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Abstract 

It is shown how a matrix can be used to implement a class of dictionaries. Instead of the strong 
requirement of ascendingness of a linear array, the weaker requirement of ascendingness of a 
matrix is used. This results in implementations that are efficient in both computation time and 
storage usage. 
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1. Introduction 

We consider implementations of abstract data types that support insertions, deletions, 

the membership test, and computation of the minimum. These operations operate on an 

initially empty bag (multiset) V of elements from a totally ordered set. The operations 

are described as follows 

member(x) x E V 

ins(x) v:=v+{x} 

del(x) v : = v - {x} 

min(x) the minimum of V 

where {x} denotes the singleton bag containing X. When only the first three operations 

are specified, the abstract data type is called a dictionary. Binary search trees are 

common implementations of dictionaries (cf. [ 31). Without the membership test and 

with deletions restricted to the minimum of V, the abstract data type is called a priority 
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queue. The well-known heap can be used as an implementation of the priority queue. 

The heap is usually implemented as an in-situ data structure: a single array is used to 

store the elements of V, and no pointers or other auxiliary arrays are used. The size 

of the array determines the number of elements that V may have. The disadvantage of 

such a heap is that an efficient implementation for the membership test does not exist. 

Yet another in-situ representation of a bag is an ascending array. Computation of the 

minimum is an 0( 1) operation and for the membership test the binary search yields an 

O(logn) program for a bag with n elements. Insertions and deletions, however, have 

O(n) time complexity. 

In this paper we show how the data type described above can be implemented as an 

in-situ data structure, using a single two-dimensional array (a matrix). For a bag of n 

elements the following time complexities are obtained: 

member(x) 0( fi) 

ins(x) O(G) 

del(x) 0(&G 

min( x) O(1) 

Overview. Preliminaries are presented in Section 2. In Section 3 and Section 4 programs 

for insertion and deletion are derived. These operations affect the part of the matrix that 

is used to store the elements of V. How the shape of this part of the matrix can be 

controlled is the topic of Section 5. In Section 6, we show how the solutions can be 

transformed in such a way that the elements of the bag are stored in an initial segment 

of a linear array. 

2. Preliminaries 

We use array m[ 1. .N, 1. .N] to hold the values of bag V. Hence, N2 is an upper 

bound for the size of V. To obtain efficient programs for the operations on V, we decide 

to maintain matrix m ascending in both arguments. The ascendingness of m will be an 

invariant of all operations. For an ascending matrix, the searching paradigm known as 

Saddleback Search, cf. [ 11, or as Slope Search, cf. [ 21, is applicable. This technique 

(for details refer to [ 2, Section 8. lo] ) yields for the membership test: 

p,q,b := l,N,false; 

doybAp#N+l AqZO 

--+ if m[p,q] <x -+ p :=p+l 

0 m[p,q] >x -+ q:=q-1 

0 m[p,q]=x + b:=true 

fi 

od 

This program has post-conditions 
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Fig. 1. matrix tn. 
k 

b E (3i,j: 1 < i<N A 1 <j<N: m[i,j]=x) and 

b * m[p,ql =x 

The repetition performs at most 2N steps. Hence, the time complexity is linear to the 

square root of the size of the matrix. Since we aim at a time complexity related to n, 

the number of elements of V, we will see to it that all elements of V are located within 

a k x k part of the matrix, where k is approximately the square root of n. As a result, 

only this k x k square has to be searched. This second design decision is implemented 

as follows. 

The elements of matrix m that do not hold a value of bag V will have value 00 

(cf. Fig. 1). The values of m different from co, containing the values of V, are within 

a k x k square. In Section 5 we show how insertion and deletion can be implemented in 

such a way that the shape of the set of matrix elements contributing to V is “as square 

as possible”. 

The fact that m is ascending in both arguments, can be expressed as 

(Vp,q: 16~ A 164: dp-l,ql Tmbq-11 6 dp,ql < m[p+l,ql lmb,q+ll ) 

where a T b and a J. b denote the maximum and minimum of a and b. To avoid problems 

with the boundary of m, we define m[ 0, q] and m[p, 0] as --00; similarly, m[ i, q] and 

m [p, i] are defined oc for i > N. 

