
Science of
Computer

ELZEVIER
Programming

Science of Computer Programming 24 (1995) 149-158

The matrix as in-situ data structure
Anne Kaldewaij, Laurens de Vries *

Department of Mathematics and Computing Science, Eina’hoven University of Technology,
FO. Box 513, 5600 MB Eindhoven. The Netherlands

Received January 1994; revised August 1994

Communicated by M. Rem

Abstract

It is shown how a matrix can be used to implement a class of dictionaries. Instead of the strong
requirement of ascendingness of a linear array, the weaker requirement of ascendingness of a
matrix is used. This results in implementations that are efficient in both computation time and
storage usage.

Keywords: Data structures; Algorithms; Slope Search; Dictionaries

1. Introduction

We consider implementations of abstract data types that support insertions, deletions,

the membership test, and computation of the minimum. These operations operate on an

initially empty bag (multiset) V of elements from a totally ordered set. The operations

are described as follows

member(x) x E V

ins(x) v:=v+{x}

del(x) v : = v - {x}

min(x) the minimum of V

where {x} denotes the singleton bag containing X. When only the first three operations

are specified, the abstract data type is called a dictionary. Binary search trees are

common implementations of dictionaries (cf. [31). Without the membership test and

with deletions restricted to the minimum of V, the abstract data type is called a priority

* Corresponding author. Email: laurens@win.tue.nl.

0167-6423/95/$09.50 @ 1995 Elsevier Science B.V. All rights reserved

SSD10167-6423(94)00032-8

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82202081?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

150 A. Kaldewaij, L. de Vries/Science of Computer Programming 24 (1995) 149-158

queue. The well-known heap can be used as an implementation of the priority queue.

The heap is usually implemented as an in-situ data structure: a single array is used to

store the elements of V, and no pointers or other auxiliary arrays are used. The size

of the array determines the number of elements that V may have. The disadvantage of

such a heap is that an efficient implementation for the membership test does not exist.

Yet another in-situ representation of a bag is an ascending array. Computation of the

minimum is an 0(1) operation and for the membership test the binary search yields an

O(logn) program for a bag with n elements. Insertions and deletions, however, have

O(n) time complexity.

In this paper we show how the data type described above can be implemented as an

in-situ data structure, using a single two-dimensional array (a matrix). For a bag of n

elements the following time complexities are obtained:

member(x) 0(fi)

ins(x) O(G)

del(x) 0(&G

min(x) O(1)

Overview. Preliminaries are presented in Section 2. In Section 3 and Section 4 programs

for insertion and deletion are derived. These operations affect the part of the matrix that

is used to store the elements of V. How the shape of this part of the matrix can be

controlled is the topic of Section 5. In Section 6, we show how the solutions can be

transformed in such a way that the elements of the bag are stored in an initial segment

of a linear array.

2. Preliminaries

We use array m[1. .N, 1. .N] to hold the values of bag V. Hence, N2 is an upper

bound for the size of V. To obtain efficient programs for the operations on V, we decide

to maintain matrix m ascending in both arguments. The ascendingness of m will be an

invariant of all operations. For an ascending matrix, the searching paradigm known as

Saddleback Search, cf. [11, or as Slope Search, cf. [21, is applicable. This technique

(for details refer to [2, Section 8. lo]) yields for the membership test:

p,q,b := l,N,false;

doybAp#N+l AqZO

--+ if m[p,q] <x -+ p :=p+l

0 m[p,q] >x -+ q:=q-1

0 m[p,q]=x + b:=true

fi

od

This program has post-conditions

A. Kaldewaij, L. de Vries/Science of Computer Programming 24 (1995) 149-158 151

Fig. 1. matrix tn.
k

b E (3i,j: 1 < i<N A 1 <j<N: m[i,j]=x) and

b * m[p,ql =x

The repetition performs at most 2N steps. Hence, the time complexity is linear to the

square root of the size of the matrix. Since we aim at a time complexity related to n,

the number of elements of V, we will see to it that all elements of V are located within

a k x k part of the matrix, where k is approximately the square root of n. As a result,

only this k x k square has to be searched. This second design decision is implemented

as follows.

The elements of matrix m that do not hold a value of bag V will have value 00

(cf. Fig. 1). The values of m different from co, containing the values of V, are within

a k x k square. In Section 5 we show how insertion and deletion can be implemented in

such a way that the shape of the set of matrix elements contributing to V is “as square

as possible”.

