Note

On the Planes of Narayana Rao and Satyanarayana

Oscar E. Barriga
Universidad de Chile, Departamento de Matemáticas, Casilla 653 Santiaga, Chile.

Communicated by A. Barlotti
Received May 22, 1986

Abstract

The construction of the spread sets defining the Narayana Rao-Satyanarayana planes is generalized to odd powers of arbitrary primes $p, p \equiv 5(\bmod 6)$. A second family of spread sets of a similar kind is introduced for odd powers of primes p, $p \equiv \pm 2(\bmod 5)$. The translation complements corresponding to the first are determined and some properties of that corresponding to the second are indicated. © 1987 Academic Press, Inc.

Translation planes of order $5^{2 r}$ with r odd have been constructed in [1] by Narayana Rao and Satyanarayana. In this note we show that the construction in [1] can be generalized to produce translation planes of order $p^{2 r}$ with r odd for any prime number $p \equiv 5(\bmod 6)$. Also along the same lines, we construct other spread sets defining translation planes of the same order for any prime number $p \equiv \pm 2(\bmod 5)$. We also exhibit the translation complement of the planes of the first type.

1. Construction of Spread Sets

Let p be a prime number, $p \equiv 5(\bmod 6)$ and let $q=p^{r}$ with r odd. Then -3 is a non-square in $G F(q)$ and for any $\beta \neq 0, \beta \in G F(q)$, there is a nonsquare $\gamma \in G F(q)$ such that

$$
\begin{equation*}
\beta^{2}+3 \gamma=0 \tag{1}
\end{equation*}
$$

Let β, γ be fixed elements of $G F(q)$ subject to (1). For each $a, b \in G F(q)$ with $b \neq 0$ define $f_{a, b}$ and $g_{a, b}$ in $G F(q)$ by

$$
\begin{equation*}
f_{a, b}=-a^{2} b+\beta a b^{2}+\gamma b^{3}, \quad g_{a, b}=-a+\beta b . \tag{2}
\end{equation*}
$$

148
0097-3165/87 \$3.00
Copyright © 1987 by Academic Press, Inc.
All rights of reproduction in any form reserved.

Finally, for $a, b \in G F(q)$ with $b \neq 0$ define a matrix $B_{a, b}$ and define sets of matrices $\mathfrak{B}, \mathfrak{U}, \Sigma$ over $G F(q)$ as follows:

$$
\begin{align*}
B_{a, b} & =\left(\begin{array}{cc}
a & b^{-1} \\
f_{a, b} & g_{a, b}
\end{array}\right), \quad \mathfrak{B}=\left\{B_{a, b}: a, b \in G F(q), b \neq 0\right\} \\
\mathfrak{U} & =\left\{\left(\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right): a \in G F(q), a \neq 0\right\}, \quad \Sigma=\left\{\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)\right\} \cup \mathfrak{U} \cup \mathfrak{B} . \tag{3}
\end{align*}
$$

Taking $p=5, \beta=3, \gamma=2$ in (1), (2), and (3) the set Σ is the spread set defined by Narayana Rao and Satyanarayana in [1]. In the general case we have

Proposition 1.1. Σ is a spread set over GF(q).

Proof. Since det $B_{a, b}=-\gamma b^{2} \neq 0$ it follows that $\mathfrak{U} \cup \mathfrak{B}$ consists of invertible matrices. Since trace $B_{a, b}=\beta b$ it follows that the characteristic polynomial of $B_{a, b}$ is $x^{2}-\beta b X-\gamma b^{2}$. This polynomial is irreducible over $G F(q)$ because its discriminant γb^{2} is a non-square by (1). Thus $B_{a, b}$ has no eigenvalues in $G F(q)$ and therefore the difference between $B_{a, b}$ and any scalar in \mathfrak{U} is a non-singular matrix.

To end the proof it is enough to see that for $b \neq 0, d \neq 0$ and $(a, b) \neq(c, d)$ the matrix $B_{a, b}-B_{c, d}$ is also non-singular. To see this we follow [1]: The expression $\operatorname{det}\left(B_{a, b}-B_{c, d}\right)=0$ is of the form $\lambda a^{2}+\mu a+v=0$ where λ, μ, v depend on b, c, d only. Since $a \in G F(q)$ this equality implies that $\mu^{2}-4 \lambda v$ is a square in $G F(q)$; but replacing λ, μ, v in terms of b, c, d gives, using (1) that

$$
\begin{equation*}
\mu^{2}-4 \lambda \nu=\gamma d^{2}\left(1-b d^{-1}\right)^{4} \tag{4}
\end{equation*}
$$

where if $b \neq d$ we get a contradiction as γ is a non-square, while if $b=d$ the condition $\operatorname{det}\left(B_{a, b}-B_{c, d}\right)=0$ leads to $a=c$ contradicting $(a, b) \neq(c, d)$. This ends the proof as the cardinality of Σ is q^{2}.

