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The homotopy type of the complement of a coordinate
subspace arrangement
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Abstract

The homotopy type of the complement of a complex coordinate subspace arrangement is studied by utilising
some connections between its topological and combinatorial structures. A family of arrangements for which the
complement is homotopy equivalent to a wedge of spheres is described. One consequence is an application in
commutative algebra: certain local rings are proved to be Golod, that is, all Massey products in their homology
vanish.
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1. Introduction

In this paper we study connections between the topology of the complements of certain complex
arrangements, and algebraic and combinatorial objects associated to them.

Let

A = {L1, . . . , Lr }

be a complex subspace arrangement in Cn , that is, a finite set of complex linear subspaces in Cn . For such
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an arrangement A, define its support |A| as |A| =
⋃r

i=1 L i ⊂ Cn and its complement U (A) as

U (A) = Cn
\ |A|.

Arrangements and their complements play a pivotal role in many constructions of combinatorics,
algebraic and symplectic geometry, etc.; they also arise as configuration spaces for different classical
mechanical systems. Special problems connected with arrangements and their complements arise in
different areas of mathematics and mathematical physics. The multidisciplinary nature of the subject
results in ongoing theoretical improvements, a constant source of new applications and the penetration
of new ideas and techniques in each of the component research areas. It is the interplay of methods from
seemingly disparate areas that makes the theory of subspace arrangements a vivid and appealing field of
research.

In the study of arrangements it is important to get a detailed description of the topology of their
complements, including properties such as homology groups, cohomology rings, homotopy type, and so
on. In this paper we are concerned with the homotopy type of the complement of a complex coordinate
subspace arrangement. A complex coordinate subspace of Cn is given by

Lσ = {(z1, . . . , zn) ∈ Cn
| zi1 = · · · = zik = 0}

where σ = {i1, . . . , ik} is a subset of [n] = {1, . . . , n}, allowing us to define a complex coordinate
subspace arrangement CA in Cn as a family of coordinate subspaces Lσ for σ ⊂ [n]. The main
topological space we study, naturally associated to the complex coordinate subspace arrangement CA, is
the complement U (CA) in Cn . Our results are obtained by studying the topological and combinatorial
structures of U (CA) with the help of commutative and homological algebra, combinatorics and
homotopy theory.

It has been known for some time that hyperplane arrangements have a torsion-free cohomology
ring. Recently it was proved [13] that after suspending the complement of a hyperplane arrangement
it becomes homotopy equivalent to a wedge of spheres. The case of complex coordinate subspace
arrangements is much more complicated. Already at the cohomology level, there is a more intricate
structure. The Buchstaber–Panov formula for H∗(U (CA)) [1] detects torsion in special cases, implying
that even stably U (CA) cannot always be homotopy equivalent to a wedge of spheres. Even when
H∗(ZK ) is torsion-free, ZK may not decompose as a wedge of spheres, due to the presence of nontrivial
cup products or Massey products in H∗(ZK ) [2,4,11]. That makes the question of when the complement
of a coordinate subspace arrangement is homotopy equivalent to a wedge of spheres more difficult and
therefore more interesting. The main goal of this paper is to describe a family of coordinate subspace
arrangements for which the complement is homotopy equivalent to a wedge of spheres.

The basic connections between the topology, combinatorics and commutative algebra of coordinate
subspace arrangements are as follows.

Let K be a simplicial complex on the vertex set [n]. We shall consider only complexes that are finite,
abstract simplicial complexes represented by their collection of faces. Every simplicial complex K on
the vertex set [n] defines a complex arrangement of coordinate subspaces in Cn via the correspondence

K 3 σ 7→ span{ei : i 6∈ σ }

where {ei }
n
i=1 is the standard basis for Cn . Equivalently, for each simplicial complex K on the set [n],

we associate the complex coordinate subspace arrangement

CA(K ) = {Lσ | σ 6∈ K }
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and its complement

U (K ) = Cn
\

⋃
σ 6∈K

Lσ . (1)

On the other hand, to K and a commutative ring R with unit there is an associated algebraic object, the
Stanley–Reisner ring R[K ], also known in the literature as the face ring of K . Denote by R[v1, . . . , vn]

the graded polynomial algebra on n variables, where deg(vi ) = 2 for each i over R. The Stanley–Reisner
ring of a simplicial complex K on the vertex set [n] is the quotient ring

R[K ] = R[v1, . . . , vn]/IK

where IK is the homogeneous ideal generated by all square free monomials vσ
= vi1 · · · vis such that

σ = {vi1, . . . vis } 6∈ K .
Coming back to topology and following the Buchstaber–Panov approach [1] to toric topology,

there are two other topological spaces associated to a simplicial complex K and its Stanley–Reisner
ring R[K ]. The first space arises as a topological realisation of the Stanley–Reisner ring. It is the
Davis–Januszkiewicz space D J (K ), whose cohomology ring is isomorphic to the Stanley–Reisner
ring R[K ]. The Davis–Januszkiewicz space maps by an inclusion into the classifying space of the n-
dimensional torus. The homotopy fibre of this inclusion can be identified with another torus space, the
moment-angle complex ZK , which has as a deformation retract the complement U (K ) of the complex
coordinate subspace arrangement [1, 8.0]. Different models of D J (K ) andZK as well as their additional
properties will be addressed later on in Section 2. These identifications show that the problem of
determining the homotopy type of the complement of complex coordinate subspace arrangements is
equivalent to determining the homotopy type of the moment-angle complex ZK . To do this we need to
closely examine the homotopy fibration sequence

ZK −→ D J (K )
incl
−→ BT n.

The main technique employed for understanding this filtration is Mather’s Cube Lemma [9], which
relates homotopy pullbacks and homotopy pushouts in a cubical diagram. This is applied iteratively as
K is built up one face at a time, in a prescribed order. An analysis of the component homotopy fibration
and cofibration sequences produces our main result, Theorem 1.2 (see below).

To find a suitable simplicial complex K whose U (K ) will be homotopy equivalent to a wedge of
spheres, we first look at its cohomology ring. As U (K ) is homotopy equivalent to ZK , this is the same as
looking at the cohomology ring ofZK . The integral cohomology ofZK has been calculated in [1, 7.6 and
7.7]. If ZK is to be homotopy equivalent to a wedge of spheres then we need to consider simplicial com-
plexes K for which all Massey products in H∗(ZK ) vanish. Note that by all Massey products we mean
all cup-products and all higher Massey products. The vanishing of these Massey products will not imply
that ZK is itself homotopy equivalent to a wedge of spheres but at least on the cohomological level there
will be no obstructions to such a claim. Combinatorists, from their point of view, have studied simplicial
complexes and associated to them certain Tor algebras that correspond to the cohomology of ZK as in
our case. They have determined several classes of complexes for which it can be shown that all Massey
products in the associated Tor algebras vanish. One such class is that consisting of shifted complexes.

Definition 1.1. A simplicial complex K is shifted if there is an ordering on its set of vertices such that
whenever σ ∈ K and v′ < v, then (σ − v) ∪ v′

∈ K .
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The most elementary examples of shifted complexes are sets of vertices and any full i th skeleton
∆i (n) of the standard simplicial complex ∆(n) on n vertices (also denoted by ∆n−1). More complicated
examples exist and will be illustrated in Section 9. Gasharov, Peeva and Welker [6] showed that when
K is a shifted complex, then all Massey products in H∗(ZK ) are trivial. In this case we obtain a much
stronger result by determining the homotopy type of ZK .

Theorem 1.2. Let K be a shifted complex. Then U (K ), and therefore ZK , is homotopy equivalent to a
wedge of spheres.

Previously, the only known cases of simplicial complexes K for which the complement U (K ) has the
homotopy type of a wedge of spheres occurred when K was a disjoint union of n vertices. When n = 2
or n = 3, these are classical results of low-dimensional topology, while the general case was proved by
the authors [7]. The result in Theorem 1.2 is much more general.

Our next theorem describes the influence that combinatorial operations on simplicial complexes have
with respect to the homotopy type of the moment-angle complex.

Theorem 1.3. Let K1 and K2 be simplicial complexes such that ZK1 and ZK2 are homotopy equivalent
to wedges of spheres. Then the following hold:
(1) if K = K1

⋃
σ K2 is obtained by gluing along a common face, then ZK is homotopy equivalent to a

wedge of spheres;
(2) if K = K1

∐
K2 is the disjoint union of simplicial complexes, then ZK is homotopy equivalent to a

wedge of spheres;
(3) if K = K1 ∗ K2 is the join of simplicial complexes, then ZK is not homotopy equivalent to a wedge

of spheres but ΣZK is.

Note that if K1 and K2 are shifted complexes then their disjoint union is not a shifted complex. Also, if
two shifted complexes are glued together along a common face, the resulting complex is not necessarily
shifted. Therefore Theorem 1.3 extends Theorem 1.2 to a larger family of complexes for which ZK is
homotopy equivalent to a wedge of spheres.

The information we have obtained on complex subspace arrangements has an application in
commutative algebra. Let R be a local ring. One of the fundamental aims of commutative algebra is
to describe the homology ring of R, that is TorR(k, k), where k is a ground field. The first step in
understanding TorR(k, k) is to obtain information about its Poincaré series P(R); more specifically,
whether P(R) is a rational function. A certain class of rings behaves well in this regard.

Definition 1.4. A local ring R is Golod if all Massey products in Tork[v1,...,vn](R, k) vanish.

As an example, if K is a shifted complex then its associated Stanley–Reisner ring (or face ring) k[K ]

is Golod. Golod [8] proved that if a local ring is Golod, then its Poincaré series is a rational function and
it is determined by P(Tork[v1,...,vn](R, k)). Although being Golod is an important property, not many
Golod rings are known. Using our results on the homotopy type of the complement of a coordinate
subspace arrangement, we are able to use homotopy theory to gain some insight into these difficult
homological–algebraic questions. The main results are as follows.

Theorem 1.5. For a simplicial complex K ,

P(k[K ]) ≤
t (1 + t)n

t − P(H∗(U (K ); k))
,
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where “ ≤ ” stands for coefficient-wise inequality of power series. Equality is obtained when k[K ] is
Golod.

Theorem 1.6. If ZK is homotopy equivalent to a wedge of spheres then k[K ] is a Golod ring.

Combining Theorems 1.5 and 1.6, we obtain the following result.

Corollary 1.7. If K is a simplicial complex with the property that ZK is homotopy equivalent to a wedge
of spheres, then

P(k[K ]) =
t (1 + t)n

t − P(H∗(U (K ); k))
.

To close, let us remark that all the techniques used in this paper can be also applied to real and
quaternionic coordinate subspace arrangements by changing the ground ring from complex numbers
to real or quaternionic numbers. In those cases Theorem 1.2 describes the homotopy type of the
complement of real or quaternionic coordinate subspace arrangements. For real arrangements instead
of torus spaces and CP∞, we look at spaces with an action of Z/2 (also considered as S0) and RP∞,
respectively, while in the case of quaternionic arrangements we deal with S3 spaces and HP∞.

The disposition of the paper is as follows. Section 2 catalogues the main objects of study and states
various properties they satisfy. Section 3 through 9 build up to and deal with the primary focus of
the paper, Theorem 1.2. Section 3 through 6 establish the preliminary homotopy theory. Included are
identifications of the homotopy types of various pushouts, a review of homotopy actions, the general
statement of Mather’s Cube Lemma and a finer analysis of a special case involving homotopy actions,
and several properties of the fat wedge. Section 7 considers a particular pattern of successive inclusions
of one coordinate subspace into another which we term a regular sequence. Such a sequence need not
always exist, but when it does we show there is a measure of control over the homotopy types of the
successive homotopy fibres obtained from including the coordinate subspaces into the full coordinate
space X1 × · · · × Xn . Section 8 gives conditions guaranteeing the existence of regular sequences,
which are based on the properties of a shifted complex. Section 9 puts together all the material in
Section 3 through 8 to prove Theorem 1.2. At this point, the class of simplicial complexes for which
ZK is homotopy equivalent to a wedge of spheres includes the shifted complexes. Section 10 shows
that there are other simplicial complexes K which have ZK homotopy equivalent (or stably homotopy
equivalent) to a wedge of spheres by proving Theorem 1.3. Finally, Section 11 turns to commutative
algebra considering Golod rings and their properties, and proves Theorems 1.5 and 1.6.

2. The main objects: Their definitions and properties

As mentioned in the introduction, the main objective of this paper is the study of arrangements
and their complements from a topological point of view. To pass from the combinatorial concept
of arrangements to a topological one, we use different topological models associated to simplicial
complexes K and their algebraic counterparts, the Stanley–Reisner ring Z[K ] (or the face ring) of K .

The purpose of this section is to present the main objects which we are going to use and to set the
notation. We rely heavily on constructions in toric topology introduced and studied by Buchstaber and
Panov [1].