The fact that m is ascending in both arguments, can be expressed as

(Vp,q: 16~ A 164: dp-l,ql Tmbq-11 6 dp,ql < m[p+l,ql lmb,q+ll)

where a T b and a J. b denote the maximum and minimum of a and b. To avoid problems

with the boundary of m, we define m[0, q] and m[p, 0] as --00; similarly, m[i, q] and

m [p, i] are defined oc for i > N.

Assignment m[p, q] : = x does not violate the ascendingness of m if and only if

mb-l,ql tmbhq-11 6 x 6 mb+l,ql lm[p,q+ll

In particular, for a pair (u, 0) satisfying

m[u,ul =mb--l,ql tmbq-11 or
m[u,ul =mb+l,ql lmb,q+ll

assignment m[p, q] : = m[u, u] does not violate the ascendingness of m.

152 A. Kuldewaij, L. de Vries/Science of Computer Programming 24 (1995) 149-158

3. Insertion

Insertion of a value will cause the change of a matrix element from co to a value

different from 00. Let us denote the set of matrix elements different from 00 by U.

Since the shape of U should be as square as possible, we decide the following:

An insertion will cause a change from 00 to a value different from cc for precisely

one element of the matrix. The choice for this element will depend only on the

shape of U; it is independent of the value that is inserted.

Matrix element (a, b) to be used for the next insertion will be at the border of U.

More precisely, it will satisfy predicate Ins defined as

Ins: m[a,b]=cx A m[a-l,b] #cc A m[a,b-1] #cc

How this invariant is maintained by insertions and deletions is shown in Section 5. For

the moment, we assume that program variables a and b satisfy Ins. To change m[a, b]

from 0;) to a value different from it, assignment

m[u,b] :=m[u-l,b] tm[u,b-11

is appropriate. As observed in the previous section, such an assignment does not violate

the ascendingness of M. It establishes

V= V’+{m[u,b]}

where V’ denotes the initial value of V. The post-condition of ins(x) is

v = v’ + {x}

On account of these observations, we introduce program variables p and q with PO, as

accompanying invariant for a repetition, defined by

PO : v = V’ + {m[p,ql}

Initialization is p, q : = a, b . Post-condition V = V’ + {x} is established by m [p, ql : =

x . For the invariance of m’s ascendingness, the pre-condition of this assignment should

satisfy

m[p-l,ql Tm[p,q-11 < x 6 mb+l,ql lm[fhq+ll

Since m[u,b+l] =CQ and m[u+l,b] =oo, initially x < m[p+l,ql 1 m[p,q+ll
holds, which we add as a second invariant of the repetition:

PI : x 6 m[p+l,ql lm[nq+ll

As guard of the repetition, we then have

mh-l,ql Tmhq-11 > x

For the sake of convenience, we introduce variables u and o with accompanying invari-

ants

A. Kaldewaij, L. de Vries/Science of Computer Programming 24 (1995) 149-158 153

P2 : (u,u)=(p,q-1) v (u,u)=(p-l,q)

P3 : m[u,ul =m[p-19ql tmhq-11

Using Ps, the guard of the repetition can be replaced by m[u, u] > x . It implies, due

to the ascendingness of m, x < m[u+l,o] lm[u,u+l], i.e., PI (p,q := u,u). To ensure

Po(p,q : = u,u) as well, statement m[p,q] : = m[u, u] should precede assignment

Py4 : = u, u. This yields the following program for ins(x) :

p,q:=a,b;

ifm[p,q-1] <m[p-l,q] -+ u,u :=p-1,q

f4 m[p-l,ql <m[p,q-11 + u,u :=p,q-1

mkp, sl :=m[u,u] ;

{PO A Pl A!2 A p3)

do m[u,u] > x

-+ mb,ql :=m[u,u]; p,q:=u,u;

if m[p,q-1] <m[p-l,q] -+ u :=u-1

foi dp-l,ql <m[p,q-11 --f u :=u--l

od;

mhql := x

In each step of the repetition u+u decreases by 1, hence, execution of this repetition

takes at most a + b steps. When the values of V are within a k x k square, this is at

most 2k.
Note that the first assignment m[p, q] : = m[u, u] is superfluous (it is only used to

avoid complicated invariants) and can be removed.

4. Deletion

Deletion of an element of V will decrease the number of elements different from oo

by one. Since the shape of U should be as square as possible, we decide the following

(cf. insertion) :

A deletion will cause a change from a value different from 00 to co for precisely

one element of the matrix. The choice for this element will depend only on the

shape of U; it is independent of the value that is removed.

