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The paper is concerned with the structure of irreducible polynomials in one
variable over a local field (K, v). The main achievement is the definition of a system
P(f) of invariant factors for each monic irreducible polynomial fe K[ X]. It is
proved that these invariants are characteristic, i.e., by using invariants we may
describe the set of irreducible polynomials over a local field.  « 1995 Academic

Press. Inc.

An old and interesting problem is to study and determine the irreducible
polynomials over a field. In this work we define some invariants associated
to an irreducible polynomial over a local field and try to investigate the
structure of irreducible polynomials. The main tools of this investigation
are the results proved in [1, 2, 7] on the residual transcendental extension
of a valuation v on a field X to the field K(X), where X is an indeterminate
over K.

We hope that the results of this work will be used in the study of the
finite extensions of local fields.

Now we present briefly the content of the work.

In the first section there are given the definitions and the fundamental
results used in the sequel. Particularly, here is defined the notion of the
so-called “lifting polynomial” relative to a r.t. extension. In the second
section it is proved that every lifting of an irreducible polynomial is also
irreducible (Theorem 2.1). Consequently we reobtain some known criteria
of irreducibility and also give new criteria. In Theorem 2.3 1t is proved that
in some cases every finite extension of a local field is given by an irreducible
lifting polynomial.

In Section 3 we define and study the so-called “distinguished pairs.” The
results of this section will be used in the last section. This last section is the
main part of the work. Here is defined the notion of “distinguished chain”
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relative to an irreducible polynomial, and there is emphasis on a sequence
of invariants of an irreducible polynomial. It is proved that these invariants
are characteristic, i.e., by using invariants, we may describe the set of
irreducible polynomials over a local field (Theorem 4.6). As an application
it is proved that the invariants of an irreducible polynomial may be used
to understand sufficiently well the extension of the natural valuation of a
local field K to the field given by the considered polynomial.

1. NortaTions, DEFINITIONS AND GENERAL RESULTS

1. In this work by local field we shall mean a field K complete relative
to a rank one and discrete valuation ©([3, 4, 5,8]). Let K be a fixed
algebraic closure of K and denote also by v the unique extension of v to K.
If KL <K is an intermediate field, denote: G(L) = {v(x); xel}. As
usually G(K) will be identified to the ordered group Z of rational integers
and for every L, G(L) will be viewed as a subgroup of the additive
group Q.

Denote A(L)={xeL; v(x)=0} the ring of integers of L. Let M(L)=
{xeL; v(x)>0} and let n, be a uniformising element of L. Particularly
denote m=m Let R(L)=A(L)/M(L) the residue field of L. If xe A(L)
denote by x* the canonical image of x into R(L). As usually R(L) will be
viewed canonically as a subfield of R(K). Moreover R(K) is an algebraic
clossure of R(K).

Let KcL,=L,=K be intermediate fields such that £,/K is a finite
extension. Then R(L,)/R(L,) is a finite extension and the number
UL, /L) =[R(L,):R(L,)] will be called the inertial degree of L, relative
to L,. The quotient group G(L,)/G(L,) 1s finite and its index will be
denoted by e(L,/L,) and will be called the ramification index of L, relative
to L,. It 1s well known (see [3, Ch.IV]) that f(L,/L,)e(L,/L,)=
[L,:L,] _ _

If K€ L <K and a€ K, then the degree [ L{a): L] of a relative to L will
be denoted by deg; a (or simply by deg a when L =K).

If feAK) [X], f=aoX"+a, X"~ '+ --- +a, we denote

f=atX"+af X" '+ .. +a¥eRK)[X]

and we say that fis the residue polynomial in R(K)[ X7 of the polynomial f.
2. If aeK and é € Q, we may define, for any Fe K[ X],

Fx)=cy+cix—a)+ - +c,(x—a)",

w(F)= inf {u(c;)+id}.

O<ign
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In this manner we obtain a valuation of K[ X] (and canonically on
K(X)) which is a residual transcendental (r.t.) extension of (K, v) (ie., the
residual field of w is transcendental over R(K)})} and it is called “the r.t.
extension of (K, v) defined by inf, « and 6.

An element (g, §) e K x Q will be called minimal with respect to K if for
every b e K the condition v(a —b) = implies [ K(a): K] <[K(b):K].

The word “minimal” was suggested by the fact that this definition is
equivalent to the following: (g, d) 1s minimal if there is no pair (¢, 3)
with deg ¢’ <deg ¢ such that both pairs define the same r.t. extension w
on K( X).

If ae K\K, denote w(a)=sup{v(a—a')} where «' runs over all con-
jugates of a over K, and &' #a. By Krasner’s Lemma (see [2, p.66]) it
follows that

Remark 1.1. Let a be separable over K. If 0> wl(«a) then (a,d) is a
minimal pair.

Let (a, ) be a minimal pair and let /' be the monic minimal polynomial
of a over K. Let a=a,, a,..., a, be all the roots of f and let us put:

o= Z inf(v(a —a,), d).

i=1
If Fe K[ X], we decompose F after the powers of /-
F=F,+F f+ -« +F [, deg F,<deg f.i=0,.... ¢
Then we define:

w(F)= 1nf (v(F,(a))+iy) (hH

0<i<y

In [1] (see also [7]) it is proved the following result:

THEOREM 1.2.  Let (a,y) be a minimal pair with respect to K. Then the
assignment (1) defines a valuation on K[ X] (and canonically on K(X)) which
is the restriction of the valuation w defined on K(X) by inf, a and 8.
Moreover one has:

(a) The value group of w is canonically isomorphic to G(K{a})+ Zy.

