\rho M(r, Q_l))$ as $r \to 1^-$, and therefore
\[
Q^{(q)}_l(\zeta) = O(\rho^q M^{(q)}(\zeta) f(\zeta))
\]
as $j \to \infty$, for $|\zeta| \in (T_j, T'_j) \setminus E_j$. Combining this with (38) and (41), we conclude that
\[
f^{(q)}(\zeta)/f(\zeta) = O(\rho^q M^{(q)}(\zeta) = O(v_j^{-(1+\eta)q+o(1)})
\]
as $j \to \infty$, for $|\zeta| \in (T_j, T'_j) \setminus E_j$. From (40), we obtain (11) — with a different η — as $|\zeta| \to 1^-$ outside E, the complement in $(0, 1)$ of $\bigcup_{j=1}^{\infty} (T_j, T'_j) \setminus E_j$. We now choose $T_j = j/(j+1)$. For r satisfying $T_j \leq r < T_{j+1}$,
\[m(E \cap (r, 1)) \leq m(E \cap (T_j, 1)) \leq m(E \cap (T_j, T'_j)) + 1 - T'_j \]
\[\leq m(E_j) + \epsilon_j(1 - T_j) \leq 3\epsilon_j(1 - T_j) \leq 5\epsilon(1 - r), \]
so that \(E \) has final density 0. This concludes the proof of Theorem 2.

5. Applications to ODEs

Consider the equation
\[f'' + bf = 0, \tag{42} \]
where \(b \) is analytic in the unit disc. Following the notation in [8], we define \(H_q^\infty = \{ b : \sup_{0 \leq r < 1} M(r, b)(1 - r)^q \leq \infty \} \), for any \(q \geq 0 \), and \(\mathcal{H} = \bigcup_{q \geq 0} H_q^\infty \). If, for \(b \in \mathcal{H} \),
\[p = \inf\{q \geq 0 : b \in H_q^\infty \}, \]
we say that \(b \in \mathcal{G}_p \). A result of Heittokangas [8, Theorem 3.1.4] shows that if \(f \) is a solution of (42), with \(b \in \mathcal{G}_p \) for some \(p \geq 0 \), then \(\rho \), the order of \(f \), is at most \(p/2 - 1 \).

We give a quick proof of this result. Without loss of generality we may assume that \(\rho > 0 \). Let \(\zeta_j \) be the sequence of Theorem 1, Corollary 1, with \(F = (0, 1) \). Then (7) holds with \(\zeta = \zeta_j \) and we obtain, from (42) and the fact that \(b \in \mathcal{G}_p \),
\[N(|\zeta_j|, f)^2 \leq (1 - |\zeta_j|)^{-p + o(1)} \tag{43} \]
as \(j \to \infty \). Thus, from (9),
\[-2(\rho + 1 + o(1)) \log(1 - |\zeta_j|) = 2 \log N(|\zeta_j|, f) \leq -(p + o(1)) \log(1 - |\zeta_j|), \]
and the conclusion follows.

In the same way it can be shown that for solutions of \(f^{(k)} + bf = 0 \), where \(b \in \mathcal{G}_p \), we have \(\rho \leq p/k - 1 \), a result that originally appeared in [3]. More generally, upper bounds on the order of solutions of (2) may be obtained if \(b_k \in \mathcal{G}_{p_k} \), \(k = 0, 1, \ldots, n - 1 \). Indeed, assuming without loss of generality that \(\rho > 0 \), we conclude from (7) that
\[N(|\zeta_j|, f)^n + (1 + o(1))\zeta_j N(|\zeta_j|, f)^{n-1}b_{n-1}(\zeta_j) + \cdots + (1 + o(1))\zeta_j^n b_0(\zeta_j) = 0, \]
where \(\zeta_j \) is the sequence of Theorem 1, Corollary 1. A simple proof by contradiction along the lines of [13, pp. 127–128] shows that
\[\rho \leq \max\{p_j/(n-j) : 0 \leq j \leq n - 1\}, \]
an inequality that has been proved by other methods [12, Theorem 1].