362 J. Grbić, S. Theriault / Topology 46 (2007) 357–396

2.1. The Davis–Januszkiewicz space

A topological realisation of the Stanley–Reisner ring Z was given by Davis and Januszkiewicz [3].
Their model was a Borel-type construction. For our purposes we use another model, denoted D J (K ),
given by Buchstaber and Panov [1]. In what follows, we identify the classifying space of the circle S1

with the infinite-dimensional projective space CP∞, and therefore the classifying space BT n of the
n-torus with the n-fold product of CP∞. For an arbitrary subset σ ⊂ [n], define the σ -power of BT as

BT σ
= {(x1, . . . , xn) ∈ BT n

| xi = ∗ if i 6∈ σ }.

Definition 2.1. Let K be a simplicial complex on the index set [n]. The Davis–Januszkiewicz space is
given as the cellular subcomplex

D J (K ) =

⋃
σ∈K

BT σ
⊂ BT n.

Buchstaber and Panov proved that there is a deformation retraction from Davis and Januszkiewicz’s
original model to D J (K ).

It is an open question as to whether the homotopy type of D J (K ) is determined by H∗(D J (K ); Z).
Notbohm and Ray [10] showed that this is true rationally, that is, the rational homotopy type of D J (K )

is determined by H∗(D J (K ); Q).

2.2. The moment-angle complex

Realise the torus T n as a subspace of Cn

T n
=
{
(z1, . . . , zn) ∈ Cn

| |zi | = 1, for i = 1, . . . , n
}

contained in the unit polydisc

(D2)n
=
{
(z1, . . . , zn) ∈ Cn

| |zi | ≤ 1, for i = 1, . . . , n
}
.

For an arbitrary subset σ ⊂ [n], define

Bσ =

{
(z1, . . . , zn) ∈ (D2)n

| |zi | = 1 i 6∈ σ
}

.

Definition 2.2. Let K be a simplicial complex on the index set [n]. Define the moment-angle complex
ZK by

ZK =

⋃
σ∈K

Bσ ⊂ (D2)n.

Observe that since each Bσ is invariant under the action of T n , the moment-angle complex Zk is a T n-
space. Buchstaber and Panov showed that the moment-angle complex is another topological model of
the Stanley–Reisner ring Z[K ] by proving that the T n-equivariant cohomology H∗

T n (ZK ) is isomorphic
to Z[K ].

The following description of the moment-angle complex ZK together with its relation to the
complement of an arrangement plays the pivotal role in our approach to determine the homotopy type of
the complement of a complex coordinate subspace arrangement.
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Proposition 2.3 (Buchstaber–Panov [1]). The moment-angle complex ZK is the homotopy fibre of the
embedding

i : D J (K ) −→ BT n.

Recall from (1) that U (K ) denotes the complement of the complex coordinate subspace arrangement
associated to a simplicial complex K .

Theorem 2.4 (Buchstaber–Panov [1]). There is an equivariant deformation retraction

U (K ) −→ ZK .

Theorem 2.4 ensures that the homotopy type of the complement U (K ) of a complex coordinate
subspace arrangement can be obtained by finding the homotopy type of the moment-angle complex Z K .

Buchstaber and Panov [1] described the cohomology algebra of Z K by proving that there is an
isomorphism

H∗(ZK ; k) ∼= Tork[v1,...,vn](k[K ], k)

as graded algebras.

3. Preliminary homotopy decompositions

The purpose of this section is to identify the homotopy type of several pushouts. Throughout this
section and the remainder of the paper, we work in the category of based, connected topological spaces
and continuous maps. We begin by stating Mather’s Cube Lemma [9], which relates homotopy pullbacks
and homotopy pushouts in a cubical diagram.

Lemma 3.1. Suppose there is a homotopy commutative diagram

E //

  @
@@

@@
@@

��

F

  A
AA

AA
AA

A

G //

��

��

H

��

A

  @
@@

@@
@@

// B

  A
AA

AA
AA

A

C // D.

Suppose the bottom face A–B–C–D is a homotopy pushout and the sides E–G–A–C and E–F–A–B
are homotopy pullbacks.

(a) If the top face E–F–G–H is also a homotopy pushout then the sides G–H–C–D and F–H–B–D
are homotopy pullbacks.

(b) If the sides G–H–C–D and F–H–B–D are also homotopy pullbacks then the top face E–F–G–H
is a homotopy pushout. �
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We next set some notation. Let ∗ denote the basepoint. For spaces X and Y , let X oY = (X ×Y )/(∗×

Y ), X ∧ Y = (X o Y )/(X × ∗), and X ∗ Y = Σ X ∧ Y . The latter space is called the join of X and Y . To
illustrate in the case of spheres, for which these operations will appear frequently in what follows, it is
well known that Sm

∧ Sn
' Sm+n and Sm

∗ Sn
' Sm+n+1, and using the fact that Sm is a co-H space,

we have Sm o Sn
' Sm

∨ (Sm
∧ Sn) ' Sm

∨ Sm+n . Fix spaces X1 and X2 and let 1 ≤ j ≤ 2. Let
π j : X1 × X2 −→ X j be the projection onto the j th factor and let i j : X j −→ X1 × X2 be the inclusion
into the j th factor. Let q j : X1 ∨ X2 −→ X j be the pinch map onto the j th wedge summand. Unless
otherwise specified, we adopt the Milnor–Moore notation of denoting the identity map on a space X by
X . Denote the map which sends all points to the basepoint by ∗.

Now we turn to the homotopy types of certain pushouts. The statements are organised in two pairs,
Lemmas 3.2 and 3.3, and Lemmas 3.4 and 3.5. For each pair, the first statement is a special case of the
second, and is used to help prove the more general statement.

Lemma 3.2. Let A, B and C be spaces. Define Q as the homotopy pushout

A × B
∗×B //

π1

��

C × B

��
A // Q.

Then Q ' (A ∗ B) ∨ (C o B). �

Proof. See [7]. �

Lemma 3.3. Let A, B, C and D be spaces. Define Q as the homotopy pushout

A × B
∗×B //

A×∗

��

C × B

��
A × D // Q.

Then Q ' (A ∗ B) ∨ (C o B) ∨ (A n D).

Proof. Let Q1 be the homotopy pushout of the maps A × D −→ Q and A × D
π1

−→ A. Then there is a
diagram of iterated homotopy pushouts

A × B
∗×B //

A×∗

��

C × B

��
A × D //

π1

��

Q

��
A // Q1.

Observe that the outer rectangle is also a homotopy pushout, so by Lemma 3.2 we have Q1 '

(A ∗ B) ∨ (C o B). Further, the outer rectangle shows that the map A −→ Q1 is null homotopic.

Since A × B
A×∗
−→ A × D is homotopic to the composite A × B

π1
−→ A

i1
−→ A × D, there is an iterated
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homotopy pushout diagram

A × B
∗×B //

π1

��

C × B

��
A //

i1
��

Q1

��
A × D // Q.

Since A −→ Q1 is null homotopic, we can pinch out A in the lower pushout to obtain a homotopy
pushout

∗ //

��

Q1

��
A n D // Q.

Hence Q ' Q1 ∨ (A n D) ' (A ∗ B) ∨ (C o D) ∨ (A n D). �

Lemma 3.4. Let A, B and C be spaces. Define Q as the homotopy pushout

A × (B ∨ C)
π2 //

A×q2
��

B ∨ C

��
A × C // Q.

Then Q ' (A ∗ B) ∨ C. Further, the composite B ∨ C −→ Q
'

−→ (A ∗ B) ∨ C is homotopic to ∗ ∨ C.

Proof. First consider the homotopy pushout

B //

��

B ∨ C
q2
��

∗ // C.

In general, if M is the homotopy pushout of maps X
f

−→ Y and X
g

−→ Z then an easy application of

the Cube Lemma (Lemma 3.1) shows that N × M is the homotopy pushout of N × X
N× f

−−−−→ N × Y

and N × X
N×g

−−−−→ N × Z . In our case, taking the product with A gives a homotopy pushout

A × B //

π1

��

A × (B ∨ C)

A×q2
��

A
i1 // A × C.

Now consider the diagram of iterated homotopy pushouts
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A × B //

π1

��

A × (B ∨ C)
π2 //

A×q2
��

B ∨ C
q1 //

��

B

��
A

i1 // A × C // Q // Q′

where the right pushout defines Q′. Because the squares are all homotopy pushouts so is the outermost
rectangle. Thus, as the top row is homotopic to the projection π2, we see that Q′

' A ∗ B. The right
pushout then implies there is a homotopy cofibration C −→ Q −→ Q′

' A ∗ B.
On the other hand, the composite A × B −→ A × (B ∨ C)

π2
−→ B ∨ C is homotopic to the composite

A× B
π2

−→ B
j1

−→ B ∨C , where j1 is the inclusion. Thus there is an iterated homotopy pushout diagram

A × B
π2 //

π1

��

B
j1 //

��

B ∨ C

��
A // A ∗ B // Q.

As q1 ◦ j1 is homotopic to the identity map on B, the composite A ∗ B −→ Q −→ Q′
' A ∗ B

is homotopic to the identity map. Hence the homotopy cofibration C −→ Q −→ A ∗ B splits as
Q ' (A ∗ B) ∨ C .

Further, this decomposition of Q implies that the restriction of B ∨ C −→ Q corresponds to the
inclusion C −→ (A ∗ B) ∨ C . The right square in the previous diagram shows that the restriction of the
map B ∨C −→ Q to B is null homotopic as this restriction factors through the map B −→ A∗ B which
is null homotopic. Thus the composite B ∨ C −→ Q ' (A ∗ B) ∨ C is homotopic to ∗ ∨ C . �

Lemma 3.5. Let A, B, C and D be spaces. Define Q as the homotopy pushout

A × (B ∨ C)
π2 //

A×(∗∨C)

��

B ∨ C

��
A × (D ∨ C) // Q.

Then Q ' (A ∗ B) ∨ (A n D) ∨ C. Further, letting M = (A ∗ B) ∨ (A n D), the composite
B ∨ C −→ Q

'
−→ M ∨ C is homotopic to ∗ ∨ C.

Proof. Observe that the map ∗ ∨ C is homotopic to the composite B ∨ C
q

−→ C
i

−→ D ∨ C , where q
is the pinch map and i is the inclusion. Then there is a diagram of iterated homotopy pushouts

A × (B ∨ C)
A×q //

π2

��

A × C
A×i //

f
��

A × (D ∨ C)

g
��

B ∨ C // Q′ // Q

(2)

which defines the space Q′ and the maps f and g. By Lemma 3.4, Q′
' (A ∗ B)∨ C . We will show that

there is a homotopy cofibration Q′
−→ Q −→ A n D for which the second map has a right homotopy
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inverse. If so then Q ' Q′
∨ (A n D) ' (A ∗ B)∨ (A n D)∨C , and the additional statement identifying

the composite B ∨ C −→ Q
'

−→ M ∨ C as ∗ ∨ C follows from Lemma 3.4, proving the lemma.

Consider the homotopy cofibration C
i

−→ D ∨ C −→ D. Regard D as the homotopy pushout of

C
i

−→ D ∨ C and C −→ ∗. Then taking the product with A gives a homotopy pushout

A × C
A×i //

π1

��

A × (D ∨ C)

��
A

i1 // A × D

where i1 is the inclusion. The homotopy cofibre of i1, and therefore of A × i , is A n D. Thus the right
homotopy pushout in (2) shows that there is a homotopy cofibration Q′

−→ Q −→ A n D.
Next, the projection in the left square of (2) implies that the restrictions of f and g to A are null

homotopic. So A can be pinched out to give a homotopy pushout diagram

A n C
Ani //

��

A n (D ∨ C) //

��

A n D

Q′ // Q // A n D.

The inclusion A × D −→ A × (D ∨ C) induces an inclusion A n D −→ A n (D ∨ C) which is a right
homotopy inverse of A n (D ∨ C) −→ A n D. Thus the composite A n D −→ A n (D ∨ C) −→ Q
is a right homotopy inverse of Q −→ A n (D ∨ C). This completes the proof. �

Lemma 3.6. Suppose there is a homotopy pushout

A × B
f //

∗×B
��

D

��
C × B

g // E

where the restriction of f to B is null homotopic. Then g factors through a map g′
: C o B −→ E and

g′ has a left homotopy inverse.

Proof. As the restriction of f to B is null homotopic, the homotopy commutativity of the diagram in the
statement of the lemma implies that the restriction of g to B is also null homotopic. Pinching B out on
the left side results in a homotopy pushout

A o B
f ′

//

∗oB
��

D

��
C o B

g′

//

��

E

��
Y Y
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for maps f ′ and g′. Since ∗ o B is null homotopic, we have Y ' (C o B) ∨ Σ (A o B), implying that
g′ has a left homotopy inverse. �

4. A review of homotopy actions

This section is a brief reminder of some properties of homotopy actions. Suppose there is a homotopy
fibration

F −→ E −→ B.

Let ∂ : Ω B −→ F be the connecting map in the homotopy fibration sequence. Then there is a canonical
homotopy action θ : F × Ω B −→ F such that:
(a) θ restricted to F is homotopic to the identity map,
(b) θ restricted to Ω B is homotopic to ∂ , and
(c) there is a homotopy commutative diagram

Ω B × Ω B
µ //

∂×Ω B
��

Ω B

∂

��
F × Ω B θ // F.