(b)y Let e be the smallest non-zero positive integer such that
eye G(K(a)). Let he K[ X, deg h <deg [ such that wih( X)) =v{hla))=¢ey}.
Then r = f“/h is an element of K(X) such that w(r)=0, the image r* of r in
the residue field of w (denoted k), is transcendental over R(K) and one has

k, >~ R(K(a))(r*).

W
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Here the isomorphism is canonic: for any Fe K[ X] with deg F<dega we
have w(F)=w(F(a)), (F/Fla))* =1 and the above isomorphism becomes an
equality in the residue field of w.

Moreover if w' is an 1.1, extension of v to K(X), then there exists a pair
{(a, 8) minimal with respect to K such that w' coincides to the r.t.-extension
defined by the minmal pair (a, ).

3. In what follows we shall consider a minimal pair (a, d)e K x Q and
denote by w the r.t. extension of v to K(X). Also we shall preserve all nota-
tions stated above. We shall identify the residue field k= R(K(a))(r*) of
w to the field R(K(a))(Y), where Y is an indeterminate over R(K(a)) (1.e.,
we shall write r*=Y).

Let Ge R(K(a))[ Y] monic and let m =deg G. Let ge K[ X] monic. We
shall say that g is a lifting of G relative to w (or more precisely relative to
(a,d, hy if and only if:

(1) degg=em(degf)
(2) w(g)=mw(h)=mey and (g/h")*=G.
Remark 1.3 Any G e R(K(a))[ Y], monic, has lifings in K[ X].

Proof 1f G=Y"+c,Y" '+ ... +¢,, and A,eK[X]. i=1, 2,..,m,
are such that deg 4, <deg/f, v(A4;{¢))=0 and (A,(a))*=c¢,, then g=
F AR Voo 4,07 is a lifting of G (for (1) observe that
deg A, +deg h <(deg f) - infle(K({a)/K), 2} < deg ).

We say that the hfting G of g is wrivial if deg g =degf. This situation
appear if and only if deg G=1 and y = w(f)e G(K)(a). The motivation of
this definition will appear later.

2. IRREDUCIBILITY OF THE LIFTINGS OF [RREDUCIBLE POLYNOMIALS

1. THEOREM 2.1. Let G#Y be a wmonic irreducible polynomial of
R(K(aW Y). Then any lifting g of G is an irreducible polynomial of K[ X].

Proof. Let m=deg G and let us assume that g is not irreducible. Then
we may write

g£=r9.
where p, ¢ are both non-constant polynomials of K[ X']. Now let

p=po+pf+ - +p S+, degp,<degf. i=0,..,1¢ ..
g=qo+q, f+ - +q.,.f"+ -, deggq,<degf, j=0,..,u, ..
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be the corresponding f-expansion of p and ¢. Denote by ¢, respectively by
u the smallest positive integer such that

w(p)=inf (v(p;(a)) +iy)=v(p,(a)) +ty

w(g)=1nf (v(g(a))+ iy)=v{gla)) +uy

We have
wig)=mey=w(p)+wig)=uvipla)) +uqla)+(1+u)y.
Since w(g)e G(K(a)), it follows that ¢+ u is divisible by e. Let
t=tie+t, O0<ty<e
U=1u,¢+u, O<u,<e
Then t4+ uq =ec, where ¢ =0 or 1. We may write

f“g =< P )( a"p. _) 2)
hm+¢’ p’hml hm+('—~ml *

where m, is choosed such that the first factor of the right side (and thus the
second too) has valuation zero. From (2) we obtain in R(K(a))[ Y] an
equality of the form:

YG=HQ. (3)

If t,>0 then uy>0 and these would imply that H and @ have no
constant term, which is false since ¢ <1 and G # Y. Therefore we must have
to=1u,=0. Then (3) together with the irreducibility of G implies that, say,
Q is constant. To finish the proof it is now sufficient to note that
deg p <deg g =¢ deg G=e deg H <deg p. Hence g is constant; and so g is
irreducible as claimed.

2. At this point we shall derive some consequences of Theorem 2.1.
These may be considered as criteria of irreducibility.

ProrosITION 2.2, Let
g=X"+a, X" '+ - +a, X+a,,
be a polynomial of K[ X]. Assume that v(a,)=s is a positive integer

relatively prime tom. Then g is an irreducible polynomial if and only if
vla,)>is/im, 1 <i<m—1.
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Proof. The necessity of these conditions follows from the relations
between the roots and coefficients of g and the fact that all the roots
of g have the same valuation s/m (note that the inequalities are strictly
since v(a,)e Z3is/m. For the sufficience, observe firstly that the pair
(0, s/m)e K x Q is minimal with respect to K. Let w be the r.t. extension
defined by this pair. The element r of Theorem 1.2 is r = X™/7* (i.e., we may
take h=7n"). f G=Y +(a,,/n"}* € R(IK)[ Y], then g is a lifting of G and so
is irreducible.

A special case (s=1) of Proposition 2.2 is the well known Eisenstein
criteria of irreducibility.