Assignment m[p, q] : = x does not violate the ascendingness of m if and only if 

mb-l,ql tmbhq-11 6 x 6 mb+l,ql lm[p,q+ll 

In particular, for a pair (u, 0) satisfying 

m[u,ul =mb--l,ql tmbq-11 or 
m[u,ul =mb+l,ql lmb,q+ll 

assignment m[p, q] : = m[ u, u] does not violate the ascendingness of m. 
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3. Insertion 

Insertion of a value will cause the change of a matrix element from co to a value 

different from 00. Let us denote the set of matrix elements different from 00 by U. 

Since the shape of U should be as square as possible, we decide the following: 

An insertion will cause a change from 00 to a value different from cc for precisely 

one element of the matrix. The choice for this element will depend only on the 

shape of U; it is independent of the value that is inserted. 

Matrix element (a, b) to be used for the next insertion will be at the border of U. 

More precisely, it will satisfy predicate Ins defined as 

Ins: m[a,b]=cx A m[a-l,b] #cc A m[a,b-1] #cc 

How this invariant is maintained by insertions and deletions is shown in Section 5. For 

the moment, we assume that program variables a and b satisfy Ins. To change m[ a, b] 

from 0;) to a value different from it, assignment 

m[u,b] :=m[u-l,b] tm[u,b-11 

is appropriate. As observed in the previous section, such an assignment does not violate 

the ascendingness of M. It establishes 

V= V’+{m[u,b]} 

where V’ denotes the initial value of V. The post-condition of ins(x) is 

v = v’ + {x} 

On account of these observations, we introduce program variables p and q with PO, as 

accompanying invariant for a repetition, defined by 

PO : v = V’ + {m[p,ql} 

Initialization is p, q : = a, b . Post-condition V = V’ + {x} is established by m [p, ql : = 

x . For the invariance of m’s ascendingness, the pre-condition of this assignment should 

satisfy 

m[p-l,ql Tm[p,q-11 < x 6 mb+l,ql lm[fhq+ll 

Since m[u,b+l] =CQ and m[u+l,b] =oo, initially x < m[p+l,ql 1 m[p,q+ll 
holds, which we add as a second invariant of the repetition: 

PI : x 6 m[p+l,ql lm[nq+ll 

As guard of the repetition, we then have 

mh-l,ql Tmhq-11 > x 

For the sake of convenience, we introduce variables u and o with accompanying invari- 

ants 
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P2 : (u,u)=(p,q-1) v (u,u)=(p-l,q) 

P3 : m[u,ul =m[p-19ql tmhq-11 

Using Ps, the guard of the repetition can be replaced by m[ u, u] > x . It implies, due 

to the ascendingness of m, x < m[u+l,o] lm[u,u+l], i.e., PI (p,q := u,u). To ensure 

Po(p,q : = u,u) as well, statement m[p,q] : = m[ u, u] should precede assignment 

Py4 : = u, u. This yields the following program for ins(x) : 

p,q:=a,b; 

ifm[p,q-1] <m[p-l,q] -+ u,u :=p-1,q 

f4 m[p-l,ql <m[p,q-11 + u,u :=p,q-1 

mkp, sl :=m[u,u] ; 

{PO A Pl A!2 A p3) 

do m[u,u] > x 

-+ mb,ql :=m[u,u]; p,q:=u,u; 

if m[p,q-1] <m[p-l,q] -+ u :=u-1 

foi dp-l,ql <m[p,q-11 --f u :=u--l 

od; 

mhql := x 

In each step of the repetition u+u decreases by 1, hence, execution of this repetition 

takes at most a + b steps. When the values of V are within a k x k square, this is at 

most 2k. 
Note that the first assignment m[p, q] : = m[ u, u] is superfluous (it is only used to 

avoid complicated invariants) and can be removed. 

4. Deletion 

Deletion of an element of V will decrease the number of elements different from oo 

by one. Since the shape of U should be as square as possible, we decide the following 

(cf. insertion) : 

A deletion will cause a change from a value different from 00 to co for precisely 

one element of the matrix. The choice for this element will depend only on the 

shape of U; it is independent of the value that is removed. 