A special case is given by the path-loop fibration Ω B −→ PB −→ B. Here, the homotopy action
θ : Ω B × Ω B −→ Ω B is homotopic to the loop multiplication.

Next, the homotopy action is natural for maps of homotopy fibration sequences. If there is a homotopy
fibration diagram

F //

f
��

E //

g
��

B

h
��

F ′ // E ′ // B ′

then there is a homotopy commutative diagram of actions

F × Ω B θ //

f ×Ωh
��

F

f
��

F ′
× Ω B ′ θ ′

// F ′.

One example of this that we will make use of is the following.

Lemma 4.1. Suppose F −→ E
f

−→ B is a homotopy fibration with homotopy action θ : F ×

Ω B −→ F. Then the homotopy fibration F −→ E × X
f ×X
−→ B × X has a homotopy action

θ ′
: F × (Ω B × Ω X) −→ F which factors as

F × (Ω B × Ω X)
θ ′

//

F×π1
��

F

F × Ω B θ // F
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where π1 is the projection.

Proof. Projecting, we obtain a homotopy pullback

F // E × X
f ×X //

π1
��

B × X

π1
��

F // E
f // B.

The asserted homotopy commutative diagram now follows from the naturality of the homotopy
action. �

5. A special case of the Cube Lemma

This section describes a particular case of the Cube Lemma which involves a homotopy action in the
homotopy pushout of fibres. Suppose there is a homotopy pushout

A //

��

B

��
C // D.

Suppose there is a space Z and a map D −→ Z . Map each of A, B, C and D into Z and take homotopy
fibres; name these E , F , G and H respectively. Then there is a homotopy commutative cube

E //

  @
@@

@@
@@

��

F

  @
@@

@@
@@

@

G //

��

��

H

��

A

  @
@@

@@
@@

// B

  @
@@

@@
@@

@

C // D

in which the bottom face is a homotopy pushout and all four sides are homotopy pullbacks. Lemma 3.1
implies that the top face is also a homotopy pushout. In practice, we will have Z = C × Y for some
space Y , together with two additional conditions, described in the following proposition.

Proposition 5.1. Suppose there is a decomposition Z = C × Y such that:

(i) the composite C −→ D −→ C × Y is homotopic to the inclusion of the first factor;
(ii) the composite B −→ D −→ C × Y has a right homotopy inverse when looped.

Let M be the homotopy fibre of the map A −→ C. Then:

(a) E ' M × ΩY and G ' ΩY ;
(b) the homotopy pushout of fibres becomes
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M × ΩY
g //

π

��

F

��
ΩY // H

where π is the projection and the restriction of g to ΩY is null homotopic;

(c) the map g is homotopic to the composite

M × ΩY
g|M×ΩY
−−−−→ F × ΩY

F×i
−−−−→ F × (ΩC × ΩY )

θ
−−−−→ F

where g|M is the restriction of g to M, i is the inclusion into the second factor, and θ is the homotopy
action of ΩC × ΩY on F.

Proof. First consider the effect of condition (i) on the cube, in particular, on the face E − G − A − C .
Let PY be the path space of Y . The inclusion C −→ C ×Y can be replaced up to homotopy equivalence
by the product C × PY −→ C × Y . The map A −→ C is then replaced by the product map
A × ∗ −→ C × PY . Composing into C × Y then gives a homotopy pullback

N //

��

A × ∗ //

��

C × Y

∗ × ΩY // C × PY // C × Y

which defines the space N . Since the maps defining the homotopy pullback are all product maps, N is
homotopy equivalent to the product N1 × N2, where N1 is the homotopy pullback of the maps A −→ C
and ∗ −→ C , and N2 is the homotopy pullback of the maps ∗ −→ PY and ΩY −→ PY . That is,
N1 ' M and N2 ' ΩY . Further, the map N −→ ΩY is homotopic to the projection M × ΩY −→ ΩY .
This proves part (a), that E ' M × ΩY and G ' ΩY , and also shows in part (b) that the map E −→ G
corresponds to the projection.

Next, consider the cube face E–F–A–B. Observe that the connecting map ΩC × ΩY −→ N for the

fibration along the top row of the pullback defining N corresponds to the product map ΩC × ΩY
δ×ΩY
−−→

M ×ΩY , where δ is the connecting map in the homotopy fibration sequence ΩC
δ

−→ M −→ A −→ C .
Using the homotopy equivalence E ' M × ΩY we are considering the homotopy pullback diagram

ΩC × ΩY
δ×ΩY // M × ΩY //

g
��

A //

��

C × Y

ΩC × ΩY
γ // F // B // C × Y

where γ is the connecting map. Condition (ii) implies that γ is null homotopic. The homotopy
commutativity of the left square then immediately implies that the restriction of g to ΩY is null
homotopic. This completes the proof of part (b).
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The naturality of the homotopy action applied to the homotopy pullback in the previous paragraph
gives a homotopy commutative diagram

(M × ΩY ) × (ΩC × ΩY )
θ ′

//

g×(ΩC×ΩY )

��

M × ΩY

g
��

F × (ΩC × ΩY )
θ // F,

where θ ′ and θ are the respective actions. Since the homotopy fibration sequence ΩC × ΩY
δ×ΩY
−→

M ×ΩY −→ A×∗ −→ C ×Y is a product of fibration sequences, θ ′ is homotopic to the product of the

actions of the individual fibrations. That is, the homotopy fibration sequence ΩC
δ

−→ M −→ A −→ C
has a homotopy action θ ′′

: M ×ΩC −→ M , while the homotopy fibration sequence ΩY −→ ΩY −→

PY −→ Y has a homotopy action µ : ΩY × ΩY −→ ΩY given by the loop multiplication. The map θ ′

is then the composite

θ ′
: (M × ΩY ) × (ΩC × ΩY )

M×T ×ΩY
−−−−−−→ (M × ΩC) × (ΩY × ΩY )

θ ′′
×µ

−−−−−−→ M × ΩY

where T is the map which interchanges factors. Precomposing with the inclusion of factors 1 and 4,

M × ΩY
j×i

−→ (M × ΩY ) × (ΩC × ΩY ), we have θ ′
◦ ( j × i) homotopic to the identity map. The

homotopy commutative diagram of actions above then results in a string of homotopies

g ' g ◦ θ ′
◦ ( j × i) ' θ ◦ (g × 1ΩY×ΩY ) ◦ ( j × i) ' θ ◦ (g|M × i)

which proves part (c). �

Corollary 5.2. There is a homotopy cofibration

M o ΩY
g′

−→ F −→ H

where g′ is an extension of g to M o ΩY .

Proof. Consider the homotopy pushout of fibres in Proposition 5.1. We know that the restriction of g
to ΩY is null homotopic. Since the projection π has a right inverse, the map ΩY −→ H is also null
homotopic. Thus the factor ΩY in the left column of the homotopy pushout can be pinched out, resulting
in a new homotopy pushout

M o Y
g′

//

��

F

��
∗ // H

which is exactly the asserted homotopy cofibration. �

6. Proper coordinate subspaces of the fat wedge

Let X1, . . . , Xn be path-connected spaces. In this section we investigate properties of the homotopy
fibre of the inclusion of the fat wedge FW (1, . . . , n) into the product X1 × · · · × Xn . Here,

FW (1, . . . , n) = {(x1, . . . , xn) | at least one xi is ∗}.
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Including the fat wedge into the product gives a homotopy fibration

Fn
−→ FW (1, . . . , n) −→ X1 × · · · × Xn

which defines the space Fn . Porter [12] showed that Fn is homotopy equivalent to Ω X1 ∗ · · · ∗ Ω Xn
by examining certain subspaces of contractible spaces. Doeraene [5] reproduced this result in a more
general setting by using the Cube Lemma. We include a proof using the Cube Lemma for the sake of
completeness.

Lemma 6.1. There is a homotopy equivalence Fn
' Ω X1 ∗ · · · ∗ Ω Xn .

Proof. We induct on n. When n = 1, we have FW (1) = ∗ and so F1
= Ω X1. Assume Fn−1

'

Ω X1 ∗ · · · ∗ Ω Xn−1. Observe that there is a topological pushout

FW (1, . . . , n − 1)
i //

��

FW (1, . . . , n − 1) × Xn

��
X1 × · · · × Xn−1 // FW (1, . . . , n)

where i is the inclusion into the first factor. Mapping all four corners into X1 × · · · × Xn and taking
homotopy fibres gives homotopy fibrations

Fn
−→ FW (1, . . . , n) −→ X1 × · · · × Xn (3)

Fn−1
−→ FW (1, . . . , n − 1) × Xn −→ X1 × · · · × Xn (4)

Ω Xn −→ X1 × · · · × Xn−1 −→ X1 × · · · × Xn (5)

Fn−1
× Ω Xn −→ FW (1, . . . , n − 1) −→ X1 × · · · × Xn. (6)

Note that homotopy fibration (5) is the product of the identity fibration ∗ −→ X1 × · · · × Xn−1 −→

X1×· · ·×Xn−1 and the path-loop fibration Ω Xn −→ ∗ −→ Xn . This relates to both homotopy fibrations
(4) and (6). Homotopy fibration (4) is the product of the fibration Fn−1

−→ FW (1, . . . , n − 1) −→

X1 × · · · × Xn−1 and the identity fibration above. Hence the inclusion i induces a map of fibres
Fn−1

×Ω Xn −→ Fn−1 which is the projection onto the first factor. Homotopy fibration (6) is the product
of the fibration Fn−1

−→ FW (1, . . . , n−1) −→ X1×· · ·×Xn−1 and the path-loop fibration. Hence the
inclusion FW (1, . . . , n − 1) −→ X1 × · · · × Xn−1 induces a map of fibrations Fn−1

× Ω Xn −→ Ω Xn
which is the projection onto the second factor. Collecting all this information on the homotopy fibres,
Lemma 3.1 says that there is a homotopy pushout of fibres

Fn−1
× Ω Xn

π1 //

π2

��

Fn−1

��
Ω Xn // Fn.

It is well known that in general the homotopy pushout of the projections A× B −→ A and A× B −→ B
is homotopy equivalent to A ∗ B. Thus, in our case, Fn

' Fn−1
∗ Ω Xn . The inductive hypothesis on

Fn−1 then implies that Fn
' Ω X1

∗ · · · ∗ Ω Xn . �

For 1 ≤ i ≤ n, let X1 × · · · × X̂ i × · · · × Xn be the subspace of X1 × · · · × Xn in which the i th
coordinate is fixed as ∗. Let FW (1, · · · , î, · · · n) be the fat wedge in X1 × · · · × X̂ i × · · · × Xn . Let
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Bi = X i × FW (1, . . . , î, . . . n). Observe that each Bi is a subspace of FW (1, . . . , n) and there is a
topological pushout

FW (1, . . . , î, . . . n) //

��

Bi

��
X1 × · · · × X̂ i × · · · × Xn

// FW (1, . . . , n).

(7)

Consider the sequence of inclusions Bi −→ FW (1, . . . , n) −→ X1 × · · · × Xn . Using Lemma 6.1,
we obtain a homotopy pullback

Fi
hi //

��

Ω X1 ∗ · · · ∗ Ω Xn

��
Bi //

��

FW (1, . . . , n)

��
X1 × · · · × Xn X1 × · · · × Xn

which defines the map hi .

Lemma 6.2. The map hi is null homotopic.

Proof. Consider the homotopy pushout in diagram (7). We wish to apply Proposition 5.1 with A =

FW (1, . . . , î, . . . , n), B = Bi , C = X1 × · · · × X̂ i × · · · × Xn , D = FW (1, . . . , n), and
Z = X1 × · · · × Xn . We need to check that the two conditions in Proposition 5.1 hold. Observe
that Z = C × X i and C −→ Z is the inclusion of the first factor so condition (i) is satisfied. Since
Bi = X i × FW (1, . . . , î, . . . n) and the map FW (1, . . . , î, . . . , n) −→ X1 × · · · X̂ i , . . . × Xn has a
right homotopy inverse when looped, the map Bi −→ X1 × · · · × Xn also has a right homotopy inverse
when looped, and so condition (ii) is satisfied. Proposition 5.1 then says that when the four corners of
the pushout in diagram (7) are mapped into X1 × · · · × Xn and homotopy fibres are taken, there is a
homotopy pushout of fibres

(Ω X1 ∗ · · · ∗ Ω̂ X i ∗ · · · ∗ Ω Xn) × Ω X i
g //

π

��

Fi

hi
��

Ω X i // Ω X1 ∗ · · · ∗ Ω Xn

(8)

where π is the projection, the restriction of g to Ω X i is null homotopic, and g is determined by the
action of Ω X1 × · · · × Ω Xn on Fi .

We next examine how g is determined by this action. Since Bi = X i × FW (1, . . . , î, . . . , n), we can
project to obtain a homotopy pullback
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Fi

��

Fi

��
Bi //

��

FW (1, . . . , î, . . . , n)

��
X1 × · · · × Xn

π // X1 × · · · × X̂ i × · · · × Xn.