3. The monic polynomial fe A(K)[ X] is called unramified if f, the
residue of fin R(K)[ X], is irreducible and separable. Let a4, ..., a, be the
roots of fin K. It is clear that for any root a of f one has v(a) =0, and so
for any positive rational number s/e, (e, s) = 1, the pair (a, s/e)e Kx Qis a
minimal one. The extension K(«)/K is separable and = is also an unifor-
mising element of K(a). A polynomial of the form

h=f(’+alf(-7l+ +ae’

where a,€ A(K)[ X], dega,<deg f,a;=0, 1 <i<e, and (a,/m)* # 0 will be
called an f~Eisenstein polynomial. If f = X we obtain the classical Eisenstein
polynomials. Other special cases are described in [7] (Theorem 1). Every
f-Eisenstein polynomial is lifting of a polynomial like G=Y+ ¢, ¢#0 of
R(K)[ Y] relative to the valuation w of K(X) defined by the minimal pair
(a, 1/e), and so by Theorem 2.1 is irreducible.

The following result shows that f-Eisenstein polynomials define almost
all finite extensions of K.

THEOREM 2.3. Let K< L <K be such that L/K is a finite extension and
R(L)/R(K) is separable. Then there exists an unramified polynomial f, an
[f-Eisenstein polynomial g and root b of g such that L= K(b).

Proof. According to [8, p. 66] there exists an element b e L such that
A(L)=A(K)[b] and that an uniformising element of L is of the form ¢(&)
where g€ A(K)[ X] is monic and deg ¢=f(L/K). Let g be the minimal
monic polynomial of 4 over K. We shall prove that g is an f-Eisenstein
polynomial, where f is an unramified polynomial of KT X7].

First we observe that R(L)= R(K)[b*]. Let ¢(X) be the minimal polyno-
mial of h* over R(K) and let fe A(K)[ X] be monic and such that f=1.
Since g is irreducible, it follows (by Hensel’'s Lemma) that ¢ is a power of
the irreducible polynomial f. Hence one has

g=/"+tng, g eAK)X], deg g, <degg.



104 POPESCU AND ZAHARESCU

Let us write g, =da,f '

I <i<e, and:

+ .- +da. where ale A(K), dega<deg f.

g=f+a,f° '+ - +a, a,=na), I<ige

Since f'is an unramified polynomial we see by the last equality that g is an
/-Eisenstein polynomial as claimed.

3. DISTINGUISHED PAIRS

1. Actually we know that a lifting g of an irreducible monic polynomial
G(Y)# Y is irreducible. This gives us the possibility of constructing an
irreducible polynomial g starting from a known quadruple (f, y, &, G). We
ask now about the converse: Is any irreducible monic polynomial g of
K[ X] a lifting of an irreducible polynomial G(Y)# Y with respect to a
certain r.t. extension w of v to K(X)?

It is easy to prove that the answer is yes.

For, let g be irreducible and « a root of g. Let ¢ € K be such that v(c) is
enough large. Let f'= g — ¢ and let ¢, be a root of f for which d=v(a —a,)
is greatest. Then K(«a)= K(a,), and («,, d) is a minimal pair. If w is the r.t.
extension defined by this minimal pair, then in Theorem 1.2 one has:
y=Yinfle(a;, —a'), d) =v( fla))=v(¢)e G(K) (here a' runs over all the
roots of /) and so r= f/c. It is easy to see that g is a lifting of G= Y + 1
with respect to w.

This answer to the above question is not useful in our work to describe
the set of all irreducible polynomials over K, because of the triviality (in the
sens of our definition) of the lifting which was constructed. The reason for
working only with non-trivial liftings lies in the fact that to know the g’s
rests in the known of the quadruples (f, y, h, G). If we suppose that the
irreducible polynomials over the finite extensions of R(X) (i.e. the G’s) are
“known” and if we ignore for the moment the trubles created by y and A,
then we may start an inductive process to construct the irreducible
polynomials over K from those of smialler degree.

So we ask now: is any irreducible polynomial g a nontrivial complete
lifting?

We shall prove that the answer is yes.

2. At this point we shall define the notion of “distinguished pair” which
will be the main tool in the study of the above problem. A pair (a, b) of
elements from K is said to be “distinguished” if the following conditions
hold.
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{1°) dega>degh.
(2°) If ce K and deg ¢ <deg a then v(a—c) <v(a—b).
(3°) If ce K and deg ¢ <deg b then v(a—c)<t(a—b).

In other words, (a, b) is distinguished if # is an element of K of mini-
mal degree for which v(a —b) =sup{v(a—c)), ce K, deg c <dega}.

If (a, b) 1s distinguished, then ae K. Conversely, if @ € K then there exists
{(infinitely many) elements e K for which (a, b) is distinguished (for this,
observe that the set {v(a— ¢); deg ¢ <dega} has a greatest element, since
it is bounded, e.g., by w(«a}). Moreover the number deg b is an invariant of
a; 1t is a divisor of deg a (as we shall prove latter) which will be termed as
“an Invariant factor for a.”

Since the valuation v is Henselian, for every t e Gal(K/K) one has (a, b)
is distinguished if and only if {(a), 7(b)) is distinguished.

As a consequence deg b is in fact an invariant of the minimal polynomial
fof a over K.

