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Abstract

Using a sequence of rational approximants and the large-Nc limit of QCD, we estimate the value of the low-energy constant C87 which appears
in the Lagrangian of Chiral Perturbation Theory at O(p6).
© 2008 Elsevier B.V. All rights reserved.
The Chiral Lagrangian [1,2] organizes the physics of the
strong interactions at low energy as an expansion in powers
of momentum and masses of the lightest pseudoscalar fields,
which are the only ones explicitly present in this Lagrangian.
Since all the heavier states of QCD are integrated out, their
physics is encoded in a set of low-energy constants (LECs).
These LECs are indispensable to make definite predictions in
Chiral Perturbation Theory. There is already a relatively good
knowledge of the value of most of the LECs which appear at
O(p4) in the chiral expansion [2,3]. At O(p6), however, most
of the O(100) LECs are completely unknown. This note is con-
cerned with the estimate of one of them, the LEC of O(p6) C87
[4] appearing in the 〈V V −AA〉 two-point correlator in the chi-
ral limit.

The general strategy will consist in constructing a rational
approximant to the relevant Green’s function, i.e. 〈V V − AA〉,
from the coefficients of the chiral expansion and any other
known properties of the full function. Once the rational approx-
imant is known, upon reexpansion around Q2 = 0, higher order
unknown coefficients of the chiral expansion may be predicted.
If the rational approximant is a better description of the original
function than the partial sums of the chiral expansion, one may
expect this prediction to be reliable. For a brief review, where
further references to the literature may be found, we refer to
Weniger [5].
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Let us, therefore, consider the two-point functions of vector
and axial-vector currents in the chiral limit of QCD

ΠV,A
μν (q) = i

∫
d4x eiqx

〈
JV,A

μ (x)J † V,A
ν (0)

〉

(1)= (
qμqν − gμνq

2)ΠV,A

(
q2),

with J
μ
V (x) = d̄(x)γ μu(x) and J

μ
A (x) = d̄(x)γ μγ 5u(x). As it

is known, the difference ΠV −A(q2) satisfies the unsubtracted
dispersion relation given by1

ΠV −A

(
q2) ≡ 1

2

(
ΠV

(
q2) − ΠA

(
q2))

(2)= lim
Λ→∞

Λ2∫

0

dt

t − q2 − iε

1

π
ImΠV −A(t).

Since all LECs are defined in the chiral limit, the restriction
of the function ΠV −A(q2) to this limit entails no loss of gen-
erality. Even then, the analytic structure of ΠV −A(q2) is very
complicated, with a multiparticle cut starting at t � 0. A further
simplification occurs in the large-Nc limit of QCD [7] in which
the previous cut becomes suppressed and only single particle in-
termediate states are allowed. The function ΠV −A(q2) contains
then an infinite set of isolated poles [8], and becomes meromor-
phic. In Ref. [9] it was emphasized that any truncation of this

1 The upper cutoff which is needed to render the dispersive integrals mathe-
matically well defined can be sent to infinity provided it respects chiral symme-
try [6].
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meromorphic function to a finite set of poles may be interpreted
as a rational approximation to the original function. There are a
number of reasons why the large-Nc limit of QCD is a sensible
limit to take, in particular for Green’s functions built out of the
vector and axial-vector currents [8,10].

Therefore, in the large-Nc limit, the function q2ΠV −A(q2)

has the following representation2

(3)q2ΠV −A

(
q2) = f 2

0 + q2
∞∑

R=0

cR

−q2 + M2
R

where R labels resonance states and, assuming the existence of
a mass gap, all masses are nonzero with the rho meson mass
being the smallest one in the sum. In this way, defining Q2 =
−q2, the expression (3) is analytic at Q2 = 0, and allows the
Taylor expansion [11]

−Q2ΠV −A

(−Q2) ≈ f 2
0 − 4L10Q

2 − 8C87Q
4 + · · ·

(4)
(
Q2 → 0

)
,

where f 2
0 is the pion decay constant (in the chiral limit), and

L10,C87 are the LECs at O(p4,p6) (respectively) in the cor-
responding Chiral Lagrangian [2,4]. On the other hand, the
expansion of ΠV −A at infinity is

−Q2ΠV −A

(−Q2) ≈ 4παs

〈ψ̄ψ〉2

Q4

(
1 +O

(
αs logQ2)) + · · ·

(5)
(
Q2 → ∞)

,

where αs is the QCD coupling constant and 〈ψψ〉 is the quark
condensate. Unlike the expansion around the origin, the exis-
tence of nonvanishing anomalous dimensions, even in the large-
Nc limit, gives rise to the logQ2 terms and, unlike (4), renders
the expansion around infinity in (5) not analytic.