Lemma 4.1 says that g factors through a projection,

(Ω X1 ∗ · · · ∗ Ω̂ X i ∗ · · · ∗ Ω Xn) × Ω X i
g //

π

��

Fi

(Ω X1 ∗ · · · ∗ Ω̂ X i ∗ · · · ∗ Ω Xn)
// Fi .

The projection of g lets us define a composite

g′
: (Ω X1 ∗ · · · ∗ Ω̂ X i ∗ · · · ∗ Ω Xn) o Ω X i

π
−→ Ω X1 ∗ · · · ∗ Ω̂ X i ∗ · · · ∗ Ω Xn −→ Fi .

We can use g′ to pinch out the factor of Ω X i in diagram (8) in order to obtain a homotopy cofibration

(Ω X1 ∗ · · · ∗ Ω̂ X i ∗ · · · ∗ Ω Xn) o Ω X i
g′

−→ Fi
hi

−→ Ω X1 ∗ · · · ∗ Ω Xn.

To simplify notation, let Y = Ω X1 ∗ · · · ∗ Ω̂ X i ∗ · · · ∗ Ω Xn . Since Y is a suspension, Y o Ω X i '

Y ∨ (Y ∧Ω X i ). So g′ can alternatively be described by the composite Y oΩ X i
'

−→ Y ∨ (Y ∧Ω X i )
q

−→

Y −→ Fi , where q is the pinch map. Thus Y ∧ Ω X i is sent trivially into Fi by g′ and so ΣY ∧ Ω X i
retracts off the homotopy cofibre Ω X1 ∗ · · · ∗ Ω Xn of g′. But ΣY ∧ Ω X i ' Ω X1 ∗ · · · ∗ Ω Xn . Thus in

the homotopy cofibration sequence Y oΩ X i
g′

−→ Fi
hi

−→ Ω X1 ∗ · · · ∗Ω Xn
δ

−→ Σ (Y oΩ X i ), the map
δ has a left homotopy inverse and hence hi is null homotopic. �

In what follows a coordinate subspace denotes an arbitrary union of X i1 × · · · × X i j for some
1 ≤ i1 < · · · < i j ≤ n. We now use the spaces Bi and Lemma 6.2 to generalise to the case of any
proper coordinate subspace of FW (1, . . . , n).

Proposition 6.3. Suppose A is a proper coordinate subspace of FW (1, . . . , n). Include A into FW and
then include into X1 × · · · × Xn to obtain a homotopy pullback

F
h //

��

Ω X1 ∗ · · · ∗ Ω Xn

��
A //

��

FW (1, . . . , n)

��
X1 × · · · × Xn X1 × · · · × Xn

which defines the map h. Then h is null homotopic.
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Proof. First observe that the inclusion of A into FW (1, . . . , n) factors through Bi for some i . This
statement really just follows from the definitions. In terms of coordinates,

Bi = {(x1, . . . , xm) | at least one of x1, . . . , x̂i , . . . , xm is ∗}.

If the inclusion of A into FW (1, . . . , n) does not factor through Bi , then A must contain a sequence of
the form (x1, . . . , xn) in which each of x1, . . . , x̂i , . . . , xn is not ∗. Since A is a coordinate subspace,
every sequence of this form must be in A. (Note that A is a subspace of FW (1, . . . , n) so this forces xi
to be ∗ in each such sequence.) If this is true for 1 ≤ i ≤ n, then all of FW (1, . . . , n) is contained in A,
contradicting the hypothesis that A is a proper coordinate subspace of FW (1, . . . , n).

The factorisation of A −→ FW (1, . . . , n) through Bi results in a diagram of iterated homotopy
pullbacks

F //

��

Fi
hi //

��

Ω X1 ∗ · · · ∗ Ω Xn

��
A //

��

Bi //

��

FW (1, . . . , n)

��
X1 × · · · × Xn X1 × · · · × Xn X1 × · · · × Xn.

The outer rectangle is the homotopy pullback defining h, so h factors through hi . But hi is null homotopic
by Lemma 6.2, and so h is null homotopic. �

7. Homotopy fibres associated to regular sequences

Let X1, . . . , Xn be path-connected spaces. Let A and B be two coordinate subspaces of X1×· · ·× Xn ,
where B ⊆ A. Let FA and FB be the homotopy fibres of the inclusions of A and B respectively into
X1 × · · · × Xn . Observe that there is a map of fibres FB −→ FA. The purpose of this section is to
consider the homotopy types of FA and FB and how these are related by the map of fibres. In general,
not much could be expected to be said. We show that if A is built up from B by what we call a regular
sequence, and if the homotopy type of FB is of a certain description, then the homotopy type of FA is of
the same description and there is control over the map of fibres. All this is made concrete in Theorem 7.2
and Proposition 7.5.

We begin by defining what is meant by a regular sequence. Let {i1, . . . , im} be a subset of {1, . . . , n},
where i1 < · · · < im . Let { j1, . . . , jn−m} be the complement of {i1, . . . , im} in {1, . . . , n}, where
j1 < · · · < jn−m . Let FW (i1, . . . , im) be the fat wedge in X i1 × · · · × X im . Let A0 and A be coordinate
subspaces of X1 ×· · ·× Xn such that X1 ∨· · ·∨ Xn ⊆ A0 and A0 ⊆ A. Then A can be built up iteratively
from A0 by a sequence of topological pushouts

FW (i1, . . . , im) //

��

Ak−1

��
X i1 × · · · × X im

// Ak

(9)
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where 1 ≤ k ≤ l, and Al = A. There may be many choices of sequences of pushouts which realise A
in this way. A particular type of sequence, if it exists, is well suited to identifying the homotopy fibre of
the inclusion A −→ X1 × · · · × Xn .

Definition 7.1. Let X1, . . . , Xn be path-connected spaces. A coordinate subspace A of X1 × · · ·× Xn is
regular if the sequence

A0 ⊆ A1 ⊆ · · · ⊆ Al = A

has the following property for each 1 ≤ k ≤ l. Let {s1, . . . , sr } be the largest subset of { j1, . . . , jn−m}

for which Ak−1 can be written as a product Ak−1 = A′

k−1 × Xs1 × · · · × Xsr (permuting the coordinates
if necessary). Then there is a topological pushout

Mk−1 //

��

Nk−1

��
FW (i1, . . . , im) // Ak−1

where Mk−1 is a proper coordinate subspace of FW (i1, . . . , im).

The definition of a regular sequence may seem on first reading to be a bit mystifying, but it arises
naturally when considering coordinate subspaces associated to shifted complexes. It might be useful at
this point to momentarily skip ahead to Examples 8.2 and 8.3 in order to see the connection.

To go along with the definition, we establish some notation. Let {t1, . . . , tn−m−r } be the complement
of {s1, . . . , sr } in { j1, . . . , jn−m}. Let S = Xs1 × · · · × Xsr and T = X t1 × · · · × X tn−m−r , so
S × T = X j1 × · · · × X jn−m and Ak−1 = A′

k−1 × S.
For 0 ≤ k ≤ l, let Fk be the homotopy fibre of the inclusion Ak −→ X1 × · · · × Xn . Observe that if

Ak−1 = A′

k−1 × S then there is a diagram of iterated homotopy pullbacks

Fk−1

��

Fk−1

��

Fk−1

��
A′

k−1
i //

��

Ak−1
π //

��

A′

k−1

��
X i1 × · · · × X im × T i // X i1 × · · · × X im × S × T π // X i1 × · · · × X im × T

where i and π are the inclusion and projection respectively.
In Theorem 7.2 we make the seemingly odd assumption that the fibre F0 is a co-H space. However, in

the context of coordinate subspace arrangements, this condition arises naturally, as we are trying to show
that certain homotopy fibres (labelledZK ) are homotopy equivalent to wedges of spheres for appropriate
simplicial complexes K , in which case the fibres ZK are co-H spaces.

Theorem 7.2. Suppose there is a regular sequence of coordinate subspaces

A0 ⊆ A1 ⊆ · · · ⊆ Al = A.

Assume that the homotopy fibre F0 of the inclusion A0 −→ X1 × · · · × Xn is a co-H space. Then the
following hold:
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(a) for 1 ≤ k ≤ l, there is a homotopy cofibration

(Ω X im ∗ · · · ∗ Ω X im ) o (Ω X j1 × · · · × Ω X jn−m ) −→ Fk−1 −→ Fk

and a homotopy decomposition

(Ω X im ∗ · · · ∗ Ω X im ) o (Ω X j1 × · · · × Ω X jn−m ) ' Ck−1 ∨ Dk−1

where Ck−1 maps trivially into Fk−1 and Dk−1 retracts off Fk−1;
(b) there is a homotopy decomposition Fk−1 ' Dk−1 ∨ Ek−1 for some space Ek−1;
(c) Fk is a co-H space and there is a homotopy decomposition Fk ' ΣCk−1 ∨ Ek−1.

Proof. As the proof of part (a) is lengthy, we begin by assuming that part (a) has been proved and
show that parts (b) and (c) hold. With F0 as the base case, we inductively assume that Fk−1 is a co-
H space. Let Ek−1 be the homotopy cofibre of Dk−1 −→ Fk−1. By part (a), this map has a left
homotopy inverse Fk−1 −→ Dk−1. Since Fk−1 is a co-H space, we can add to obtain a composite
Fk−1 −→ Fk−1 ∨ Fk−1 −→ Dk−1 ∨ Ek−1 which is a homotopy equivalence. This proves part (b). Next,
including Dk−1 into Ck−1 ∨ Dk−1 we obtain a homotopy pushout

Dk−1 // Ck−1 ∨ Dk−1 //

��

Ck−1

��
Dk−1 // Fk−1 //

��

Ek−1

��
Fk Fk .

By part (a) the map Ck−1 −→ Fk−1 is null homotopic, so in the pushout the map Ck−1 −→ Ek−1 is
also null homotopic. Hence Fk ' ΣCk−1 ∨ Ek−1. Finally, Ek−1 is a retract of Fk−1 which has been
inductively assumed to be a co-H space, so Ek−1 is also a co-H space. Thus Fk is a wedge of two co-H
spaces and so is itself a co-H space.

We now prove part (a).

Step 1. Setting up: Consider the pushout in diagram (9). We apply Proposition 5.1 with A =

FW (i1, . . . , im), B = Ak−1, C = X i1 × · · · × X im , D = Ak and Z = X1 × · · · × Xn . We need to
check that conditions (i) and (ii) of Proposition 5.1 hold. Observe that Z = C × (X j1 × · · · × X in−m )

and C −→ Z is the inclusion of the first factor, so condition (i) is satisfied. Since X1 ∨ · · · ∨ Xn is a
subspace of Ak−1 and the inclusion X1 ∨ · · · ∨ Xn −→ X1 × · · · × Xn has a right homotopy inverse
when looped, the inclusion Ak−1 −→ X1 × · · · × Xn also has a right homotopy inverse when looped,
and so condition (ii) is also satisfied. Proposition 5.1 insures that when the four corners of the pushout in
diagram (9) are mapped into X1 × · · · × Xn and homotopy fibres are taken, there is a homotopy pushout
of fibres

(Ω X i1 ∗ · · · ∗ Ω X im ) × (Ω X j1 × · · · × Ω X jn−m )
g //

π

��

Fk−1

��
Ω X j1 × · · ·Ω X jn−m

// Fk

(10)

where π is the projection, the restriction of g to Ω X j1 × · · · × Ω X jn−m is null homotopic, and g is
determined by the action of Ω X1 ×· · ·×Ω Xn on Fk−1. As the restriction of g to Ω X j1 ×· · ·×Ω X jn−m is



378 J. Grbić, S. Theriault / Topology 46 (2007) 357–396

null homotopic, we can pinch out this factor in diagram (10) and, as in Corollary 5.2, obtain a homotopy
cofibration

(Ω X i1 ∗ · · · ∗ Ω X it ) o (Ω X j1 × · · · × Ω X jn−t )
g′

−→ Fk−1 −→ Fk (11)

where g′ is an extension of g to the half-smash.

Step 2. The summand Ck−1: The decomposition Ak−1 = A′

k−1 × S implies that there is a homotopy
pullback

Fk−1

��

Fk−1

��
Ak−1

π //

��

A′

k−1

��
X1 × · · · × Xn

π // (X i1 × · · · × X im ) × T

where π is the projection. Lemma 4.1 says that the map g in diagram (10) factors through a projection,

(Ω X i1 ∗ · · · ∗ Ω X im ) × (Ω S × ΩT )
g //

1×π

��

Fk−1

(Ω X i1 ∗ · · · ∗ Ω X im ) × ΩT
g̃ // Fk

where g̃ is the restriction of g to (Ω X i1 ∗ · · · ∗ Ω X im ) × ΩT .
Let Y = Ω X i1 ∗ · · · ∗Ω X im . Since the restriction of g to (Ω S ×ΩT ) is null homotopic, the restriction

of g̃ to ΩT is null homotopic. Thus g̃ factors through Y o ΩT . It was only necessary to choose some
extension g′ of g to the half-smash in (11) in order to obtain the homotopy cofibration, so we could have

taken g′ to be the composite Y o (Ω S × ΩT )
1×π
−→ Y o ΩT −→ Fk−1. Since Y is a suspension,

Y o (Ω S × ΩT ) ' Y ∨ (Y ∧ Ω S) ∨ (Y ∧ ΩT ) ∨ (Y ∧ Ω S ∧ ΩT ).