Given two irreducible monic polynomials over K, f and g we shall say
that (g, /') is a distinguished pair, if there exists a root « of g and a root b
of / such that (a, b) is a “distinguished pair.” It is clear that in this defini-

tion we may replace the expression “there exists ¢ --- and »” with any of
the two expressions; “for any a --- there exists b”; “for any b --- there
exists ¢”.

We proceed now to show that the lifting polynomials are closely related
to the distinguished pairs.

3. THEOREM 3.1. The notations and hypotheses are as in Theorem 1.2.
As usual denote r* =Y and G be an irreducible polynomial of R(K(a))[ Y],
G#Y If g is a nontrividl lifting of G into K[ X then (g.f) is an dis-
tinguished pair.

TuroreM 3.2.  Ler (g, f) be a distinguished pair and a a root of f. Then
there exists, p, h as in Thearem 1.2 and Ge R(K(a))[ Y], irreducible, G # Y,
such that g is a (nontrivial) lifting of G.

Proof of Theorem 3.1. Let 0 be a root of g such that v(¢) — a) i1s greatest.
We shall prove that (0, @) is a distinguished pair.

The condition (17} is fulfilled, since the lifting is nontrivial.

Now let w be the valuation on K(X) defined by inf, @ and 6. Since, for
m =deg G one has (g/h"™)* =G, then by ([2]), Proposition 1.1) there exists
a root &' of gh such that v(¢' —a) > d. Furthermore, since deg # <deg f and
since («, ) 1s a minimal pair it follows that ' is necessarily a root of g.
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Therefore by the choice of ¢ one has v() —a) = . Now we shall prove that
in fact one has:

(0 —a)=29. (4)

For, if not, then one has

w(g)=Y w(X—0,)=> inf(d, v(a—-0))<v(gla))

1

where emn =deg g and 0,, 1 <i<emn are all the roots of g in K. Let
g=f"+A, " "+ + A4, deg 4,<deg f, 1<i<em (5)

The previous inequality shows that w(A,,) =u(4,,,(a))=uv(gla}) > w(g). But
this implies that G=(g/h™")*=Y" +(A4,/M*Y" '+ - +(A,,,_1,./h" " ")*Y,
which 1s false since G is irreducible and G # Y.

In proving (2°) let us suppose that there exists ceK, v(f—c¢)>d=
t(# —a). Then denoting by a=a,, .., a, the roots of f, one has

f((‘))* ( c—0 >*

Gim) =0 ©)
In the same manner, we obtain for any polynomial Fe K[ X], whose degree
is <n, that one has: v(F(¢)) = v(F(0)) = v(F(a))=w(F), and

F(¢) *_ F(a} *_
<F(T))> ‘( F> =1 7

This shows that in G(K) and respectively in R(K) one has

G(K(a)) = G(K(c¢)) and R(K(a)) = R(K{(c)). (8)

Moreover from our choice of ¢ it follows easily that v(0 — a,) = inf(v(8 — a),
vla—a,;)), 1 <i<n. Then (4) and {6) implies

y=w(f)=0v(f(0))=v(f(c)) e G(K(c)). (9)
By (8) and (9) we derive that
e(K(a)/K) - e divides e(K(c)/K). (10)
Furthermore by (6) and (7) it follows
(r(0))* = (r(c))*. (11)

Now we return to the decomposition (5). By (6), (7), (11} and the condi-
tion g(0) =0 there results easily G(r{¢)*)=Gr(0)*)=0. Since G is an
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irreducible polynomial it follows that f(K(c)/K(a)) = m. By this inequality
and (10) it follows:

deg ¢ = f(K(c)/K) e(K(c}/K)zm . f(K(a)/K) e(K(a)/K)-e=deg g

which proves (2°). Finally, (3°) follows from (4) since {a, ) is a minimal
pair. The proof of Theorem 3.1. is complete.

Proof of Theorem 3.2. Let 0 be a root of g for which v(f—a) is
greatest. Then (6, ¢) is a distinguished pair. Let 6 =v(# —a). From (3°) it
follows that (a, 4) is a minimal pair.

Let w be the valuation on K(X) defined by w=w|x, and y, e, h and r
as in Theorem 1.2. We shall prove that there exists G e R(K(a))[ Y], monic,
irreducible and G # Y such that g is a complete lifting of G with respect to
{«, &, h). The nontriviality of this lifting will follow from (1°).

For the moment we note that (3°) implies

w(F)=uv(Fa))=v(F(#)  and <F(())> —< F> =1

for any Fe K[ X] with deg F <deg a. We have thus the inclusions:
G(K(a)) = G(K(0)), R(K(a)) = R(K(8)).
Since uf f(8))=w(f) =17, we see that ¢(K(a)/K)-e divides ¢(K(0)/K). Also
f(K(a)/K) divides f(K(8)/K). As a consequence m =deg g/(edeg f) is an
integer and we may write:
g=f"4a, f"" "+ .-  +A4,, where deg 4, <deg f=n

Let 6,=6, ... ,, be the roots of g. One has w(X —6,)=inf(d, v(a—6,)) =
v(a —0;) and so:

wig)=uv(gla))=v(4,,(a))=w(A,,) (12)

Using now the formula (which is valid for any two irreducible monic
polynomials over a Henselian field and any two roots of them)

v(gla)) v(R(g. [)) =v(f(9))
degg degg-degf degf

{where R(g, /) is the resultant of g and /). We obtain

wig)=ruv(gla))=emy=w(h™) (13)
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Hence wi(A,f*" ') = emy for any i (the equality being possible only for i
multiple of ¢; and we may write

AN A\
(g/h"’)*z(r*)"'-l—(f—) (r)y Ty +< hj:') (14)

By (12), (13) and (14) there results that g is a lifting of G=Y"+
(A, )* Y™ '+ o+ - + (A pym)* € R(K(a))[ Y]. 1t remains to be shown
that G is irreducible (the condition G # Y follows from (12)). For this it is
enough to prove that

(A) [RK(D)):R(K(a))]=m
(B) wv(r())=0 and (r(0))* is a root of G.
(C) R(K(0)) 1s generated over R(K(a)) by (r(8))*.