In some ways, functions in \(\mathcal{H} \) are counterparts of polynomials in the plane, but, as pointed out in [3, p. 737], polynomials behave in the same way in every direction as \(\rho \to \infty \), whereas functions in \(\mathcal{H} \) may behave differently near different boundary points of the unit disc. With the idea of a disc analogue of a polynomial in mind, let us say that a function \(b \), analytic in the unit disc, is \(\alpha \)-polynomial regular, for some positive number \(\alpha \), if there is a set \(F \subseteq (0, 1) \) of positive lower final density such that
\[|b(z)| = (1 - |z|)^{-\alpha + o(1)} \tag{44} \]
as \(|z| \to 1^- \) through \(F \). We denote by \(\mathcal{P} \) the set of functions which are \(\alpha \)-polynomial regular for some \(\alpha \).

Example. To construct an example of a polynomial regular function, consider \(b(z) = \sum_{j=3}^{\infty} \lambda^j z^j \), where \(\alpha > 0 \) and \(\lambda \) is a (large) positive integer. Given a positive integer \(n \), consider \(r \) satisfying \(1 - D\lambda^{-n} = r_n \leq r \leq r_n' = 1 - D'\lambda^{-n} \), where
\[D = \log((\lambda^\alpha - 1)/5), \quad D' = (\lambda - 1)^{-1} \log(6\lambda^\alpha). \tag{45} \]

Now,
\[\sum_{j=3}^{n-1} \lambda^j r^j \leq \sum_{j=0}^{n-1} \lambda^j = \frac{\lambda^{an}}{\lambda^\alpha - 1} \]
while
\[\lambda^{an} r^{\lambda n} \geq \lambda^{an} (1 - D\lambda^{-n})^{\lambda n} = (1 + o(1))\lambda^{an} e^{-D} \geq 4\frac{\lambda^{an}}{\lambda^\alpha - 1}, \]
for all large \(n \), and therefore
\[
\sum_{j=3}^{n-1} \lambda^j \zeta_j \leq \frac{1}{4} \lambda^j \zeta_j,
\]
for all large \(n \). Also
\[
\sum_{j=n+1}^{\infty} \lambda^j \zeta_j = \lambda^{j+1} (1 + \lambda^j + \lambda^{j+1} + \cdots)
\]
\[
\leq \lambda^{j+1} (1 + \lambda^j + \lambda^{j+1} + \cdots)
\]
\[
= \frac{\lambda^{j+1}}{1 - \lambda^j}
\]
so that, since \(r \leq r'_n \),
\[
\sum_{j=n+1}^{\infty} \frac{\lambda^j \zeta_j}{\lambda^j n^\alpha} = \frac{\lambda^{j+1}}{1 - \lambda^j} \leq 1 + o(1).
\]
As \(n \to \infty \), combining (46) and (47), we obtain
\[
(1/2) \lambda^j \zeta_j = |b(z)| \leq (3/2) \lambda^j \zeta_j,
\]
for \(r_n \leq r \leq r'_n \) for all large \(n \). Moreover, for \(r = 1 - \theta \lambda^j \), where \(D \leq \theta \leq D' \),
\[
\lambda^j (1 - \theta \lambda^j)^\alpha = (1 + o(1)) \exp(-\theta) \lambda^j = (1 + o(1)) \exp(-\theta) \lambda^j = (1 - \lambda^j)^\alpha.
\]
Thus we have (44) as \(r \to 1^- \) through \(F = \bigcup_{n=1}^{\infty} (1 - D \lambda^j, 1 - D' \lambda^j) \). Finally, \(F \) has positive lower final density since, for \(r_n \leq r \leq r'_n \),
\[
m(F \cap (r, 1)) \geq m(F \cap (r'_n, 1))
\]
\[
= (1 - r'_n)^{-1} \sum_{j=0}^{\infty} (D - D') \lambda^j
\]
\[
= (1 - r'_n)^{-1} \left(\frac{D - D'}{\lambda - 1} \right) \lambda^j = \frac{(D - D')}{D' \lambda - 1}.
\]
Notice that by (45) if \(\lambda \) is large enough, the lower final density of \(F \) can be made as close to 1 as we please.