Let Ck−1 = (Y ∧ Ω S) ∨ (Y ∧ Ω S ∧ ΩT ) and let Dk−1 = Y ∨ (Y ∧ ΩT ). Then g′ can alternatively be
described by the composite Y o (Ω S × ΩT )

'
−→ Ck−1 ∨ Dk−1

q
−→ Dk−1, where q is the pinch map.

Thus Ck−1 is sent trivially into Fk−1 by g′, as asserted.

Step 3. The summand Dk−1: It remains to show that Dk−1 = Y ∨ (Y ∧ΩT ) is a retract of Fk−1. Again,
we consider Ak−1 = A′

k−1 × S, where S = Xs1 × · · · × Xsr . Observe that {i1, . . . , im} and {s1, . . . , sr }

are disjoint sets in {1, . . . , n} so the inclusion FW (i1, . . . , im) −→ Ak−1 of diagram (9) factors as a
composite FW (i1, . . . , im) −→ A′

k−1 −→ Ak−1. Define the space A′′

k as the topological pushout

FW (i1, . . . , im) //

��

A′

k−1

��
X i1 × · · · × X im

// A′′

k .

Since A is regular, there is a topological pushout
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Mk−1 //

��

Nk−1

��
FW (i1, . . . , im) // A′

k−1

(12)

where Mk−1 is a proper coordinate subspace of FW (i1, . . . , im). Note that all the spaces in diagram (12)
are coordinate subspaces of X i1 × · · · × X im × T . We intend to map the four corners of the pushout into
X i1 × · · · × X im × T , take homotopy fibres, and apply the Cube Lemma. Before doing so we identify
the homotopy fibres. Let FM be the homotopy fibre of the inclusion Mk−1 −→ X i1 × · · · × X im . By
Lemma 6.1, the homotopy fibre of the inclusion FW (i1, . . . , im) −→ X i1 × · · · × X im is homotopy
equivalent to Ω X i1 ∗ · · · ∗ Ω X im . Including X i1 × · · · × X im into X i1 × · · · × X im × T we obtain a
homotopy pullback

FM × ΩT //

h×ΩT
��

Mk−1 //

��

X i1 × · · · × X im × T

(Ω X i1 ∗ · · · ∗ Ω X im ) × ΩT // FW (i1, . . . , im) // X i1 × · · · × X im × T

for some map h. Let FN be the homotopy fibre of the inclusion Nk−1 −→ X i1 × · · · × X im × T . The
definition of a regular sequence includes the hypothesis that X1 ∨· · ·∨ Xn ⊆ A0, and so X1 ∨· · ·∨ Xn ⊆

Ak−1. Having projected away from coordinates s1, . . . , sl , we have X i1 ∨ · · · ∨ X im ∨ X j1 ∨ · · · ∨ X jt ⊆

A′

k−1. As diagram (12) is a homotopy pushout and FW (i1, . . . , im) intersects X j1 ∨ · · · ∨ X jt at a point,
we must have X j1 ∨ · · · ∨ X jt ⊆ Nk−1. Thus ΩT = Ω X j1 × · · · × Ω X jt retracts off Ω Nk−1. Therefore,
in the homotopy pullback

FM × ΩT //

f
��

Mk−1 //

��

X i1 × · · · × X im × T

FN // Nk−1 // X i1 × · · · × X im × T

(the pullback defines the map f ) the restriction of f to ΩT is null homotopic. Now recall from Step 2
that the homotopy fibre of the inclusion A′

k−1 −→ X i1 ×· · ·× X im × T is homotopy equivalent to Fk−1.
Thus, when the four corners of the pushout in diagram (12) are mapped into X i1 × · · · × X im × T and
homotopy fibres are taken, Lemma 3.1 implies that there is a homotopy pushout of fibres

FM × ΩT
f //

h×ΩT
��

FN

��
(Ω X i1 ∗ · · · ∗ Ω X im ) × ΩT

g // Fk−1

(13)

for some map g. We can identify g: it is the restriction of the map g in diagram (10) to (Ω X i1 ∗ · · · ∗

Ω X im ) × ΩT . This is because, as in the proof of Proposition 5.1(c), the map g is determined by the
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action of Ω X i1 × · · · × Ω X im × ΩT on Fk−1. But the pullback

Fk−1 // A′

k−1
//

��

X i1 × · · · × X im × T

��
Fk−1 // Ak // X i1 × · · · × X im × S × T

obtained from including A′

k−1 into Ak−1 = A′

k−1 ×S implies that the action of Ω X i1 ×· · ·×Ω X im ×ΩT
on Fk−1 is the restriction of the action of Ω X i1 × · · · × Ω X im × ΩT × Ω S on Fk−1, that is, the action
of Ω X1 × · · · × Ω Xn on Fk−1, and the latter action determines g. Consequently, the factorisation
of g through g′ implies that the restriction g factors as a composite (using the notation from Step 2)

γ : Y oΩT −→ Y o (Ω S ×ΩT )
g′

−→ Fk−1. Note that Dk−1 was defined as Y ∨ (Y ∧ΩT ) ' Y oΩT ,
and we are trying to prove precisely that γ has a left homotopy inverse.

Consider diagram (13). Since Mk−1 is a proper coordinate subspace of FW (i1, . . . , im),
Proposition 6.3 implies that h is null homotopic. Thus h × ΩT is homotopic to ∗ × ΩT . We have
seen that the restriction of f to ΩT is null homotopic. Lemma 3.6 now applies, and shows that γ has a
left homotopy inverse. �

We now condense some of the information coming out of Theorem 7.2 by concentrating on how the
fibre F0 of the starting point A0 of the regular sequence relates to the fibre Fl of the ending point Al of
the sequence. Let θ be the composite

θ : F0 −→ F1 −→ · · · −→ Fl .

In particular, we want to know how the homotopy type of F0 influences that of Fl . This requires a suitable
hypothesis on the homotopy type of F0 to get going. We now define a class of spaces which will do the
job.

Definition 7.3. Let Gn
1 be the collection of spaces F which are homotopy equivalent to a wedge of

summands of the form Ω X i1 ∗ · · · ∗ Ω X im , where 1 ≤ i1 < · · · < im ≤ n.

Consider Definition 7.3 in the case of primary interest, when X i = CP∞ for 1 ≤ i ≤ n. Then
Ω X i ' S1 and so Ω X i1 ∗ · · · ∗ Ω X im ' S2m−1, in which case F is homotopy equivalent to a wedge of
spheres. As spaces which are homotopy equivalent to wedges of spheres will appear repeatedly, it will
be convenient to introduce an abbreviated way of saying this.

Definition 7.4. Let W be the collection of spaces F which are homotopy equivalent to a wedge of
spheres.

Proposition 7.5. Assume the hypotheses of Theorem 7.2. Suppose in addition that (for all path-
connected spaces X1, . . . , Xn) the homotopy fibre F0 of the inclusion A0 −→ X1 × · · · × Xn is such
that F0 ∈ Gn

1 . Consider the map of fibres θ : F0 −→ Fl . The following hold:

(a) Fl ∈ Gn
1 , and

(b) there is a homotopy decomposition F0 ' F1
0 ∨ F2

0 , where F1
0 , F2

0 ∈ Gn
1 , the restriction of θ to F1

0 is
null homotopic, and the restriction of θ to F2

0 has a left homotopy inverse.
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Proof. Theorem 7.2 gives that for 1 ≤ k ≤ l, there is a homotopy cofibration

(Ω X im ∗ · · · ∗ Ω X im ) o (Ω X j1 × · · · × Ω X jn−m )
fk

−→ Fk−1
gk

−→ Fk

and there are homotopy decompositions

(Ω X im ∗ · · · ∗ Ω X im ) o (Ω X j1 × · · · × Ω X jn−m ) ' Ck−1 ∨ Dk−1,

Fk−1 ' Dk−1 ∨ Ek−1,

Fk ' ΣCk−1 ∨ Ek−1

where the restriction of fk to Ck−1 is null homotopic and the restriction of fk to Dk−1 has a left homotopy
inverse. This implies that the restriction of gk to Dk−1 is null homotopic and the restriction of gk to Ek−1
has a left homotopy inverse.

First observe that, in general, there are homotopy decompositions (Σ A) o B ' Σ A ∨ (Σ A ∧ B) and
Σ (A× B) ' Σ A∨Σ B∨(Σ A∧ B). Noting that the join is a suspension, by using the first decomposition
and iterating on the second we see that

(Ω X im ∗ · · · ∗ Ω X im ) o (Ω X j1 × · · · × Ω X jn−m ) ∈ Gn
1 .

The fact that Theorem 7.2 holds for all path-connected spaces X1, . . . , Xn means that the decompositions
are independent of the particular choices of those spaces. This lets us make an advantageous choice of
X1, . . . , Xn , observe how the decompositions behave in this special case, and then infer the general
decompositions.

The advantageous choice is to take X i = CP∞ for 1 ≤ i ≤ n. Then Ω X i ' S1 and

(Ω X im ∗ · · · ∗ Ω X im ) o (Ω X j1 × · · · × Ω X jn−m ) ∈ W.

Thus Ck−1, Dk−1 ∈ W . The hypothesis on F0 implies that in this case F0 ∈ W . Thus the homotopy
equivalence F0 ' D0 ∨ E0 implies that E0 ∈ W . Hence F1 ∈ W . Inductively, we see that
Ck−1, Dk−1, Ek−1, Fk ∈ W for all 1 ≤ k ≤ l. In particular, Fl ∈ W . We next describe the decomposition
F0 ' F1

0 ∨ F2
0 . The decomposition Fk ' ΣCk−1 ∨ Ek−1 gives a retraction of Ek−1 off Fk . Consider how

this relates to the decomposition Fk ' Dk∨Ek . Since Dk, Ek ∈ W , we can choose subwedges of spheres
EDk , EEk of Dk, Ek respectively such that Ek−1 ' EDk ∨ EEk . Let F1

0 = D1 ∨ ED1 ∨ · · · ∨ EDl−1 , and
let F2

0 = EEl−1 . Then F1
0 ∨ F2

0 ' F0. The condition that gk is null homotopic when restricted to Dk then
implies that it is null homotopic when restricted to EDk , and so collectively we see that the restriction of
θ to F1

0 is null homotopic. The condition that gl−1 has a left homotopy inverse when restricted to El−1

implies that the restriction of θ to F2
0 = EEl−1 has a left homotopy inverse.

Now consider the general case. Observe that, by keeping track of the indices is and jt on each
copy of Ω X is ' S1 and Ω X jt ' S1 in the special case, we can discern which wedge summands of
(Ω X im ∗ · · · ∗ Ω X im ) o (Ω X j1 × · · · × Ω X jn−m ) are in Ck−1 and which are in Dk−1. In particular,
we see that Ck−1, Dk−1 ∈ Gn

1 for each 1 ≤ k ≤ l. The same index bookkeeping on the successive
decompositions in the special case then implies that Ek−1, Fk ∈ Gn

1 for 1 ≤ k ≤ l – in particular,
Fl ∈ Gn

1 , proving part (a) – and there is a decomposition F0 ' F1
0 ∨ F2

0 such that F1
0 , F2

0 ∈ Gn
1 , the

restriction of θ to F1
0 is null homotopic and the restriction of θ to F2

0 has a left homotopy inverse, which
proves part (b). �
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8. The existence of regular sequences

In this section we give a general set of conditions which guarantees the existence of regular sequences.
In Examples 8.2 and 8.3 we then give particular instances which will be used later in Section 9. The set
of conditions is phrased in terms of shifted complexes. Recall that a simplicial complex K is shifted if
there is an ordering on its set of vertices such that whenever σ ∈ K and v′ < v, then (σ − v) ∪ v′

∈ K .
Two additional definitions we need are the following. Let K be a simplicial complex. The link and the
star of a simplex σ ∈ K are the subcomplexes

linkK σ = {τ ∈ K | σ ∪ τ ∈ K , σ ∩ τ = ∅};

starK σ = {τ ∈ K | σ ∪ τ ∈ K }.

One interpretation of these definitions is via ordered sequences. Let K be a simplicial complex on
the index set [n]. The vertices are ordered by their integer labels. If σ is a simplex of K on vertices
{i1, . . . , im}, where 1 ≤ i1 < · · · < im ≤ n, identify σ with the sequence (i1, . . . , im). The simplices of
K are then ordered left lexicographically.

Now suppose K is a shifted complex. If (i1, . . . , im) is an (m − 1)-dimensional simplex of K , then
K must contain every simplex of dimension m − 1 which is lexicographically less than (i1, . . . , im).
Let rest{2, . . . , n} be the simplicial subcomplex of K which is defined as the collection of simplices
(i1, . . . , im) ∈ K with i1 ≥ 2. Observe that star(1) consists of those simplices (i1, . . . , im) for which
(1, . . . , i1 − 1, i1, . . . , im) is also a simplex of K , and link(1) consists of those simplices which are in
both star(1) and rest{2, . . . , n}.