Since e(K(0)/K) fIK(0)/K)=deg g =em deg f=emf(K(A)/K)} e(K(a)/K),
(A) will be proved if we show that G(K(#)) is generated by G(K(a)} and y.

Now if vy, eG(K(0)), let g,eK[X] be such that degg,<degg
and v{g,()=y,. If ¢|, ¢,,.. are the roots of g, then (2°) implies
that v(0 —¢;)=1inf(e(0 —a), vla—c,;))=w(X —c¢;) hence y, =, (0 —¢,) =
Sow(X—c¢;)=w(g,), and this proves (A) since G(K(X)) 1s generated by
G(K(a)) and y.

From o(f(0))=7p and o(h())=w(h(X)) it follows that v(r(€})=0.
Moreover, one has

(Aie>*_<Ai¢»(a)>*_<Ai(’(())>* 1

RS \hia) ) T RO ) =R

By these equalities and the relations g(#) =0 we obtain G(r(0)*) =0 which
proves (B).

As for (C), let xe R(K(#)) and let Fe K[ X], such that deg F<degg,
t(F(0)) =0, and (F(0))* = u. Let us write

F=Cy+C,f+ - +C.f" where deg C,<deg f.
Then as in (A), w{F)=v(F(#)) =0, hence w(C,f )20 for 0<i<s.
Moreover since w(C;) =w(C;(8)) and w(f)=y=0v(f(0)), it follows that
all the terms in the right side of the equality
FO)y=Cy()+ C(D) i+ - + C ) f(0)

has an image in R(K{(8)) and so

= (F0)*=) (Ci(0)f(0))* (15)



IRREDUCIBLE POLYNOMIALS OVER LOCAL FIELDS 109
Now, if e/i, then w{C, %) #0, hence (15) become

=3 ACLOVfUN)* =3 (C (0) HON* (1(O)* € RIK(a))[ (r(6))*]

I<ei<s
which proves (C). The proof of Theorem 3.2 1s now complete.
4. We end this section with a consequence of the proof of Theorem 3.2.

Remark 3.3. (Fundamental principle). Let aq, 0e K be such that
{0 —a)>v(a—b) for any be K with degb<dega. Then one has the
natural inclusions: G(K(a))z G(K(#)) and R(K(a))< R(K(0)). Moreover
one has

e(K(a/K)/e(K(8)/K)

FUK(a)/K)/f(K(O)/K)
deg a/deg 0

The proof follows as in the proof of Theorem 3.2, by showing that
o(Fla))=0v(F(8)) and (Fla)/F(O)*=1 for any Fe K[ X] with deg F<
deg a.

Finally we remark that this principle is in consense with Krasner’s
principle ([ 3, p. 66]); it has weaker hypothesis and conclusions.

4. INVARIANT FACTORS FOR AN IRREDUCIBLE POLYNOMIAL

1. Let aeK. If a,,..,a,e K we say that (ay,..,a.) is a distinguished
chain for a if ay=a and (a,_,, a,) is a distinguished pair for any 7, | <i<s.
The integer s will be called the length of the chain (a,, , ... a,).

We say that the distinguished chain (aq, .., a,) for a is saturated if there
is no distinguished chain (b, ..., b,) for a such that (a,, .., a,) = (bg, .., b,).
From 3.2. (aq, .., «,) is saturated if and only if a,e K.

Let f=f,. .., f, be irreducible monic polynomials over K. We say that
( fo, nf) 18 @ (saturated) distinguished chain for f if there exist roots
a=uay, .., a, of = f,. .. [ respectively such that (a,, .., @) is a (saturated)
distinguished chain for «. (In the following, we shall use the abreviations
“s.d.c. for a” and “s.d.c. for f7).

We summarise the properties of these chains in the following three
propositions:

ProprosiTioN 4.1. If (ay, .., a,) is a distinguished chain then

(1) G(K(apg))26G(K(a,))2 - 20G(K(a,))
(2) R(K(ay))=2R(K(a))=2 - 2R(K(a,)).
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Moreover, if for any i, 1 <i<s, f; is the monic minimal polynomial of «,,
yo=v(fla,_,)) e;=e(K(a,;),y,) (ie, the smallest rational positive integer
such that ¢,y,€ G(K(a,))), h,e K[ X], deg h;<deg f;, v(h,(a;,))=e;y,; then
the quotient group G(K(«,_,))/G(K(a,)} is ciclic of order ¢,, generated
by the image of y, and R(K(a,_,)) is generated over R(K(a,)) by
(fila,_)hla )™

The proof follows from the proof of Theorem 3.2 in a canonical way.

PrROPOSITION 4.2. Let (ay, ... a,) and (b, ... b,) be two s.d.c. for a. Then
s=r. Moreover if c;e{a;, b}, | <i<s then (¢, .., ¢,) is also a s.d.c. for a.