Matrix element (c, d) to be used for the next deletion will be close to the border 

of U. More precisely, it will satisfy predicate Del, defined as 

Del: m[c,d] #co A m[c+l,d]=oc A m[c,d+l]=oo 

How this invariant is maintained by insertions and deletions is shown in Section 5. For 

the moment, we assume that program variables c and d satisfy Del. The assignment 
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m[ c, d] := 00 does not violate the ascendingness of the matrix. Furthermore, it satisfies 

(V=A Am[c,d]=z}m[c,d]:=co{V=A-{z}} 

Let x be the element of V to be removed. If we take A = V’ - {x) + {z} in the 

above Hoare-triple, then the post-condition simplifies to V = V’ - {x}, which is to be 

established by de1 ( X) . 

The remaining problem is now to establish as pr~ondition for m[ c, d] := 03: 

V = V’ - {x} + {z} A m[c,d] = z 

This condition expresses formally that z is added to V at the expense of x. It is clear 

that this requires an assignment of the form 

mfP,ql := 2 

for some p and q. The corresponding pre-condition of this assignment is 

(1) V = V’ - {x} + {m[p,q]} A m[c,d] = z 

The ascendi~gne~s of m imposes as additional precondition 

(2) mCp--l,ql tmbq-11 6 z < m[p+t,qllmbq+fl 

Condition ( 1) can easily be satisfied using the member operation, to establish m[p, q] = 
x, followed by the assignment z := m[ c, d] . This suggests the introduction of a repetition 

with ( 1) as invariant and a guard whose negation implies (2). This approach is similar 

to the one used in the ins operation. As a matter of fact, ins can be viewed as a special 

case of this problem, where x = 00. There is one important difference, however. The 

values of n and z are not related in any way. So, it is not clear whether p and q must 

be increased or decreased in order to obtain (2). To make the direction of change of p 

and q predetermined, we introduce a case analysis. In case z < x, we have z < mhql 
as additional inv~i~t of a re~tition in which p and q are decreased, as in the ins 

program. In case z, 3 X, we have z > m[p,q] as additional invariant of a symmetric 

repetition in which p and q are increased. This results in the following program for 

del(x): 

“compute (p, q), such that m[p, q] =x, using membership”; 

z :=m[c,d]; 

ifz<x 

-+ if m[p,q-1] <m[p--l,q] --+ u,u :=p-l,q 
0 m[p-1,ql <m[p,q-11 -+ u,u :=p,q--1 
fi ; 

do m[u,~] > z 

-+ mkql :=m[u,v] ; p,q :=u,u; 
ifm[p,q-1] <m[p-l,q] + u :=u-1 
0 m[p-l,q] <m[p,q-1] --+ u :=u-1 
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fi 

Od 

0 z3x 

+ if m[p,q+ll bm[P+l,ql -+ u,u :=p+l,q 

yi m[pi-l,ql bm[p,q+ll ---) u,u :=p,q+l 

ddm[u,u] <z 

+ m[p,q] :=m[u,u]; p,q:=u,u; 

ifm[p,q+l] >m[P+l,q] + u :=u+l 

f9 m[p+l,ql >m[p,q+ll + u :=u+l 

fi; Od 

m[p,ql :=‘z; 

m[c,d] :=ca 

5. The shape of U 

With respect to insertion, the effect on the set U of elements of m different from co 

is lJ : = U u {(a, b)}, where (a, b) satisfies 

Ins: m[a,b]=oo A m[a-l,b] Z co A m[a,b-1] fo2 

With respect to deletion, the effect on the set U is U : = U\ {(c, d)}, where (c, 4 

satisfies 

Del: m[c,d] # 00 A m[c+l,d]=oc A m[c,d+l]=oo 

We let set U depend on the size n of V only. Hence, we try to find a function f : 

[ l..ca) + [ l..oo) x [ l..oo), such that 

U={f(i) 1 l<i<n) 

Element f(n) of matrix m is added by an insertion into a bag of n- 1 elements; it is 

removed by a deletion from a bag of n elements. Hence, as additional invariants, we 

have 

n = the size of V, 

(u,b) = f(n+l), 

n > 0 =+ (c,d) = f(n) 

To procedure ins(x) the following statements are added at the end 

c,d :=u,b; 

(a, b) : = f(n+2) ; 
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(a) (b) (c) 

Fig. 2. Three suitable enumerations of the cells of the matrix. 

n :=n+l 

Procedure del(x) is extended at the end by 

a,b :=c,d; 

ifn>l 4 (c,d) :=f(n-1) 