The expansion (4) will be our starting point in this work.
Although the LEC L10 is pretty well known [2,12], this is not so
for C87. It is therefore important to obtain a new determination
of this LEC with its associated error.

Given the meromorphic function Q2ΠV −A(−Q2) in the Q2

complex plane with an analytic expansion around the origin,
as in (4), it is possible to construct a Pade Approximant (PA),
P M

N (Q2), as the ratio of two polynomials of degree M and N

(respectively) such that its expansion in powers of Q2 matches
that of the original function up to, and including, the term of
O(Q2(M+N)). Since the function falls off at large Q2 as Q−4

up to logarithms (see (5)), we choose N = M + 2 in order to
optimize the matching of the rational approximant at large Q2

to this behavior.3 We emphasize, however, that this choice does
not affect the properties of convergence of Pade Approximants,
as described next.

As M → ∞, there is a theorem [13] that ensures conver-
gence of the sequence of PAs to the original meromorphic func-
tion, in any compact set in the complex Q2 plane except at a fi-
nite number of poles. Of course, where there is convergence, the

2 Multiplication by q2 kills the pion pole at the origin.
3 Due to the presence of logarithms in (5), however, this matching cannot be

perfect.
PA may be considered an approximate resummation of the Tay-
lor series around the origin. On the other hand, the set of points
where there is no convergence certainly includes the position of
the poles since not even the original function is defined there,
but there may appear other artificial poles which have no coun-
terpart in the original function. One would naively think that the
presence of these artificial poles would cause a major distortion
and completely spoil the rational approximation. However, one
can actually show [13] that as the order of the Pade increases,
i.e. as M grows, these artificial poles either move to infinity in
the complex plane and decouple or they get “almost-canceled”
by the appearance of nearby zeros. Although, in general, this
cancelation is not complete, it is efficient enough to make the
region of distortion of the artificial pole only of zero measure.
This is why and how the Pade Approximation works. For an
explicit example where all these properties come to play in the
context of a Regge-inspired model, we refer to [14].

Theorem [13] is important because it teaches us useful in-
formation about the qualitative behavior of how Pades approx-
imate meromorphic functions. Regretfully, when asking more
quantitative questions such as the rate of convergence, which is
the first step towards an estimate of the error, such a theorem is
only of limited practical importance. In practice, one can take a
more useful approach towards an estimate of the error by study-
ing the behavior of a set of successive rational approximants, as
we will now explain.

In order to be able to construct a sequence of rational approx-
imants it is of course crucial to have enough number of inputs.
Since PAs are constructed from the coefficients of the Taylor ex-
pansion (4) one immediately faces an obvious difficulty. Since
what one wishes is an estimate of C87, only the two coefficients
f0 and L10 may be used. With these two coefficients as input,
the only PA vanishing at large Q2 is P 0

1 , but it falls off as Q−2

which is too slow as compared to (5). Consequently, it is nec-
essary to consider more general rational approximants than the
standard PAs.

In Ref. [14] we saw that the π+ − π0 mass difference in the
chiral limit, which is given by

δM2
π ≡ M2

π+ − M2
π0

(6)= − 3

4π

α

f 2
0

∞∫

0

dQ2 Q2ΠV −A

(−Q2),

could be used as a further constraint in the construction of the
PAs with very good numerical results. Together with f0 and L10
one now has three inputs to construct the P 0

2 , which does match
the power fall-off at large Q2 in (5). By simple re-expansion
around Q2 = 0 it is then possible to predict an estimate for the
term of O(Q4) in (4). This prediction was checked against the
exact value in the model in [14] with very good results, and this
encouraged us to do the same also for QCD. In the QCD case,
using the values4

4 Since ms decouples from Fπ in the large-Nc limit, the value of f0
is estimated in Eq. (7) by extracting the chiral corrections from Fπ using
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f0 = 0.086 ± 0.001 GeV
(
Ref. [15]

)
,

δMπ = 4.5936 ± 0.0005 MeV
(
Ref. [16]

)
,

L10(0.5 GeV) � L10 � L10(1.1 GeV)

(7)	⇒ L10 = (−5.13 ± 0.6) × 10−3 (
Ref. [12]

)
,

we then obtained [14] an estimate of the O(Q4) term in the ex-
pansion (4) which translates into the value C87 = (5.4 ± 1.6) ×
10−3 GeV−2. In the present work, we would like to reassess
this value with a more complete analysis.