Proof. Let n=dega. For any i, 1<i<n—1, let us denote ¢,(a)=
sup{t{a—a), e K, dega<i}. Then one has: f,(a)< --- <1, (a). We
consider the set: S(a)={i, 1,#1,_,} (by convention 1€ S(a)) and we put
it in the form: S(a) = {n,, n,, .., n;}, where n,>n,> ... >n, =1 depends
only on « and K.

The pair (a, a,) being distinguished, we get

va—ay)=t,(a) and dega,=n,

Also, we have v(x—a)=rv(ax—a,) for dega<n,, hence t,(a)=1,(a,), for
I <n,, and we derive that

S(a)=S(a,)u {deg a,}

Since (a,, a,, ... a,) is a sdc. for ¢,, we may continue the preceding
argument to obtain for any i: v(a —a;) =t,(a) and dega,=n,. Thus

S(a)={dega,.dega,, .., deg a}

which implies s = r. Since inf{v(b;, | — a,), v(a,_, — b))} = t,(a) =
Lo —f@;_ )=t (b, ) it follows that (b,_,,a;) and (a;_,, b;) are
distinguished pairs and this proves the second part of Proposition 4.2.

ProrosITION 4.3. Let ae K, let (ay, ..., a,) and (b, .., b,) be two s.d.c. for
a, and let f,, g, be the minimal polynomials of a; and b, respectively. Then for
any i, 1 <i<s one has

(1) wola,_y—a)=vlb, —b))
(2) o(fla,_ 1)) =v(g,(b;_\))
(3) G(K(a;))=G(K(b;))
(4) R(K(a;)= R(K(b,)).

Moreover if we change the condition by=a in the hypothesis with the

condition by = t(a) where t€ Gal(K/K) then all the conclusions remain valid

with the only exception that in (4) instead of equality we have a canonically
R(K)-isomorphism.
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Proof. Since (17 '(by), ..., t " (b,)) is a s.d.c. for T 7'(b) it is clear that we
may restrict to the case b, =a.

(1) is obvious: v(a, | —a,)=vla—a,)=1t,(a)=v(b,_, —b)).
To prove (2) let 4, =1, (a) and observe that
deg n—. )
l(f; l»l) (f(a)) de .;: fg ;‘;lnf((s,-, v(a—a ))

which depends only on a and i.

(3) follows by induction on i (starting from i = s, where K(a,) = K(b,)=K
and continuing in decreasing order) using (2) and Proposmon 4.1.

In order to prove (4) we consider for a fixed i the valuation w, on
K(X) defined by the pair (a,, §;). The restriction of w, to K(X) is an r.t.
extension of v to K(X), and it is easy to see that both (a;, é;) and (b,, J,)
are minimal pairs which define w,. By Theorem 1.2, one has R(K(a,;})=
R(K(b,)) (the algebraic closure of R(K) into k). The proof of Proposi-
tion 4.3 is finished.

The number s stated in Proposition 4.3. will be called the length of f = f,
and will be denoted by /( f). The integers deg a,, e(K(a,)/K) and f(K(a,)/K)
for 0 <i<s, will be called the imariantfacto:s for f (over K) and will be
denoted correspondingly by N,(f), E.(f) and F,(f), or simply by N,, E,
and F, when f is fixed (the word fdctors is suggested by the divisibility

relations between them).

Remark 4.4. Between the numbers e, = e(K(a,); y,) from Proposition 4.1.
and E;(f) there exists the relation

E,_,
K(a,), y;)=—"—.
(e(K(a;), 7)) E,
2. By the system of invariants for (the irreducible and monic) polyno-
mial { we shall mean the following picture:

Ny N, N
E, E, Ey
P(f)= F, F, 'Fl(f)
&y 0 Oy
b Yy
where §,=v(a,_,—a,), y;=v(f(a;_,)) are as in Proposition 4.3.

It is natural to ask if one has a picture P with arbitrary numbers and
length (m instead of /{f)) in what conditions there exists an irreducible

641 52 1.8
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polynomial fe K[ X] such that P= P(f)? The following relations are
obviously necessary:

(1) N,, E,, F,are positive integers and J,, y, are rational numbers
(not necessarily positive).

(2) EJE, |, 1<is<m E, =1

3y F/F,_,,1<i<m, F, =1
(4y N,=E,F,1<i<m
(5) Ny>N,>--- >N,
(6) y,=(s;/E,_,), where (s;,, E;_|[/E)=1,1<i<m.
This follows from Proposition 4.1 since
G(K(a;, ))/G(K(a,)) ~ 1y ,«“l Z
E, | E

(7) 0,>68,>--->6,,

Also there are relations between y; and J,, involving elements which are
not in P:

yi=u(fila; _y)) =} inf(d;, v(a; —a')),

where ¢’ runs over all the roots of f;.