A straightforward application of (1), (2), (3) together with the facts $\operatorname{det} B_{a, b}=-\gamma b^{2}$ and trace $B_{a, b}=\beta b$ yields that the spread set Σ satisfies also

$$
\begin{align*}
& M \in \mathfrak{U} \cup \mathfrak{B} \Rightarrow-M \in \mathfrak{U} \cup \mathfrak{B} \tag{5}\\
& M \in \mathfrak{U} \cup \mathfrak{B} \Rightarrow \exists N \in \mathfrak{U} \cup \mathfrak{B}: M+N \notin \Sigma \tag{6}\\
& M \in \mathfrak{U} \cup \mathfrak{B} \Rightarrow \exists N \in \mathfrak{Z} \cup \mathfrak{B}: N \neq-M \quad \text { and }\left(M^{-1}+N^{-1}\right)^{-1} \notin \Sigma . \tag{7}
\end{align*}
$$

Assume next that p is a prime number, $p \equiv \pm 2(\bmod 5), q=p^{r}$ with r
odd. Then 5 is a non-square in $\operatorname{GF}(q)$ and we can proceed as before changing (1) through (4) by

$$
\begin{align*}
\beta^{2}-5 \gamma & =0 \\
f_{a, b} & =-a^{2} b+\beta a b^{3}-\gamma b^{5}, \quad g_{a, b}=-a+\beta b^{2}
\end{align*}
$$

and (3^{\prime}) being identical to (3).
This time we have det $B_{a, b}=\gamma b^{4}$, trace $B_{a, b}=\beta b^{2}$, the discriminant of the characteristic polynomial of $B_{a, b}$ is the non-square γb^{4}. A little tedious but elementary algebra shows that in the proof of Proposition 1, with the same notation, we get

$$
\mu^{2}-4 \lambda \nu=\gamma d^{-2}(d-b)^{2}\left[(d+b)^{2}+b d\right]^{2},
$$

where $\mu^{2}-4 \lambda \nu$ can only be zero if $d=b$ as the second factor leads to the polynomial $X^{2}+3 X+1$, which is irreducible in $G F(q)[X]$. If $d=b$ then $a=c$ is forced again and otherwise $\mu^{2}-4 \lambda v$ is non-square. We have then sketched the proof of

Proposition 1.2. If $q=p^{r}$ with r odd and $p \equiv \pm 2(\bmod 5)$ and if

$$
\Sigma^{\prime}=\left\{\left(\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right): a \in G F(q)\right\} \cup\left\{\left(\begin{array}{cc}
a & b^{-1} \\
f_{a, b} & g_{a . b}
\end{array}\right): a, b \in G F(q), b \neq 0\right\},
$$

where $f_{a, b}$ and $g_{a, b}$ are defined by $\left(1^{\prime}\right)$ and $\left(2^{\prime}\right)$, then Σ^{\prime} is a spread set over $G F(q)$.

Observe that, since (2^{\prime}) defines non-homogeneous polynomials, our spread set Σ^{\prime} does not satisfy a property like (5). The very useful Lemma 3.4 in [1] cannot be used then in the calculation of the translation complement of the plane defined by Σ^{\prime}.

2. Translation Complements

We choose our notation following [2] as follows. Let X denote the vector space of rows over $G F(q)$ of dimension $2, V$ be the external direct sum $X+X$ and consider the 2-dimensional subspaces of $V: V(0)=$ $\{(x, 0): x \in X\}, \quad V(\infty)=\{(0, x): x \in X\}, \quad V(M)=\{(x, x M): x \in X\} \quad$ for $M \in \mathfrak{U} \cup \mathfrak{B} \subseteq \Sigma$. Let $\pi=\{V(0), V(\infty)\} \cup\{V(M): M \in \mathfrak{U} \cup \mathfrak{B}\}$. Then [2, Theorem 2.3] π is a spread defining a translation plane with kernel $G F(q)$.

The translation complement of this plane is the set stabilizer of π in $\Gamma L(4, q)$ under its action by multiplication on the right. Denote by G_{0} this translation complement.

Since the field automorphisms of $G F(q)$ leave \mathfrak{U} and \mathfrak{B} invariant it follows that $G_{0}=G$ aut $G F(q)$, where G is the set stabilizer of π in $G L(4, q)$.

We write elements of $G L(4, q)$ in 2×2 block form, denote by I the identy 2×2 block, and let

$$
\begin{aligned}
& Z=\left\{\left(\begin{array}{cc}
x I & 0 \\
0 & x I
\end{array}\right): x \in G F(q)\right\}, \\
& H=\left\{\left(\begin{array}{cc}
P & 0 \\
0 & c P
\end{array}\right): P=\left(\begin{array}{cc}
c & 0 \\
a & c^{-1}
\end{array}\right) ; a, c \in G F(q), c \neq 0\right\} .
\end{aligned}
$$

Then Z and H are subgroups of $G L(4, q)$ which normalize each other and $Z \cap H=\{i d$.$\} . Hence Z \times H$ is a subgroup of $G L(4, q)$ of order $(q-1)^{2} q$.

The proof used by Narayana Rao and Satyanarayana in [1] can now be followed almost step by step to show that $G=Z \times H$ and the orbits of G on π are $\{V(0)\},\{V(\infty)\},\{V(M): M \in \mathfrak{U}\},\{V(M): M \in \mathfrak{B}\}$. We have then

Proposition 2.1. The translation complement of the translation plane defined by the spread set Σ is the group $G_{0}=(Z \times H) \cdot$ aut $G F(q)$, of order $(q-1)^{2} q r$ and its orbits of special points are $\{V(0)\},\{V(\infty)\}$, $\{V(M): M \in \mathfrak{l l}\},\{V(M): M \in \mathfrak{B}\}$.
For our second spread set Σ^{\prime}, Pomareda [3] has shown, using very lengthy calculations, that the translation complement has the order $(q-1)^{2} q r$ and it has five orbits of special points indicating that these translation planes are possibly new.

We remark finally that the spread set Σ can be defined also over an infinite field in which -3 is a non-square if all cubic equations have solutions in the field. The field \mathbb{R} is an example. We do not know if the spread Σ^{\prime} can be defined over infinite fields also.

References

[^0]
[^0]: 1. M. L. Narayana Rao and K. Satyanarayana, A new class of square order planes, J. Combin. Theory Ser. A 35 (1983), 33-42.
 2. H. Luneburg, "Translation Planes," Springer-Verlag, Berlin/Heidelberg/New York, 1980.
 3. R. Pomareda, Calculation of certain translation complements, private communication.