There are different kinds of rational approximants closely
related to the usual PAs which, although perhaps not so popu-
lar, are also very useful. Among those, we would like to stress
the so-called Pade-Type Approximants (PTA) [17], T

M
N (Q2),

which are very useful when one has some knowledge of the
spectrum of resonance masses in the original Green’s function.
They are defined as the ratio of two polynomials QM(Q2) and
TN(Q2) (of degrees M and N , respectively):

(8)T
M
N

(
Q2) = QM(Q2)

TN(Q2)
,

where the polynomial in the denominator has its N zeros preas-
signed precisely at the positions of the first N resonance masses
in the original Green’s function (3), i.e.

(9)TN

(
Q2) = (

Q2 + M2
1

)(
Q2 + M2

2

) · · · (Q2 + M2
N

)
,

and the polynomial QM(Q2) is defined so that the expansion of
the PTA around Q2 = 0 agrees with that of the original function
up to terms of order M + 1, i.e.

T
M
N

(
Q2) ≈ f0 + f1Q

2 + f2Q
4 + · · · + fMQ2M

(10)+O
(
Q2(M+1)

)
.

Choosing N = M+2 one optimizes the matching of T
M
M+2(Q

2)

to the expansion (5) at Q2 → ∞ and, as in the case of PAs, this
is a choice we will make.

Both PTAs and PAs where studied in Ref. [14] and the
lessons which can be drawn from that model are the follow-
ing. The model confirms that one may estimate the unknown
LECs with these rational approximants where, in the case of
PTAs, the physical masses were chosen in increasing order, i.e.
M1 < M2 < M3 < · · · . For instance, with the PTA T

M
M+2(Q

2)

we could see that one has a good prediction for the term of
O(Q2(M+1)) in the low-Q2 expansion, which is the first one
not used as input, with a precision which improves as the order
of the approximant, M , increases. Furthermore, the accuracy
obtained for the unknown coefficients of the Taylor expan-
sion is very hierarchical: the accuracy obtained for the term
O(Q2(M+1)) is better than that for the term of O(Q2(M+2)),
and that better than for the term O(Q2(M+3)), with a quick de-
terioration for higher-order terms. The case of PAs follows the
same pattern. As to the description of the spectrum, we found
that PAs also reproduced the values for the residues and masses
in a hierarchical way: while the first masses and residues are

SU(2) × SU(2) chiral perturbation theory, but doubling the error as compared
to Ref. [15].
well reproduced, the prediction quickly worsens so that the last
pole and residue of the PA has no resemblance whatsoever with
its physical counterpart. The same is true for the residues of a
PTA (since the masses are fixed to be the physical ones by con-
struction).

Based on the above, one can envisage the following strat-
egy for getting a sequence of estimates for the O(p6) LEC
C87. Assuming that the vector and axial-vector meson masses
stay approximately the same in the large-Nc and chiral limits,
one can use their values extracted from the PDG book [16] to
construct several PTAs. We think that this assumption is rea-
sonable for both limits. First, for the chiral limit, this is because
the up and down quark masses are very small [18]. Second,
for the large-Nc limit, there is a non negligible amount of phe-
nomenological evidence in favor of the rho meson being a qq

state [10,19]. Besides, the success in the spectroscopy of the
quenched lattice results for the lightest vector mesons is also
suggestive that 1/Nc corrections may not be very large [20].5

Therefore, we will use for the masses

mρ = 0.7759 ± 0.0005, mρ′ = 1.459 ± 0.011,

mρ′′ = 1.720 ± 0.020, mρ′′′ = 1.880 ± 0.030,

(11)ma1 = 1.230 ± 0.040, ma′
1
= 1.647 ± 0.022,

where all the numbers have been expressed in GeV.
For instance, with only f 2

0 and the masses of the ρ and a1,
one can construct the PTA T

0
2(Q

2) and predict the value for
L10 = (−4.32 ± 0.02) × 10−3, which is not bad when com-
pared, e.g., with (7). The next term in the expansion gives
the following value for C87 = (4.00 ± 0.09) × 10−3 GeV−2

which is similar to that obtained in [14] with the Pade P 0
2 .