The study of some properties related with the roots of f; will be the sub-
ject of a future work. For the moment we are interested in the question
regarding the “reduced” picture P, and P,(f) which is obtained from P and
P(f) respectively by the elimination of the fourth row. This problem
happens to have a simple answer. More exactly we claim firstly that a new
necessary condition is:

(7’) (}"1//N])>(}'2/N2)> >(}'m/‘/Nm)

and secondly that (1)—(6) and (7'} are sufficient for the existence of an f for
which P.(f)=P,.
The necessity of (7') follows from the relations:

7i ol fila; 1)) 1 . <
L= = Y inf(d,, v{a,—a'))
N’ N’ i ' root of f;
1 . l‘(f;‘(af+1))
— f(o,,,,vla,—a')) =———"—-~
>Ni 2 r&%of»/, " ((,+l l(al “ )) degﬁ
_tlfiala)) _ya
degfi+l Ni+1

The above inequality is strictly, as show the terms where a' =a,.
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For the second part of our assertion we construct a sequence of monic
irreducible polynommals: f,,, f,,_.....fo together with a sequence a,,,

4, ,.., d, of their roots (respectively), such that (a,, a,, .., a,,) is a s.d.c.
and that
Nr’ Ni+ 17 Nm
E. E
P(f)= ' ", i=mm—1,.,0
’(f’) Fi e Fm
yi-o—l ym

We start from a,, =0 and f,, = X which satisfies

1

PP'( _/;)l ) = l
1

Suppose we have defined f,,, f.,._,....f; and a,,, .., a;. The function
piR—> R, p(1) =¥, rooois I0f(t, v(a;—a')) is continuous, increasing and
onto. Let 3,=p '(y;)e Q. Let &,,,=v(a,—a,,,). From the inductive
hypothesis one knows that

Jivd U(fi+l<ai))_v(fi(ai+1))_ 1

= - v ((5i+ )
N deg ;.\ deg f; N/p :

and we obtain from (7'): 6,1 =p "(UN;/N,, 1) vie1)<p '(3,)=4,. Since
(a;, a;, ) 1s a distinguished pair, it follows that (a,, d,) is a minimal pair.
Let w be the r.t. extension of v to K(.X) defined by (a,, d;). According to the
notations stated in Theorem 1.2 let s, e K[ X] such that deg h, <deg f,=n,
and w(h)=vih{a,))=(e,_,/e;)y; and let r,= f-1“)/h. From the above
condition (6), and Theorem 1.2 it follows that w(r,;)=0, r* is transcenden-
tal over R(K) and that &, = R(K(a;})(r}¥). Let G, be a monic irreducible
polynomial of degree F;_,/F; over R(K(a,)), let f;_, be a lifting of G, with
respect to («;, J,, h;) and let a,_, be a root of f;_, for which v(a,_|,—a;)
is greatest. Then f;_, and a,_, have the required properties.

Indeed, the above condition (4) implies deg f; ,=n,_, and (5) shows
that the lifting (G, f; _,) is non-trivial, so we can apply Theorem 3.1 to
conclude the inductive step. Therefore we have obtained the following:

THEOREM 4.5. A reduced picture P, is of the form PAf) if and only if it
satisfies the above conditions (1)-(6) and (7").

The constructive proof of this Theorem has two ineffective points (we
remind that the problems regarding G, are ignored; the aim of our paper
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1s to reduce the study of irreducible polynomials over K to the study of the
irreducible polynomials over the finite extensions of R(K)}. The first is the
choice of 4, and the second is the construction of f;_, from f,, a,, J;
and G,. We look now for a canonical way of choosing h;. In order to do
this, we observe that the number v(/,(a,))=(E,_,/E,) y;e(1/E,)Z has a
unique representation in the form

T Y. cE+e,

i 1<j<m

where ¢;, c;€ Z and 0 < c;<{(E;_,/E, for i < j< m. Hence we may choose

b=z [ fo,  (m=m)

i<j<m

because for j>i one has p,=u(f(q,_ |))=0v(f(a,)) (the condition
deg h; <n, is then easily verified).

3. In the proof of Theorem 4.5, G,, ..., G,, are irreducible monic polyno-
mials over some fields k&, =2 --- 2k,, = R(K), respectively, such that for
i<m, k; is generated over k,,, by a root of G,,,. Such a system
(G,,...G,,) will be called a tower system of irreducible polynomials for
R(K). We can introduce an equivalence relation “~” between tower
systems:

(Gy,...G,)~(H,, .., H, if and only if there exists 7e Gal(R(K)(Y)/
R(K)(Y)) such that 7(G,)=H, for 1 <i<m.

By a lifting system {over K) we shall mean a system S={(a,,; V1, - ¥p:
(G,, .., G,)), where a,,€K, (G, .., G,,) is an equivalence class of tower
systems for R(K), y,,..,7.€Q and such that if ¢,,..,c, are the
denominators of y,, ..., y,,, respectively, one has

() pioy >y deg Gl /(e [Ciy i € ]))

(#)y If je{l,.,m} is such that ¢, divides [¢; ,,..,c,], then
deg G,>1 (here [c¢, ., .., ¢,] is the least common multiple of ¢, |, ..., ¢,
and is 1 by convention if i=m; (moreover (x, y} is the greatest common
divisor of x and y).

The conditions stated in this definition comes clearly from the above
conditions (1)-(6) and (7').

By a lifting chain with respect to S, we mean a sdc. (fy,f1, wfin)
of irreducible polynomials over K such that f,=X—gq, and for
I<ig<m, f,_, is a lfting of G, with respect to ((a,,d,;, h,) where a;
is a root of f,, 6,=p"(y,), (where, p,; R— R is defined by: p,(1)=
Do rootor s INM(2, v(a;—a')), and h,e K[ X7 is chosed in the above canonical

m
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manner such that deg #, < deg f; and v(h,(a;)) =e,y; (here as usual ¢, is the
smallest positive integer such that e¢,y;e G(K(a;))).