All this can now be formulated topologically in terms of coordinate subspaces. Assume that K is
a simplicial complex on the index set [n]. Let X1, . . . , Xn be path-connected spaces. Then we can
associate a coordinate subspace A of X1 × · · · × Xn to K by letting A be the union of all subspaces
X i1 × · · · × X im , where (i1, . . . , im) is a simplex of K . Now suppose K is shifted. Let Star(1), Link(1),
and Rest{2, . . . , n} be the coordinate subspaces of X1 × · · · × Xn associated to star(1), link(1), and
rest{2, . . . , n} respectively.

We now give a set of conditions on the inclusion of one shifted complex into another which guarantees
the existence of a regular sequence between their corresponding coordinate subspaces.

Proposition 8.1. Let L and K be two shifted complexes on the index set [n], where L is contained within
star(1) of K and K has no disjoint points. Fix path-connected spaces X1, . . . , Xn . Let B and A be the
coordinate subspaces of X1 × · · · × Xn which correspond to L and K respectively. Let Star(1) ⊆ A
be the coordinate subspace which corresponds to star(1) ⊆ K . Then there is a sequence of coordinate
subspaces

B = A0 ⊆ A1 ⊆ · · · ⊆ Al = Star(1)

which is regular.

Before beginning with the proof of Proposition 8.1 we give two examples which will be used
subsequently. Observe that since all n vertices are in L , the coordinate subspace X1 ∨ · · · ∨ Xn is
contained in B.

Example 8.2. Let K be a connected shifted complex. Let L be the disjoint union of the n vertices of K .
Consider star(1) in K . Then B = X1 ∨ · · · ∨ Xn , A = Star(1), and Proposition 8.1 says that there exists
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a sequence of coordinate subspaces

X1 ∨ · · · ∨ Xn = A0 ⊆ A1 ⊆ · · · ⊆ Al = Star(1)

which is regular.

Example 8.3. Let K be a connected shifted complex. Let L be link(1). Let starR(2) be star(2) in
rest{2, . . . , n}. Then B = Link(1) and A = StarR(2). To apply Proposition 8.1 we need to check
that (within Rest{2, . . . , n}) link(1) is contained in starR(2). Let (i1, . . . , im) be a simplex of link(1). If
i1 = 2 then (i1, . . . , im) is clearly in starR(2). If i1 6= 2, then as link(1) ⊆ star(1) (in K ), the definition
of link(1) says there exists a simplex (1, 2, . . . , i1 − 1, i1, . . . , im) in star(1). The restricted simplex
(2, . . . , i1 − 1, i1, . . . , im) is therefore in starR(2). Thus starR(2) contains all the simplices in link(1).
Proposition 8.1 then implies that there is a sequence of coordinate subspaces

Link(1) = A0 ⊆ A1 ⊆ · · · ⊆ Al = StarR(1)

which is regular.

Proof of Proposition 8.1. We adjoin subspaces to B in two separate iterations. These adjunctions
correspond to gluing simplices to L one at a time until star(1) in K is obtained.

Iteration 1: Since K is connected and shifted, every vertex in K is connected by an edge to the vertex 1,
that is, the simplex (1, j) is in K for every 2 ≤ j ≤ n. Now L may contain disjoint points. If so, since
L is shifted, the simplices (1, j) will not be in L for j ≥ j0, where j0 is the first vertex not connected to
1. In terms of coordinate subspaces, each X j is a wedge summand of B, and B contains the coordinate
subspaces X1 × X j for j < j0. The point of this first iteration is to adjoin the coordinate subspaces
X1 × X j for j ≥ j0. They will be adjoined in left lexicographical order. The adjunction is realised by a
homotopy pushout

X1 ∨ X j //

��

Ak−1

��
X1 × X j // Ak

which defines the space Ak . Here, we begin with the j0 case, where A0 = B, so k = j −1− j0. To show
that this sequence is regular, we need to show that there is a homotopy pushout

Mk−1 //

��

Nk−1

��
X1 ∨ X j // Ak−1.

Take Mk−1 = X1. Observe that by the iteration to this point, Ak−1 is the wedge X1 ∨ · · · ∨ Xn with
the coordinate subspaces X1 × X i adjoined for 2 ≤ i ≤ j − 1. In particular, X j is a wedge summand
of Ak−1. Let Nk−1 be the complementary wedge summand of Ak−1, so Ak−1 ' X j ∨ Nk−1. Then it is
clear that Mk−1 = X1 includes into Nk−1, the diagram above homotopy commutes, and it is in fact a
homotopy pushout.

Iteration 2: First observe that at the end of Iteration 1, all the coordinate subspaces X1×X j for 2 ≤ j ≤ n
have been adjoined to Star(1). So An− j0 = X1 × (X2 ∨ · · · ∨ Xn).
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We now adjoin the remaining coordinate subspaces of Star(1) in a two-step process. The idea is to
adjoin all the remaining coordinate subspaces corresponding to the two-dimensional simplices of star(1)

in lexicographic order, then the coordinate subspaces corresponding to the three-dimensional simplices
of star(1), and so on. Suppose all the coordinate subspaces corresponding to the (m − 2)-dimensional
simplices in star(1) have been adjoined. Suppose (1, i2, . . . , im) is the simplex of dimension m − 1 of
least lexicographic order whose corresponding coordinate subspace has not already been adjoined. To
perform the adjunction it is necessary that the coordinate subspaces corresponding to the boundary of
(1, i2, . . . , im) have already been adjoined. The boundary is composed of the simplices

(1, i2, . . . , im−1), (1, i3, . . . , im), . . . , (1, i2, . . . , im−2, im), and (i2, . . . , im).

All the coordinate subspaces corresponding to boundary simplices starting with the vertex 1 have already
been adjoined by the inductive hypothesis: all the simplices are of dimension m − 2 and are all clearly in
star(1). The lexicographical ordering implies that the coordinate subspace corresponding to the simplex
(i2, . . . , im) has not yet been adjoined. So we first need to adjoin the coordinate subspace corresponding
to (i2, . . . , im) and then adjoin the coordinate subspace corresponding to (1, i2, . . . , im). Note that
the coordinate subspaces corresponding to the boundary simplices of (i2, . . . , im) have already been
adjoined because star(1) being shifted means that if τ is a simplex in the boundary of (i2, . . . , im) then
(1, τ ) is also a simplex of star(1), and as its dimension is m − 2, the corresponding coordinate subspace
has already been adjoined by the inductive hypothesis.

The two-step gluing process is realised by the homotopy pushouts

FW (i2, . . . , im) //

��

Ak−1

��

FW (1, i2, . . . , im) //

��

Ak

��
X i1 × · · · × X im

// Ak X1 × X i2 × · · · × X im
// Ak+1

where the pushouts define the spaces Ak and Ak+1. Observe that if we assume Ak−1 ' X1 × A′

k−1 –
this is true for the base case An− j0 as mentioned at the beginning of this iteration – then the two-step
process in adjoining the coordinate subspace corresponding to the simplex (1, i2, . . . , im) implies that
Ak+1 ' X1× A′

k+1. Thus if we show that the two-step process is itself a regular sequence, then the entire
iteration is a string of two-step regular sequences and so is a regular sequence, completing the proof.

For the k − 1 case, as Ak−1 ' X1 × A′

k−1, the definition of a regular sequence forces us to project
onto A′

k−1 and look for a homotopy pushout

Mk−1 //

��

Nk−1

��
FW (i2, . . . , im) // A′

k−1

where Mk−1 is a proper coordinate subspace of FW (i2, . . . , im). Having projected away from variable 1,
this homotopy pushout is really a lower-dimensional case which builds up Star(2) within Rest{2, . . . , n}.
The inductive hypothesis on dimension means that we can assume that this homotopy pushout exists. For
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the k case, we need to show that there is a homotopy pushout

Mk //

��

Nk

��
FW (1, i2, . . . , im) // Ak

where Mk is a proper coordinate subspace of FW (1, i2, . . . , im). Let Mk−1 = X i2 × FW (i3, . . . , im).
(Note that Mk−1 equals Star(1) in FW (i2, . . . , im).) Observe that if such a homotopy pushout exists,
then Nk needs to contain all the coordinate subspaces of Ak except X i2 × · · · × X im . But this is exactly
the description of Ak−1, so by taking Nk = Ak−1 we obtain the desired homotopy pushout. �

9. The homotopy type of ZK for shifted complexes

Recall that if K is a simplicial complex on the index set [n], then there is a corresponding
Davis–Januszkiewicz space D J (K ) and a homotopy fibration

ZK −→ D J (K ) −→

n∏
i=1

BT .

One of the main goals of the paper is to prove Theorem 1.2, which we restate as:

Theorem 9.1. If K is a shifted complex, then ZK is homotopy equivalent to a wedge of spheres.

Any i th skeleton ∆i (n) of the standard simplex ∆(n) on n vertices is shifted. Other examples are easy
to construct; we give two to illustrate.

Example 9.2. Let K be the simplicial complex consisting of vertices {1, 2, 3, 4} and edges
{12, 13, 14, 23, 24}. Then K is shifted.

Example 9.3. Let K be the simplicial complex consisting of vertices {1, 2, 3, 4, 5} and edges
{12, 13, 14, 15, 23, 24, 25, 34, 35}. Then K is shifted. Note that K ′

= K ∪ {123} is shifted, but
K ′′

= K ∪ {124} is not shifted.

It is well known (and easy to prove) that if K is shifted then each of link(1), star(1), and rest{2, . . . , n}

is shifted, star(1) = (1) ∗ link(1), and there is a topological pushout

link(1) //

��

rest{2, . . . , n}

��
star(1) // K .

This results in a corresponding homotopy pushout of Davis–Januszkiewicz spaces

D J (link(1)) //

��

D J (rest{2, . . . , n})

��
D J (star(1)) // D J (K )
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where D J (star(1)) = BT × D J (link(1)). Mapping the four corners into
∏n

i=1 BT and taking homotopy
fibres gives a cube as in Lemma 3.1, and in particular a homotopy pushout of fibres

S1
× Zlink(1)

//

��

S1
× Zrest{2,...,n}

��
Zstar(1)

// ZK .

(14)

We wish to show that each of Zlink(1), Zrest{2,...,n}, and Zstar(1) is homotopy equivalent to a wedge of
spheres, and then identify the maps in the homotopy pushout in order to show that ZK is also homotopy
equivalent to a wedge of spheres.

This topological problem can be reformulated more generally for coordinate subspaces. We still
assume that K is a shifted complex on the index set [n]. Let X1, . . . , Xn be path-connected spaces.
Let A be the coordinate subspace of X1 × · · · × Xn associated to K . Then there is a homotopy pushout

Link(1) //

��

Rest{2, . . . , n}

��
Star(1) // A

(15)

where Star(1) ' X1 × Link(1). Now compose each of the four corners with the inclusion A −→

X1×· · ·× Xn and take homotopy fibres. Let FL , FS , FR , and FA be the homotopy fibres of the respective
inclusions of Link(1), Star(1), Rest{2, . . . , n}, and A into X1 × · · · × Xn . Then Lemma 3.1 says there is
a homotopy pushout of fibres

FL //

��

FR

��
FS // FA.

(16)

The homotopy pushout in (16) can be refined. First, consider the map FL −→ FS . As link(1) is a
simplicial complex on the vertices {2, . . . , n}, the space Link(1) is a coordinate subspace of X2×· · ·×Xn .
Thus FL ' Ω X1 × F L , where F L is the homotopy fibre of the inclusion FL −→ X2 × · · · × Xn .
Continuing, as Star(1) ' X1 × Link(1), there is a homotopy pullback

Ω X1 × F L
//

��

Link(1) //

��

X1 × · · · × Xn

FS // X1 × Link(1) // X1 × · · · × Xn.

As the map Link(1) −→ X1 × Link(1) is the inclusion of the second factor, the previous homotopy
pullback shows that F L ' FS and the map Ω X1 × F L −→ FS is the projection. Next, consider the map
FL −→ FR . As Rest{2, . . . , n} is a coordinate subspace of X2 × · · · × Xn , we have FR ' Ω X1 × F R ,
where F R is the homotopy fibre of Rest{2, . . . , n} −→ X2 × · · · × Xn . As Link(1) is a subspace

of Rest{2, . . . , n}, the map FL −→ FR becomes Ω X1 × FS
Ω X1×γ

−−−−→ Ω X1 × F R for some map γ .
Collecting all this information on the homotopy fibres, the homotopy pushout in diagram (16) becomes
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a homotopy pushout

Ω X1 × FS
Ω X1×γ//

π2

��

Ω X1 × F R

��
FS // FA.

(17)

The goal is to identify the homotopy type of FA. We do this in Theorem 9.4. It may be helpful to recall
the definition of Gn

1 in 7.3.