/i n=l -+ skip 

n:=n-1 

Fig. 2 shows three suitable functions which satisfy the requirement that the shape of 

U should be within a small square. We consider the enumeration of Fig. 2(b), for which 

we have 

f(1) = (19 1) 

{ 

(b,a) ifa<b 

f(n+l) = (l,b+l) if a=b, where (a,b) =f(n) 

(b+l,a) if a > b 

It is also possible to express f(n- 1) in terms of f(n): 

f(l) = (l>l) 

{ 

(d-l,d-1) if c=l Ad> 1 

f(n-1) = (d,c-1) if c>l Ac<d where (c,d) =f(n> 

(d>c) if c>d 

With this choice of f, U is within a square with sides c T d, which is equal to Ifi]. 

Hence, for the membership test (cf. the program in Section 2)) only m[ 1,. k, 1.. k] plays 

a role, where k = c T d. 
The time complexity of this implementation is in some sense optimal with respect to 

the class of implicit data structures that are based on a fixed partial order on the storage 

locations. Let T, be the maximum number of steps needed to search for a given element 

and let T, be the maximum number of steps needed for any update to the data structure. 

Then, it is possible to prove that T, x T, is at least n (cf. [ 41) . So, this implementation 

provides a good balance between the worst-case time needed for searching and the 

worst-case time needed for changing the data structure. 
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This concludes the implementations of the operations. Note that as initialization, all 

matrix elements will be set to co. In the next section, we show how set U can be mapped 

to a initial segment of a linear array. Initialisation will then be a constant time operation 

(a single assignment). This transformation shows how inspection of pairs (p, q) where 

m[p, q] = m can be avoided. Furthermore, in the linear version, only storage needed to 

represent V is needed. 

6. Linearization 

Instead of matrix m, a linear array h [ 1 ..N*] can be used to store the values of V, in 

such a way that 

v = {h[i] 1 1 6 i < n}. 

As with the heap, the elements of V are stored in a prefix of h. Since f maps [ 1.~1 to 

the set of matrix elements used for a bag of n elements, we choose the inverse f-l to 

map positions in the matrix to positions in h. For 1 <i A 1 <j A (i, j) 6 U we have 

f-i (i, j) > n. Since m[ i, 0] and m[ 0, j] are defined as -00, we have the following 

correspondence between matrix m and array h: 

-co ifi=O V j=O, 

m[i,jl = h[f-‘(i,j)] if 1 6 i A 1 < j A f-‘(i,j) < n, 

00 if 1 6 i A 1 < j A f-‘(i,j) > n. 

It is not difficult to obtain an explicit expression for f-‘. For the enumeration of 

Fig. 2(b), we have 

{ 

(j-1)*+2i-1 ifi<j, 
f-‘(Lj) = (i_ 1)2+2j if i > j. 

To relate the f-‘-values of (i+l, j), (i, j+l), (i-l, j), and (i, j-l) to the f-l-value 

of (i, j), one can use the following relations, which follow from this expression. For 

f-‘(i, j) =k, we have 

f-‘(i+l, j) f-‘(i, j+l) f-‘(i-1, j) f-‘(i, j-l) case 

k+2 k+2j- 1 k-2 k-2j+3 i<j 

k + 2i k+2j-1 k-2 k-l i=j 

k+2i-1 k+l k-2i+2 k-2 i=j+l 

k+2i-1 k+2 k-2i+3 k-2 i>j+l 

A complete transformation of membership, insert and delete in terms of h is left to the 

reader. Note that the initialization ( V empty) is n : = 0 and that h[ 1 ] is the minimum 

of v. 
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7. Concluding remarks 

We have shown how dictionaries and priority queue operations can be implemented 

as an in-situ data structure, using an ascending matrix. The derivation of the programs 

for the operations in terms of a matrix is relatively easy. Once the programs have been 

derived, a linear array representation can be obtained using a transformation function. 

The choice of the enumeration of the matrix elements defines the transformation 

function. If one chooses the enumeration of Fig. 2(a), a data structure is obtained that 

is similar to the beap (biparental heap) of [ 41. Note that this choice uses only one half 

of the matrix. In [4], the beap is also used as basis for a more sophisticated implicit 

data structure with 0( n ‘I3 log n) execution time. This implementation, however, requires 

that all elements are distinct. 
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