However, since this value for C87 comes from the second un-
known term in the expansion of T

0
2(Q

2) rather than the first,
it is quoted here only for illustrative purposes and will not be
included in our final estimate, in agreement with our previ-
ous discussion. Adding L10 and the ρ′ mass to the previous
set of inputs one can then construct T

1
3(Q

2), which produces
C87 = (5.13 ± 0.26) × 10−3 GeV−2. The PTA T

2
4 can be con-

structed if one also uses the pion mass difference (6) and ma′
1
,

yielding in this case C87 = (5.24 ± 0.33) × 10−3 GeV−2. We
find the stability of these predictions quite reassuring.

A comment on the quoted error estimates is in order. These
quoted errors are the result of the propagation of errors from
the input via the Monte Carlo method [21]. As such, they do
not reflect the intrinsic systematic error due to the approxima-
tion itself which will be estimated, at the end, as the spread of
values obtained with the sequence of different approximants.
On the other hand, the propagation of the error from the input
via the Monte Carlo method consists in the following. Taking
each input in (7) and (11), we have constructed a sample of
data with a Gaussian probability distribution yielding as the av-
erage and standard deviation precisely the corresponding input
value and its quoted error, respectively. For each member of this

5 Be that as it may, whether the assumption is correct or not will ultimately
be judged by the final results obtained.
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Table 1
Set of inputs used for the construction of the different Pade-Type Approximants
in the text

T
n
m Inputs

T
0
2 f0; mρ , ma

T
1
3 f0, L10; mρ , ma , mρ′

T
2(a)
4 f0, L10, δMπ ; mρ , ma , mρ′ , ma′

T
2(b)
4 f0, L10, Fρ ; mρ , ma , mρ′ , ma′

T
3(a)
5 f0, L10, Fρ , δMπ ; mρ , ma , mρ′ , ma′ , mρ′′

T
3(b)
5 f0, L10, Fρ , Fa ; mρ , ma , mρ′ , ma′ , mρ′′

T
4
6 f0, L10, Fρ , Fa , δMπ ; mρ , ma , mρ′ , ma′ , mρ′′ , mρ′′′

sample, the rational approximant is then constructed and, upon
reexpansion, the LEC is obtained. The distribution of the dif-
ferent values for C87 so obtained happens to be also Gaussian
to a very good approximation. Therefore it will have an aver-
age value X and a standard deviation Y which are then used to
quote the result for C87 as X ± Y .

To be able to construct further rational approximants one
needs an extra assumption. Although, as we have emphasized
above, the residues of the heaviest poles in a rational approx-
imant do not come out anywhere close to the corresponding
physical decay constants, this is not true for the lightest ones. In
particular, in Ref. [14], it was seen that the value of the residue
for the first pole in a PTA could reproduce the exact value in
the model with very good precision if the order of the PTA was
high enough and, more importantly, it was improving as the or-
der of the PTA grows. Consequently, if we are willing to use
the decay constant Fρ , and perhaps also the Fa1 , one can go for
the construction of higher PTAs. These two residues can be got-
ten from the decays ρ → e+e− and a1 → πγ , respectively, and
their values are [22]

(12)Fρ = 0.156 ± 0.001, Fa1 = 0.123 ± 0.024

in GeV units.
For instance, using f 2

0 , L10, δM2
π and Fρ , as well as the five

masses mρ , ma1 , mρ′ , ma′
1

and mρ′′ , one can construct the

PTA T
3
5. Upon expanding this approximant, one obtains the

value C87 = (5.78 ± 0.21) × 10−3 GeV−2. Alternatively, one
can also use f 2

0 , L10, Fρ and only the first four masses to
construct a T

2
4 approximant, which is different from the other

T
2
4 considered above. The value obtained for C87, i.e. C87 =

(6.00 ± 0.15) × 10−3 GeV−2, is nevertheless very similar,
which again brings confidence on the prediction.

In this way we have constructed a variety of rational approx-
imants which we have listed on Table 1, in increasing order of
the degree in the denominator, together with the set of inputs
used. We have gone all the way up until the T

4
6, with the six

masses listed on (11).
Fig. 1 shows the prediction for the LEC C87 from the cor-

responding rational approximant shown on the abscissa, upon
expansion around Q2 = 0. We also included our previous re-
sult obtained in Ref. [14] with the PA P 0

2 , but with the present
Monte Carlo method for the treatment of errors. As one can see,
Fig. 1. Prediction for C87 in the large-Nc limit from the PA P 0
2 in Ref. [14],

and the different PTAs discussed in the text and appearing in Table 1. For com-
parison we also show the estimate from Refs. [11,23,24], which we label ‘A’,
‘B’ and ‘C’ (respectively).

the stability of the result is quite striking. After averaging over
all these points, we obtain as our final result in the large-Nc

limit,

(13)C87 = (5.7 ± 0.5) × 10−3 GeV−2.