Matrix element (c, d) to be used for the next deletion will be close to the border

of U. More precisely, it will satisfy predicate Del, defined as

Del: m[c,d] #co A m[c+l,d]=oc A m[c,d+l]=oo

How this invariant is maintained by insertions and deletions is shown in Section 5. For

the moment, we assume that program variables c and d satisfy Del. The assignment

154 A. Kaldewaij, L. de Vries/Science of Computer Programming 24 (1995) 149-158

m[c, d] := 00 does not violate the ascendingness of the matrix. Furthermore, it satisfies

(V=A Am[c,d]=z}m[c,d]:=co{V=A-{z}}

Let x be the element of V to be removed. If we take A = V’ - {x) + {z} in the

above Hoare-triple, then the post-condition simplifies to V = V’ - {x}, which is to be

established by de1 (X) .

The remaining problem is now to establish as pr~ondition for m[c, d] := 03:

V = V’ - {x} + {z} A m[c,d] = z

This condition expresses formally that z is added to V at the expense of x. It is clear

that this requires an assignment of the form

mfP,ql := 2

for some p and q. The corresponding pre-condition of this assignment is

(1) V = V’ - {x} + {m[p,q]} A m[c,d] = z

The ascendi~gne~s of m imposes as additional precondition

(2) mCp--l,ql tmbq-11 6 z < m[p+t,qllmbq+fl

Condition (1) can easily be satisfied using the member operation, to establish m[p, q] =
x, followed by the assignment z := m[c, d] . This suggests the introduction of a repetition

with (1) as invariant and a guard whose negation implies (2). This approach is similar

to the one used in the ins operation. As a matter of fact, ins can be viewed as a special

case of this problem, where x = 00. There is one important difference, however. The

values of n and z are not related in any way. So, it is not clear whether p and q must

be increased or decreased in order to obtain (2). To make the direction of change of p

and q predetermined, we introduce a case analysis. In case z < x, we have z < mhql
as additional inv~i~t of a re~tition in which p and q are decreased, as in the ins

program. In case z, 3 X, we have z > m[p,q] as additional invariant of a symmetric

repetition in which p and q are increased. This results in the following program for

del(x):

“compute (p, q), such that m[p, q] =x, using membership”;

z :=m[c,d];

ifz<x

-+ if m[p,q-1] <m[p--l,q] --+ u,u :=p-l,q
0 m[p-1,ql <m[p,q-11 -+ u,u :=p,q--1
fi ;

do m[u,~] > z

-+ mkql :=m[u,v] ; p,q :=u,u;
ifm[p,q-1] <m[p-l,q] + u :=u-1
0 m[p-l,q] <m[p,q-1] --+ u :=u-1

A. Kaldewaij, L. de Vries/Science of Compuier Programming 24 (1995) 149-158 155

fi

Od

0 z3x

+ if m[p,q+ll bm[P+l,ql -+ u,u :=p+l,q

yi m[pi-l,ql bm[p,q+ll ---) u,u :=p,q+l

ddm[u,u] <z

+ m[p,q] :=m[u,u]; p,q:=u,u;

ifm[p,q+l] >m[P+l,q] + u :=u+l

f9 m[p+l,ql >m[p,q+ll + u :=u+l

fi; Od

m[p,ql :=‘z;

m[c,d] :=ca

5. The shape of U

With respect to insertion, the effect on the set U of elements of m different from co

is lJ : = U u {(a, b)}, where (a, b) satisfies

Ins: m[a,b]=oo A m[a-l,b] Z co A m[a,b-1] fo2

With respect to deletion, the effect on the set U is U : = U\ {(c, d)}, where (c, 4

satisfies

Del: m[c,d] # 00 A m[c+l,d]=oc A m[c,d+l]=oo

We let set U depend on the size n of V only. Hence, we try to find a function f :

[l..ca) + [l..oo) x [l..oo), such that

U={f(i) 1 l<i<n)

Element f(n) of matrix m is added by an insertion into a bag of n- 1 elements; it is

removed by a deletion from a bag of n elements. Hence, as additional invariants, we

have

n = the size of V,

(u,b) = f(n+l),

n > 0 =+ (c,d) = f(n)

To procedure ins(x) the following statements are added at the end

c,d :=u,b;

(a, b) : = f(n+2) ;

156 A. Kaldewaij, L. de Vries/Science of Computer Programming 24 (199.5) 149-158

:/Ii;Y& ,‘1! :;::i

(a) (b) (c)

Fig. 2. Three suitable enumerations of the cells of the matrix.

n :=n+l

Procedure del(x) is extended at the end by

a,b :=c,d;

ifn>l 4 (c,d) :=f(n-1)

/i n=l -+ skip

n:=n-1

Fig. 2 shows three suitable functions which satisfy the requirement that the shape of

U should be within a small square. We consider the enumeration of Fig. 2(b), for which

we have

f(1) = (19 1)

{

(b,a) ifa<b

f(n+l) = (l,b+l) if a=b, where (a,b) =f(n)

(b+l,a) if a > b

It is also possible to express f(n- 1) in terms of f(n):

f(l) = (l>l)

{

(d-l,d-1) if c=l Ad> 1

f(n-1) = (d,c-1) if c>l Ac<d where (c,d) =f(n>

(d>c) if c>d

With this choice of f, U is within a square with sides c T d, which is equal to Ifi].