Theorem 9.4. Let K be a shifted complex on the index set [n]. Let X1, . . . , Xn be path-connected spaces
and let A be the coordinate subspace of X1 × · · · × Xn which corresponds to K . Use the notation and
setup established in diagrams (15) and (17). Then the following hold:
(a) FS ∈ Gn

1 and F R ∈ Gn
2 ;

(b) there are homotopy decompositions FS ' F1
S ∨ F2

S and F R ' F
1
R ∨ F2

S such that F1
S , F2

S ∈ Gn
1 ,

F
1
R ∈ Gn

2 and there is a homotopy commutative diagram

FS
γ //

'

��

F R

'

��

F1
S ∨ F2

S

∗∨F2
S // F

1
R ∨ F2

S ;

(c) FA ∈ Gn
1 .

Proof. We induct on n, the number of vertices. When n = 1, we have A = X1, Star(1) = X1,
Rest{2, . . . , n} = ∗, and Link(1) = ∗. Composing into (the product space) X1 and taking homotopy
fibres, we immediately see that FS ' ∗, F R ' ∗, γ is homotopic to the map from the basepoint to itself
so part (b) trivially holds, and FA ' ∗.

Assume the proposition holds for n − 1 vertices. First, applying Proposition 7.5(a) to the regular
sequence from X1 ∨ · · · ∨ Xn to Star(1) in Example 8.2 shows that FS ∈ Gn

1 . Next, since Rest{2, . . . , n}

is a shifted complex on the vertices {2, . . . , n}, the inductive hypothesis implies that F R ∈ Gn
2 . This

proves part (a).
Assume part (b) for the moment. Lemma 3.5 applies to show there is a homotopy equivalence

FA ' F2
S ∨ (Ω X1 ∗ F1

S ) ∨ (Ω X1 n F
1
R).

As F
1
R ∈ Gn

2 , it is a suspension and so Ω X1 n F
1
R ' (Ω X1 ∧ F

1
R) ∨ F

1
R . Thus as F1

S , F2
S ∈ Gn

1 and

F
1
R ∈ Gn

2 , we have FA ∈ Gn
1 , proving part (c).

To prove part (b), we need to closely examine the map FS
γ

−→ F R . This was defined in the setup for
diagram (17) by a homotopy pullback

FS //

γ

��

Link(1) //

��

X2 × · · · × Xn

F R
// Rest{2, . . . , n} // X2 × · · · × Xn.
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By definition, StarR(2) is a coordinate subspace of Rest{2, . . . , n}. In Example 8.3 we showed that
Link(1) is a coordinate subspace of StarR(2). Thus there is a diagram of iterated homotopy pullbacks

FS //

δ
��

Link(1) //

��

X2 × · · · × Xn

FS
//

ε

��

StarR(2) //

��

X2 × · · · × Xn

F R
// Rest{2, . . . , n} // X2 × · · · × Xn

where the pullbacks define the space FS and the maps δ and ε. Hence γ ' ε ◦ δ. We deal with each of δ

and ε one at a time.
Applying Proposition 7.5(b) to the regular sequence from Link(1) to StarR(2) in Example 8.3 shows

that FS ' E1 ∨ E2, where E1, E2 ∈ Gn
1 , the restriction of δ to E1 is null homotopic, and the restriction

of δ to E2 has a left homotopy inverse.
For ε, we appeal to the inductive hypothesis. Let linkR(2) be link(2) within rest{2, . . . , n}. Since

rest{2, . . . , n} is a shifted complex, it is the pushout of starR(2) and rest{3, . . . , n} over linkR(2). This
results in a homotopy pushout of the corresponding coordinate subspaces (in X2 × · · · × Xn)

LinkR(2) //

��

Rest{3, . . . , n}

��
StarR(2) // Rest{2, . . . , n}.

Let FL and FR respectively be the homotopy fibres of the inclusions of LinkR(2) and Rest{3, . . . , n}

into X2 × · · · × Xn . Recall that FS and F R respectively have been defined as the homotopy fibres of the
inclusions of StarR(2) and Rest{2, . . . , n} into X2 × · · · × Xn . As in diagram (16), when all four corners
of the pushout above are mapped into X2 × · · · × Xn , we obtain a homotopy pushout of fibres

FL
//

��

FR

��
FS

ε // F R .

Arguing as for diagram (17), this homotopy pushout of fibres refines to a homotopy pushout

Ω X2 × FS
1×γ //

��

Ω X2 × F R

��
FS

ε // F R

where F R is the homotopy fibre of the inclusion Rest{3, . . . , n} −→ X3 × · · · × Xn . Since the
underlying shifted complex rest{2, . . . , n} is on n − 1 vertices, by inductive hypothesis we can assume
that there are homotopy decompositions FS ' D1 ∨ D2 and F R ' D3 ∨ D2, where D1, D2 ∈ Gn

2 ,

D3 ∈ Gn
3 , and under these decompositions γ becomes the map D1 ∨ D2

∗∨D2
−−−−→ D3 ∨ D2. Applying
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Lemma 3.5 we obtain a homotopy equivalence F R ' D2 ∨ (Ω X2 ∗ D1) ∨ (Ω X2 n D3). Further, letting

M = (Ω X2 ∗ D1) ∨ (Ω X2 n D3), the map ε becomes D1 ∨ D2
∗∨D2

−−−−→ M ∨ D2.
Now consider the composite γ : FS

δ
−→ FS

ε
−→ F R . The decomposition of FS can be used to refine

the decomposition FS ' E1 ∨ E2, as follows. Since the restriction of δ to E2 has a left homotopy inverse,
the decomposition FS ' D1 ∨ D2 results in a decomposition E2 ' E1

2 ∨ E2
2 , where E i

2 retracts off Di .
Let F1

S = E1
∨ E1

2 , and let F2
S = E2

2 . Then FS ' F1
S ∨ F2

S . Now combining the decompositions of
FS, FS , and F R with their effects on δ and ε we obtain a homotopy commutative diagram

FS
δ //

'

��

FS
ε //

'

��

F R

'

��
F1

S ∨ F2
S

∗∨i // D1 ∨ D2
∗∨D2 // M ∨ D2

where i has a left homotopy inverse. Let C be the homotopy cofibre of i . Then as D2 ∈ Gn
2 it

is a suspension and so the fact that i has a left homotopy inverse implies that there is a homotopy
decomposition D2 ' F2

S ∨ C . Let F
1
R = M ∨ C . Then F R ' F

1
R ∨ F2

S and the previous diagram shows

that under this altered decomposition of F R the map γ ' ε ◦ δ becomes F1
S ∨ F2

S

∗∨F2
S

−−−−→ F
1
R ∨ F2

S ,
which proves part (b). �

With Theorem 9.4 in hand, we can prove Theorem 9.1 as a special case.

Proof of Theorem 9.1. In this case, each space X i equals BT , the classifying space of the torus,
the coordinate subspace A equals D J (K ), and the homotopy fibre FA equals ZK . Theorem 9.4(c)
says that ZK ∈ Gn

1 , meaning that ZK is homotopy equivalent to a wedge of summands of the form
Ω BTi1 ∗ · · · ∗ Ω BTim . Such a summand is homotopy equivalent to Sm+1 since Ω BT ' S1. Thus ZK is
homotopy equivalent to a wedge of spheres, and so K ∈ F0. �

A special case of a shifted complex is the full i-skeleton ∆i (n) of the standard simplex ∆(n) on
n vertices. For path-connected spaces X1, . . . , Xn , let T n

k be the coordinate subspace associated to
∆n−k(n). Specifically,

T n
k = {(x1, . . . , xn) ∈ X1 × · · · × Xn | at least k of the xi ’s are ∗}.

In particular, T n
0 = X1 ×· · ·× Xn , T n

1 is the fat wedge, T n
n−1 = X1 ∨· · ·∨ Xn , and T n

n = ∗. Let Fn
k be the

homotopy fibre of the inclusion T n
k −→ T n

0 . By Theorem 9.4, Fn
k is homotopy equivalent to a wedge of

summands of the form Ω X i1 ∗ · · · ∗ Ω X im , where 1 ≤ i1 < · · · < im ≤ n. This wedge can be calculated
explicitly using the iteration in Proposition 8.1 to reproduce a result first obtained in a different context
by Porter [12]. For a space X and a positive integer j , let j · X be the wedge sum of j copies of X . Let
X ( j) be the j-fold smash of X with itself.

Theorem 9.5 (Porter). For n ≥ 1, let X1, . . . , Xn be path-connected spaces. Let k be such that
1 ≤ k ≤ n − 1. Then there is a homotopy equivalence

Fn
k '

n∨
j=n−k+1

 ∨
1≤i1<···<i j ≤n

(
j − 1
n − k

)
Σ n−kΩ X i1 ∧ · · · ∧ Ω X i j

 . �
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Corollary 9.6. As in Theorem 9.5, if X i = X for each 1 ≤ i ≤ n then there is a homotopy equivalence

Fn
k '

n∨
j=n−k+1

(
n
j

)(
j − 1
n − k

)
Σ n−k(Ω X)( j). �

The case of relevance to us is Corollary 9.6 applied when X = CP∞. Then T n
k corresponds to D J (K )

for K = ∆n−k(n). The homotopy fibre Fn
k corresponds to ZK . Since Ω X ' S1, we obtain:

Corollary 9.7. If K = ∆n−k(n), then

ZK '

n∨
j=n−k+1

(
n
j

)(
j − 1
n − k

)
Sn−k+ j . �

We now return to Examples 9.2 and 9.3 to identify the homotopy type ofZK for two shifted complexes
K which are not skeletons of a standard simplex.

Example 9.8. Let K be the simplicial complex in Example 9.2. Observe that

(i) star(1) consists of vertices {1, 2, 3, 4} and edges {12, 13, 14};
(ii) rest{2, 3, 4} consists of vertices {2, 3, 4} and edges {23, 24};

(iii) link(2) consists of vertices {2, 3, 4} and no higher-dimensional simplices;
(iv) star(2) coincides with rest{2, 3, 4};
(v) rest{3, 4} consists of vertices {3, 4} and no higher-dimensional simplices;

(vi) link(2) coincides with rest{3, 4}.

The homotopy pushout for ZK in (14) refines as in (17) to a homotopy pushout

Ω BT1 × Zlink(1)
1×γ //

π2
��

Ω BT1 × Zrest{2,3,4}

��
Zlink(1)

// ZK .

As link(1) consists only of three vertices, Corollary 9.7 applied to ∆0(3) shows thatZlink(1) ' 3S3
∨2S4.

Similarly, as rest{2, 3, 4} consists only of two vertices, Corollary 9.7 applied to ∆0(3) shows that
Zrest{2,3,4} ' S3. Keeping track of coordinates in Theorem 9.4(b) shows that γ sends two of the S3

summands and both S4 summands of Zlink(1) to the basepoint and it sends the remaining S3 summand
identically onto itself. Substituting, the preceding homotopy pushout becomes

S1
× (S3

∨ 2S3
∨ 2S4)

1×(1∨∗∨∗)//

π2
��

S1
× S3

��
3S3

∨ 2S4 // ZK .

Lemma 3.4 then says that ZK ' (S1
∗ (2S3

∨ 2S4)) ∨ S3
' S3

∨ 2S5
∨ 2S6.

Example 9.9. Let K be the shifted complex in Example 9.3. Observe that
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(i) star(1) consists of vertices {1, 2, 3, 4, 5} and edges {12, 13, 14, 15};
(ii) rest{2, 3, 4, 5} is the simplicial complex discussed in Examples 9.2 and 9.8;

(iii) link(1) consists of vertices {2, 3, 4, 5} and no higher-dimensional simplices.

As in Example 9.8, there is a homotopy pushout

Ω BT1 × Zlink(1)
1×γ //

π2
��

Ω BT1 × Zrest{2,3,4,5}

��
Zlink(1)

// ZK .

As link(1) consists only of four vertices, Corollary 9.7 applied to ∆0(4) shows thatZlink(1) ' 6S3
∨8S4

∨

3S5. By Example 9.8,Zrest{2,3,4,5} ' S3
∨2S5

∨2S6. Keeping track of the coordinates in Theorem 9.4(b)
shows that γ sends five of the S3 summands and all the S4 and S5 summands to the basepoint, and it sends
the remaining S3 by the identity map onto the S3 summand of Zrest{2,3,4,5}. Substituting, the preceding
homotopy pushout becomes

S1
× (S3

∨ 5S3
∨ 8S4

∨ 3S5)
1×(1∨∗∨∗∨∗) //

π2
��

S1
× (S3

∨ 2S5
∨ 2S6)

��
6S3

∨ 8S4
∨ 3S5 // ZK .

Applying Lemma 3.5 then shows that

ZK ' (S1
∗ (5S3

∨ 8S4
∨ 3S5)) ∨ (S1 n (2S5

∨ 2S6)) ∨ S3
' S3

∨ 7S5
∨ 12S6

∨ 5S7.

10. Topological extensions

At this point, we have shown that if a simplicial complex K is shifted, then its moment-angle complex
ZK is homotopy equivalent to a wedge of spheres. Next, we want to consider other non-shifted simplicial
complexes K for which ZK is homotopy equivalent to a wedge of spheres, or for which ΣZK is
homotopy equivalent to a wedge of spheres. Note again that torsion can occur in the cohomology ring
of ZK for certain simplicial complexes K , making it impossible for ZK to be even stably homotopic to
a wedge of spheres.