The error in (13) is mainly dominated by the error on the input
for L10 in Eq. (7) and is rather insensitive to the errors on the
other inputs. For instance, one could increase the error on f0 to
5 MeV in Eq. (7), or the error on mρ to 50 MeV in (11), or the
error on δMπ to 0.5 MeV in (7), without falling out of the error
band given in (13).

For comparison, we also show in Fig. 1 the result of several
previous estimates for this LEC. Ref. [11] (shown as ‘A’) uses
the residues in Eq. (12) and the ρ and a1 physical masses to con-
struct, in effect, what we could call the PTA T

2
2 to Q2ΠV −A.

The difference between this result and ours stems from the
fact that this rational approximant falls off like a constant at
large Q2, unlike Eq. (5). Also, as we have already emphasized,
the use of the physical decay constant Fa1 (12) in a rational ap-
proximant which has the a1 as the heaviest pole is a potential
source of error.

Ref. [23] also obtains an estimate for C87 (shown as ‘B’)
based on the construction of a rational approximant which ef-
fectively coincides with the PTA T

0
2 but using the physical value

of Fπ = 92.4 MeV [16] instead of the value of f0 in Eq. (7).
Had they used f0, the result would have been lower, and would
have agreed with the value we mentioned in the paragraph right
after Eq. (11). Therefore, our comments on the Pade-Type T

0
2

found in that paragraph also apply to this determination in [23].
Finally, one can get still another estimate for C87 from the

PTA T
0
2 in [23] by assuming that the a1 mass in the large-Nc

limit is not approximated by the physical value in Eq. (11),
but by a value which comes from the radiative pion decay
saturated with the ρ and the a1. This value turns out to be
ma1 ∼ 998 MeV [24]. This lower number for the a1 mass is
the reason for a higher value for C87 than that obtained in [23],
and is shown as ‘C’ in Fig. 1. However, there is no compelling
reason to associate this different mass of the a1 with the large-
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Nc limit. In fact, our results show how similar values for C87
can be obtained with the physical masses of the mesons used
for the poles. Moreover, one of the advantages of our method
is that one can get a rough idea about the systematic error in-
volved by looking at the dispersion of the values obtained.

Of course, in the large-Nc limit C87 does not run with scale
whereas in the world at Nc = 3 it does. This is an additional
source of systematic error in the result (13). However, phe-
nomenological evidence as well as theoretical prejudice [25]
suggests that a reasonable guess for this systematic error may
be obtained by varying the scale in C87(μ) between the range
0.5 GeV � μ � 1 GeV (compare with L10 in (7)). Using the
running obtained in Ref. [26], this error turns out to be ∼ 30
per cent, right in the ballpark expected for a typical 1/Nc effect.
This systematic error should be added to our large-Nc result in
Eq. (13) in order to obtain an estimate for C87(μ ∼ 0.7) in the
real world. In this case, all the different results in Fig. 1 can be
encompassed by this error.

We would like to finish by recalling that PAs and PTAs are,
in a way, two extreme versions of a rational approximant. While
in the latter all poles are fixed at the physical masses, in the for-
mer the poles are left free, and they are obtained by demanding
that the expansion around Q2 = 0 reproduces that of the orig-
inal function to the highest possible order. Besides these two
rational approximants, there are also the so-called Partial Pade
Approximants [14,17] which, from a certain point of view, lie
half way between PAs and PTAs. These Partial Pades are ra-
tional functions whose polynomial in the denominator has only
some of the poles preassigned but the others are left free, to be
determined by the usual matching conditions at Q2 = 0. There-
fore, there is no reason why, in general, the poles of a Partial
Pade should come out to be purely real,6 unlike those of a PTA,
which are of course real by construction. We have constructed
seven of these Partial Pades, with a polynomial in the denom-
inator up to fifth order in Q2. In some of the cases the poles
were actually complex, as it was also the case of the PA P 0

2
[14]. However, the results obtained for C87 are almost identi-
cal to those in Fig. 1, although with errors which are somewhat
larger. This feature reinforces the stability of the result shown
in Fig. 1, and gives us reassurance about the reliability of our
result. Finally, we would like to mention that predicting O(p8)

LECs may also be another straightforward application of this
method.
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