We now prove

Theorem 4. Suppose that \(f \) is an analytic solution of (42) of order \(\rho \), where \(b \) is \(\alpha \)-polynomial regular for some \(\alpha > 2 \). Then \(\rho = \alpha/2 - 1 \).

Proof. To prove Theorem 4, note first that, by (42) and (44),
\[
\frac{f''(z)}{f(z)} = (1 - |z|)^{-\alpha + o(1)}
\]
as \(|z| \to 1^- \) through \(F \). Since \(\alpha > 2 \), we deduce from Theorem 2 that \(\rho > 0 \). Let \(\zeta_j \) be the sequence of Theorem 1, Corollary 1, where \(F \) is the set of positive lower final density associated with \(b \). From (7) and (50) we obtain
\[
2(\rho + o(1)) \log \left(\frac{1}{1 - |\zeta_j|} \right) = 2 \log N(\zeta_j, f) = (\alpha + o(1)) \log \left(\frac{1}{1 - |\zeta_j|} \right),
\]
which implies that \(\rho = \alpha/2 - 1 \), and Theorem 4 is proved. \(\Box \)

We note that \(\alpha > 2 \) is best possible. Indeed by Theorem 3.1.4 in [8], \(\rho = 0 \) for all solutions of (42) if \(A \in G_p \), \(p \leq 2 \).

Theorem 4 is false if we assume only that \(b \in H \). Indeed, the bounded (and hence zero order) function \(f(z) = \exp((z + 1)/(z - 1)) \) is a solution of (42) in the unit disc with
\[
b(z) = 4 \left(\frac{1}{(z - 1)^4} + \frac{1}{(z - 1)^2} \right).
Finally, consider the differential equation
\[f'' + b_1 f' + b_0 f(z) = 0, \]
where \(b_0 \) and \(b_1 \) are \(\alpha_0 \) and \(\alpha_1 \)-polynomial regular respectively, with associated sets \(F_0 \) and \(F_1 \) such that \(F_0 \cap F_1 \) has positive lower final density. Suppose further that
\[\min(\alpha_0 - \alpha_1, \alpha_0/2) > 1. \]
Dividing (51) by \(f \) and using Theorem 2 together with (52), we deduce that \(f \) has positive order. Thus by Theorem 1, Corollary 1, there exists a sequence \(\zeta_j \) such that
\[N(|\zeta_j|, f) = \left(\frac{1}{1 - |\zeta_j|} \right) \rho + o(1) \]
and
\[\left(\frac{N(|\zeta_j|, f)}{|\zeta_j|} \right)^2 + \frac{N(|\zeta_j|, f)}{|\zeta_j|} \left(\frac{1}{1 - |\zeta_j|} \right)^{\alpha_1 + o(1)} + \left(\frac{1}{1 - |\zeta_j|} \right)^{\alpha_0 + o(1)} = 0 \]
as \(j \to \infty \). Solving this equation by the quadratic formula reveals the possible orders of solutions to (51). For example if \(\alpha_0/2 > \alpha_1 \), then clearly \(\rho = \alpha_0/2 - 1 \). On the other hand if \(\alpha_1 < \alpha_0 - 1 \) and \(\alpha_0 \leq 2\alpha_1 \), \(\rho \) could be \(\alpha_1 - 1 \) or \(\alpha_0 - \alpha_1 - 1 \).

An example in [12, p. 3] shows, at least when \(b_0 \) and \(b_1 \) are in \(\mathcal{H} \) and \(\alpha_0 > 5 \) and \(\alpha_1 > 3 \), that (51) can have solutions \(f_1 \) with \(\rho(f_1) = \alpha_1 - 1 \) and \(f_2 \) with \(\rho(f_2) = \alpha_0 - \alpha_1 - 1 \).

For linear differential equations (2) with coefficients in \(\mathcal{P} \), we obtain an algebraic equation like (53) of degree \(n \). The \(n \) possible orders and asymptotics of solutions mirror the Wittich, Newton–Puiseux results when the coefficients of (2) are polynomials (cf. [10, Section 22]).

References