We consider how three combinatorial operations – the disjoint union of simplicial complexes, gluing
along a common face and the join of simplicial complexes – alter the homotopy type of the moment-
angle complex. Recall that for given simplicial complexes K1 and K2 on sets S1 and S2 respectively, the
join K1 ∗ K2 is the simplicial complex

K1 ∗ K2 := {σ ⊂ S1 ∪ S2 | σ = σ1 ∪ σ2, σ1 ∈ K1, σ2 ∈ K1}

on the set S1 ∪ S2.

Theorem 10.1. Let K1 and K2 be simplicial complexes such that ZK1 and ZK2 are homotopy equivalent
to wedges of spheres. Then the following hold:
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(1) if K = K1
⋃

σ K2 is obtained by gluing along a common face, then ZK is homotopy equivalent to a
wedge of spheres;

(2) if K = K1
∐

K2 is the disjoint union of simplicial complexes, then ZK is homotopy equivalent to a
wedge of spheres;

(3) if K = K1 ∗ K2 is the join of simplicial complexes, then ZK is not homotopy equivalent to a wedge
of spheres but ΣZK is.

Proof. (1) Let D J (Ki ), i = 1, 2, D J (σ ) and D J (K ) be the corresponding Davis–Januszkiewicz spaces.
Each vertex in Ki , σ or K corresponds to a coordinate in D J (Ki ), D J (σ ) or D J (K ) respectively. List
the vertices of K1 as {1, . . . , l, . . . , m}, where the vertices of σ are {l + 1, . . . , m}. List the vertices of
K2 as {l + 1, . . . , m, . . . , n}. Regard D J (K1) as a subspace of

∏m
i=1 CP∞. Let D1 be the image of

D J (K1) under the map
∏m

i=1 CP∞
−→

∏n
i=1 CP∞ given by the inclusion of the first m coordinates.

Similarly, regard D J (K2) as a subspace of
∏n

i=l+1 CP∞, and let D2 be its image under the map∏n
i=l+1 CP∞

−→
∏n

i=1 CP∞ given by the inclusion of the last n − l coordinates. Since σ is a simplex,
D J (σ ) is a product of m − l copies of CP∞. Let D3 be the image of D J (σ ) in

∏n
i=1 CP∞ under the

map
∏m

i=l+1 CP∞
−→

∏n
i=1 CP∞ given by the inclusion of the middle m − l coordinates. Let D be

the topological pushout

D3

��

// D1

��
D2 // D.

(18)

Then D = D J (K ) and is a subspace of
∏n

i=1 CP∞.
For notational convenience, let BT n

=
∏n

i=1 CP∞. Map each of the four corners of pushout (18)
into BT n and take homotopy fibres. This gives homotopy fibrations

F −→ D −→ BT n

F1 × N −→ D1 −→ BT n

M × F2 −→ D2 −→ BT n

M × N −→ D3 −→ BT n

where the first homotopy fibration defines F , F1 is the homotopy fibre of D1 −→
∏m

i=1 CP∞, F2 is the
homotopy fibre of D2 −→

∏n
i=l+1 CP∞, M =

∏l
i=1 S1, and N =

∏n
i=m+1 S1. Including D3 into D1

gives a homotopy pullback diagram

Ω BT n // M × N //

θ
��

D3 //

��

BT n

Ω BT n // F1 × N // D1 // BT n

for some map θ of fibres. We now identify θ . With BT m
=
∏m

i=1 CP∞, the pullback just described is
the product of the homotopy pullback
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Ω BT m // M //

θ ′

��

D3 //

��

BT m

Ω BT m // F1 // D1 // BT m

and the path-loop fibration N −→ ∗ −→
∏n

i=m+1 CP∞. So θ = θ ′
× N . Further, M =

∏l
i=1 S1

is a retract of Ω BT m
'
∏m

i=1 S1 and Ω BT m
−→ F1 is null homotopic since Ω BT m is a retract of

Ω D1 = Ω D J (K1). Hence θ ′
' ∗ and so θ ' ∗ × N . A similar argument for the inclusion of D3 into

D2 shows that the map of fibres M × N −→ M × F2 is homotopic to M × ∗.
Collecting all this information about homotopy fibres, Lemma 3.1 shows that there is a homotopy

pushout

M × N
∗×N //

M×∗

��

F1 × N

��
M × F2 // F.

Lemma 3.3 then gives a homotopy decomposition

F ' (M ∗ N ) ∨ (M n F2) ∨ (F1 o N ).

To show that F is homotopy equivalent to a wedge of spheres, we show that each of M ∗ N , M n F2,
and F1oN are homotopy equivalent to wedges of spheres. First, observe that the suspension of a product
of spheres is homotopy equivalent to a wedge of spheres. Since M and N are products of copies of S1,
M ∗ N is therefore homotopy equivalent to a wedge of spheres. Second, as F2 is homotopy equivalent to
a wedge of (connected) spheres we can write F2 ' Σ F ′

2, where F ′

2 is a wedge of spheres which possibly
includes copies of S0. We then have M n F2 ' M n(Σ F ′

2) ' Σ M ∨(Σ M ∧ F ′

2). Now Σ M is homotopy
equivalent to a wedge of spheres. This also implies that Σ M ∧ F ′

2 is homotopy equivalent to a wedge of
suspensions of F ′

2. That is, M ∧ F2 ' Σ M ∧ F ′

2 is homotopy equivalent to a wedge of copies of F2 and
suspensions of F2. Therefore, as F2 is homotopy equivalent to a wedge of spheres so is M ∧ F2. Hence
M n F2 is homotopy equivalent to a wedge of spheres. The decomposition of the summand F1 o N into
a wedge of spheres is exactly as for M n F2.

(2) Let K = K1
∐

K2 be the disjoint union of two simplicial complexes K1 and K2 on the index sets
[m] and [n] respectively. Then their disjoint union K = K1

∐
K2 is a simplicial complex on the index

set [m +n] obtained as the result of gluing K1 to K2 along the empty face. Applying part (1) then shows
that ZK is homotopy equivalent to a wedge of spheres. Moreover, the homotopy type of ZK is given by

ZK '

(
m∏

i=1

S1
∗

n∏
j=1

S1

)
∨

(
ZK1 o

n∏
i=1

S1

)
∨

(
m∏

i=1

S1 n ZK2

)
.

(3) The Davis–Januszkiewicz space of the join K = K1 ∗ K2 of two simplicial complexes K1 and K2
on the index sets [m] and [n] has the following form:

D J (K ) =

⋃
σ∈K

BT σ
=

⋃
σ1∪σ2∈K

BT σ1 × BT σ2 =

( ⋃
σ1∈K1

BT σ1

)
×

( ⋃
σ2∈K2

BT σ2

)
= D J (K1) × D J (K2).
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Therefore the fibration

D J (K1 ∗ K2) −→ BT m+n

associated to the join of K1 and K2 is the product fibration

D J (K1) × D J (K2) −→ BT m
× BT n.

HenceZK1∗K2 ' ZK1 ×ZK2 , immediately implying part (3). (In fact, the homotopy equivalence between
ZK1∗K2 and ZK1 × ZK2 can be improved to a homeomorphism. See [4, Lemma 2.1.4].) �

Theorem 10.1 can be applied to two shifted complexes K1 and K2. However, the simplicial complex
K in parts (1) and (2) need not be shifted. So the Theorem substantially extends the family of simplicial
complexes for which the moment-angle complex is homotopy equivalent to a wedge of spheres.

Theorem 10.1 can also be useful for calculating the homotopy types of moment-angle complexes ZK .
To illustrate, we give an alternative calculation of that in Example 9.8.

Example 10.2. Let K be the shifted complex in Example 9.2. Then K is obtained by gluing two
copies of the 1-skeleton of the standard simplex ∆(3) (on three vertices) along a common edge.
Specifically, K = K1 ∪σ K2, where K1 consists of vertices {1, 2, 3} and edges {12, 13, 23}, K2 consists
of vertices {2, 3, 4} and edges {23, 24, 34}, and σ is the common edge {23}. Using the notation in
the proof of Theorem 10.1(a), the formula F ' (M ∗ N ) ∨ (M n F2) ∨ (F1 o N ) corresponds to
ZK ' (S1

∗ S1) ∨ (S1 nZK2) ∨ (ZK1 n S1). Both K1 and K2 are copies of ∆1(3) so Corollary 9.7 says
that ZK1 ' ZK2 ' S5. Hence ZK ' S3

∨ 2S5
∨ 2S6.

11. Algebra

Let A be a polynomial ring on n variables k[x1, . . . , xn] over a field k and let R = A/I , where I
is homogeneous ideal. In this section we shall be interested in the nature of TorR(k, k): specifically, in
identifying a class of rings R for which all Massey products in TorA(R, k) vanish and how this impacts
upon the Poincaré series of R. Recall that the Poincaré series of R is the formal power series

P(R) =

∞∑
i=0

bi t i

where bi = dimk Tori
R(k, k) are the Betti numbers of R. It has been conjectured by Kaplansky and Serre

that P(R) is always a rational function. The regular local rings were the first rings for which P(R) was
explicitly computed. In this case Serre [14] showed that P(R) = (1 + t)n . Tate [15] showed that if R is
a complete intersection, then there exist non-negative integers m, n such that

P(R) =
(1 + t)n

(1 − t2)m .

Golod [8] made a far-reaching contribution to the problem by showing that if certain homology
operations on the Koszul complex vanish, then there exist non-negative integers n, c1, . . . , cn such that

P(R) =
(1 + t)n

1 −

n∑
i=1

ci t i+1
.
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In general not much is known about the rationality of P(R), although there is an inequality due to
Golod [8] showing that P(R) is always bounded (coefficient-wise) by a rational function.

In the past, describing various properties of TorR(k, k) has been largely an algebraic problem. Further
on, we translate the problem of rationality of the Poincaré series into topology by using recent results
of toric topology. Then by using our results on the homotopy type of the complement of a coordinate
subspace arrangement, we find a class of rings R for which P(R) is a rational function determined by
P(TorA(R, k)).

In what follows R will be the Stanley–Reisner ring k[K ] of an arbitrary simplicial complex K on n
vertices. Recall from Definition 1.4 that the Stanley–Reisner ring k[K ] is Golod if all Massey products
in Tork[v1,...,vn](k[K ], k) vanish. Buchstaber and Panov [1] proved that

Tor∗k[K ]
(k, k) ∼= H∗(Ω D J (K ); k).

This isomorphism now lets us exploit the topological properties of the loop space Ω D J (K ) to obtain
further information about TorR(k, k). Looking at the split fibration

ΩZK −→ Ω D J (K ) −→ T n

we have

Tor∗R(k, k) ∼= H∗(Ω D J (K ); k) = H∗(T n
; k) ⊗ H∗(ΩZK ; k).

A calculation using the bar resolution shows that

P(H∗(ΩZK ; k)) ≤ P(T (Σ−1 H∗(ZK ; k)))

where Σ−1 H∗(ZK ; k) is the desuspension of the module H∗(ZK ; k). Therefore

P(R) ≤ (1 + t)n P(T (Σ−1 H∗(ZK ; k))) =
t (1 + t)n

t − P(H∗(ZK ; k))
.

Looking at the Eilenberg–More spectral sequence (the bar resolution) that computes the cohomology
of the fibre in the path-loop fibration ΩZK −→ ∗ −→ ZK , we conclude that the above equality is
reached when the differentials are trivial. According to May, the differentials are determined by the
Massey products and therefore they are trivial when all the Massey products in H∗(ZK ) vanish. As
H∗(ZK ; k) ∼= Tork[v1,...,vn](k[K ], k) [1], an equality for P(R) is obtained when the Stanley–Reisner
ring k[K ] is Golod. This proves the following theorem.

Theorem 11.1. For a simplicial complex K ,

P(k[K ]) ≤
t (1 + t)n

t − P(H∗(ZK ; k))
. (19)

Equality is obtained when k[K ] is Golod.

We proceed by describing a new class of Golod rings using topological methods.

Theorem 11.2. If K ∈ F0, then k[K ] is a Golod ring.

Proof. By definition of the family F0, when K ∈ F0 then ZK is homotopy equivalent to a wedge of
spheres. Therefore in the cohomology of ZK all cup products and higher Massey products are trivial. On
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the other hand, recall that Buchstaber and Panov [1] proved that

H∗(ZK ; k) ∼= Tork[v1,...,vn](k[K ], k).

Therefore in Tork[v1,...,vn](k[K ], k) all Massey products are trivial. Now by definition, the ring k[K ] is
Golod. �

We finish by proving that the Poincaré series of a ring belonging to the class defined in Theorem 11.2 is
a rational function.

Corollary 11.3. If K ∈ F0, then the Poincaré series of the ring k[K ] has the following form

P(k[K ]) =
t (1 + t)n

t − P(H∗(ZK ; k))
.

Proof. As k[K ] is a Golod ring, in (19) equality holds. �
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