Hence, for the membership test (cf. the program in Section 2)) only m[1,. k, 1.. k] plays

a role, where k = c T d.
The time complexity of this implementation is in some sense optimal with respect to

the class of implicit data structures that are based on a fixed partial order on the storage

locations. Let T, be the maximum number of steps needed to search for a given element

and let T, be the maximum number of steps needed for any update to the data structure.

Then, it is possible to prove that T, x T, is at least n (cf. [41) . So, this implementation

provides a good balance between the worst-case time needed for searching and the

worst-case time needed for changing the data structure.

A. Kaldewaij, L. de Vries/Science of Computer Programming 24 (1995) 149-158 157

This concludes the implementations of the operations. Note that as initialization, all

matrix elements will be set to co. In the next section, we show how set U can be mapped

to a initial segment of a linear array. Initialisation will then be a constant time operation

(a single assignment). This transformation shows how inspection of pairs (p, q) where

m[p, q] = m can be avoided. Furthermore, in the linear version, only storage needed to

represent V is needed.

6. Linearization

Instead of matrix m, a linear array h [1 ..N*] can be used to store the values of V, in

such a way that

v = {h[i] 1 1 6 i < n}.

As with the heap, the elements of V are stored in a prefix of h. Since f maps [1.~1 to

the set of matrix elements used for a bag of n elements, we choose the inverse f-l to

map positions in the matrix to positions in h. For 1 <i A 1 <j A (i, j) 6 U we have

f-i (i, j) > n. Since m[i, 0] and m[0, j] are defined as -00, we have the following

correspondence between matrix m and array h:

-co ifi=O V j=O,

m[i,jl = h[f-‘(i,j)] if 1 6 i A 1 < j A f-‘(i,j) < n,

00 if 1 6 i A 1 < j A f-‘(i,j) > n.

It is not difficult to obtain an explicit expression for f-‘. For the enumeration of

Fig. 2(b), we have

{

(j-1)*+2i-1 ifi<j,
f-‘(Lj) = (i_ 1)2+2j if i > j.

To relate the f-‘-values of (i+l, j), (i, j+l), (i-l, j), and (i, j-l) to the f-l-value

of (i, j), one can use the following relations, which follow from this expression. For

f-‘(i, j) =k, we have

f-‘(i+l, j) f-‘(i, j+l) f-‘(i-1, j) f-‘(i, j-l) case

k+2 k+2j- 1 k-2 k-2j+3 i<j

k + 2i k+2j-1 k-2 k-l i=j

k+2i-1 k+l k-2i+2 k-2 i=j+l

k+2i-1 k+2 k-2i+3 k-2 i>j+l

A complete transformation of membership, insert and delete in terms of h is left to the

reader. Note that the initialization (V empty) is n : = 0 and that h[1] is the minimum

of v.

158 A. Kaldewaij L. de Vries/Science of Computer Programming 24 (1995) 149-158

7. Concluding remarks

We have shown how dictionaries and priority queue operations can be implemented

as an in-situ data structure, using an ascending matrix. The derivation of the programs

for the operations in terms of a matrix is relatively easy. Once the programs have been

derived, a linear array representation can be obtained using a transformation function.

The choice of the enumeration of the matrix elements defines the transformation

function. If one chooses the enumeration of Fig. 2(a), a data structure is obtained that

is similar to the beap (biparental heap) of [41. Note that this choice uses only one half

of the matrix. In [4], the beap is also used as basis for a more sophisticated implicit

data structure with 0(n ‘I3 log n) execution time. This implementation, however, requires

that all elements are distinct.

References

[1] D. Gries, The Science of Programming, Texts and Monographs in Computer Science (Springer, New

York, 1981).

[2] A. Kaldewaij, Programming: The Derivation of Algorithms, Prentice Hall International Series in

Computer Science (Prentice Hall, London, 1990).

[3] K. Mehlhom, Data structures and algorithms 1: Sorting and Searching (Springer, Berlin, 1984).

[4] J.I. Munro and H. Suwanda, Implicit data structures for fast search and update, J. Compur. Sysrem Sci.
21 (1980) 236-250.