It is easy to see that the above definition does not depend on the choice
of the representative (G, .., G,,} in the given equivalence class.

We denote by Irr = Irr(K), SDC = SDC(K) and LS = LS(K) respectively:
the set of irreducible polynomials, the set of s.d.c. and the set of lifting
systems over K.

If SelLS and CeSDC is a lifting chain for S, we say that S is «
projection of C into LS.

Also, if Cis a s.d.c. for /. we say that f'is the projection of C into Irr and
we denote it by pry( C).

Now, we are ready to give the following characterisation result of
irreducible polynomials over K.

THEOREM 4.6. (a) Any CeSDC has a unique projection into LS,
denoted by pr(C).

(b) The maps
SDC

Irr LS
are onto.

(c) Let SelLS, S={(a,, 3y, im (G, .., G,}). Then all the elements
feprypr ™ 'WS) have the same length I( f)=m, the same invariants y, ...,
which are those of S. and the same invariant factors, which are given, for
O0<i<m—1, by

Fi= [] degG,

i< j<m
E::[Ci+l~"" (.m] (16)
Ni:EiFn

where ¢, ..., c,, are the denominators of yy, ..., V..

(d} Letfelrr. Then all the elements Sepr(pry (), S={a,; 71 Vo
(G,---G,,)) have the same m, 3, .., 7,,, deg G|, .., deg G,,, they define the
same circle {xe K; v(x —a,,)=4,,} in K, and the same (up 10 R(K)/R(K)
automorphisms) tower of fields: RIK)=k, <k, ,<k,< R(K), where k, _,
is generated over k; by a root of G,, for 1 <i<m.
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Proof. Since a great part of the proof is contained in our previous
results, we shall note now only few facts.

If CeSDC then using Theorem 4.5 we get elements «,,, ¥y, ... ¥,
Gy, .., G,,, which, by the results of this section gives an Se LS. Moreover
a,, is the root of f,., 3, ..., ¥,, are invariants of f, the valuations w; (defined
by: a,=root of f; and J,=p, '(y;)), h,; (given canonically) and the rational
fractions »; depends (modulo a K-automorphism of K) only on C. Hence
G, =(f,_/h¥®2“)* depends only on C and S=pr(C) is uniquely deter-
mined.

On the other hand let Se LS. If we define F;, E, and N, by (16), then
the relations ([)-(6) and (7') are easily satisfied, and we may apply the
proof of Theorem 4.5 to see that pr ~'(S) # (. The other assertions follows
now immediately from the results of this section (we note only that the
circle from (d), which is identical to the circle {xe K; v(x —a) >7,,}, where
a 1s any root of f, is exactly the domain of values of a,, when S ranges over
pripry, ().

4. We end this paper with a discussion on the second ineffective point
in the proof of Theorem 4.5, namely the lifting ( f;, a;, v;, #;, G} of f;_ 1.
Of course, we have a way of choosing f; ,, which is given by Remark 1.3.
But we want to describe the set of «ll polynomials g which are liftings of
( is 4is Vi hi* G:)

Let g, be a fixed lifting (e.g., given by Remark 1.3), and let g be another
lifting of ( [/, a;, y;, h;, G,;). Then one has:

i

deg(g — g¢) <deg gy
(17)

w{g—go) >wlgy)

Writing g — g0 =<k <n,_,m» 4S5, then (17) is equivalent to a system of
inequalities of the form

v(A(a)) > s,

where s,, are known rational numbers.

This requires practically the knowing of v on K(a;) (1.e., the knowing of
v(A(a,)) if the coefficients of A, are known). This problem is not at all
clear for a general extension K(a) of K, but it is solvable by induction in
our case, using the already known properties of ¢ with respect to
Kla;,,), .., K(a,,)=K. More exactly if A€ K[ X], deg A <degf; and if we
put 4 in the form

A= Z ij:’:]l Z 'f/;+?22 T Z f;{;mC_nv.“. Jm?

O jiv1 <(nifnisn) O<jiva<(mipi/miy2) 0 < jm < fim—
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where ¢, . ; € K, then

-}

o(A(a;))= inl <l‘((',‘],uh")+ Y jk;'k>

PR RER Im i<k<m

Returning to the polynomial g, we put it in the form

g=X"'+ ¥ fr L e XSG,

O < i<t 1fny) 0< fivy<iningn) 0 < fm<mm 1

and we obtain

g verifies (17) if and only if the coefficients ¢, ; vary in some circles of
known radius and of centers determined by g,.

In this way we see that the general lifting process can be described in a

constructive manner.

Remark 4.7. Let K, be a finite extension of K. If one knows a generator
0of K, /K and asdc. (f,,f,.. [, for the minimal polynomial f, of &, one
may construct an integral basis of K, over K in the following way:

Let us denote

4, =11 ful®*, where 0<j, <(n;_,/n,)
A=1
and
d, . =[vd, )] (the integral part)

The relations like (18) show that the elements

{rghmd, Ly 0<ji<(ng/ny)

0 Sjm < (nmfl/nm)

form an integral basis of K, relative to K.
As a final remark we note that from the above invariants of ¢/ we may
obtain an invariant of K|, namely the discriminant.
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