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Abstract

In this paper, three different clustering algorithms were applied to assemble infrared (IR) spectral maps from IR microspectra of tissues.

Using spectra from a colorectal adenocarcinoma section, we show how IR images can be assembled by agglomerative hierarchical (AH)

clustering (Ward’s technique), fuzzy C-means (FCM) clustering, and k-means (KM) clustering. We discuss practical problems of IR imaging

on tissues such as the influence of spectral quality and data pretreatment on image quality. Furthermore, the applicability of cluster algorithms

to the spatially resolved microspectroscopic data and the degree of correlation between distinct cluster images and histopathology are

compared.

The use of any of the clustering algorithms dramatically increased the information content of the IR images, as compared to univariate

methods of IR imaging (functional group mapping). Among the cluster imaging methods, AH clustering (Ward’s algorithm) proved to be the

best method in terms of tissue structure differentiation.

D 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Fourier transform infrared (FT-IR) imaging is becoming

an increasingly applied technique in biomedical spectrosco-

py [1–6]. This technique provides spatially resolved infor-

mation on the basis of the chemical composition of the

different structural compartments. In infrared (IR) micro-

spectroscopy, the combination of IR spectroscopy and

microscopy is exceptionally well suited for differentiating

distinct tissue structures and for identifying tissue patholo-

gy. As the image contrast is based on the vibrational
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signature of the tissue components, FT-IR imaging does

not require the use of dyes, tags or stains. Thus, compared

with conventional histological techniques, IR imaging of

tissues may simplify sample preparation procedures and

minimizes sample modifications. Furthermore, since FT-IR

microspectroscopy is a computer-based digital technique,

the procedure of tissue evaluation can be automated. Based

on validated databases of tissue spectra, this would permit to

objectively diagnose pathological states of tissues. The

answer to the crucial question, whether the IR technique

for non-subjective tissue diagnosis will become a useful tool

in the hand of the pathologist, is found in the quality and

validation of these spectral databases. To this point, the

compilation of spectral databases seems to be the main

challenge biomedical IR microspectroscopy will be faced in

the future [6].

A number of different techniques for IR spectral imaging

of tissues were proposed in the past. Aside from the

univariate technique of chemical mapping (also called

functional group mapping), several authors employed mul-

https://core.ac.uk/display/82201962?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


P. Lasch et al. / Biochimica et Biophy
tivariate pattern recognition methods such as principal

component analysis [4], agglomerative hierarchical (AH)

clustering [7–9], artificial neural network (ANN) analysis

[4,6], k-means and fuzzy C-means (KM, FCM) clustering

[10,11], and linear discriminant analysis (LDA) [12]. It

turned out that most of the multivariate methods could be

more or less successfully applied to problems in biomedical

spectroscopy. Systematic comparative tests of these techni-

ques are, however, still missing.

In this manuscript we describe the application of three

different unsupervised multivariate imaging approaches (AH

clustering, KMC, and FCM) to IR microspectral data while

the supervised classification techniques (ANNs, LDA) will

be compared in a separate study. Spectra for cluster analysis

were acquired from a colorectal adenocarcinoma specimen

and the results of the distinct cluster imaging techniques are

compared in terms of image quality and consistency with

standard histopathology. Furthermore, the applicability of

cluster imaging to real problems in biomedicine is discussed.
2. Materials and methods

2.1. Sample preparation

Adenocarcinoma specimens were flash frozen in liquid

nitrogen for later cryo-sectioning. The sample used in this

study originated from a rectal adenocarcinoma. Its histo-

pathological grade of malignancy was established as mod-

erately differentiated (G2). An 8-Am-thick tissue slice was

thaw mounted on a CaF2 window. After data acquisition,

this specimen was stained by hematoxylin–eosin (H&E)

and reevaluated by a pathologist (W.H.).

2.2. FT-IR data collection

IR spectra were collected as absorbance spectra using an

IRScope II IR microscope (Bruker Optics, Billerica, MA)

equipped with a small sized MCT (HgCdTe) detector. The

microscope was linked to a Vector 22 FT-IR spectrometer

(Bruker) and was equipped with a software controlled x,y-

stage. A specially designed microscope box was purged by

dry air reducing spectral contributions from atmospheric

water vapor and CO2. FT-IR spectra were recorded using a

45� 45-Am square aperture defined by knife-edges. Nom-

inal spectral resolution was 8 cm� 1. Eight interferograms

were averaged per pixel spectrum and apodized using a

Happ–Genzel apodization function for Fourier transforma-

tion. Interferograms were zero-filled by a factor of 4. The

background spectrum was recorded at a position of the IR-

window outside the tissue sample.

91� 91 spectra were collected at a step size of 20 Am in x

and y direction for a total sample area of 1800� 1800 Am2

(i.e., spatial oversampling by a factor of 2 was employed).

Data acquisition was carried out by means of the OS/2 based

OPUS software package supplied by Bruker.
2.3. Data processing

All data processing and image assembly was performed

by a program, written by one of us (P.L.), that is now

available from CytoSpec (http://www.cytospec.com). This

program differs from software products available from

instrument manufacturers in that it was designed and written

to operate on entire spectral (imaging) data sets, rather than

individual spectra.

2.4. Data pre-processing

In order to permit a meaningful comparison of the

clustering methods to be analyzed, uniformly pretreated

data were used. The 8281 spectra were subjected to a

quality test using settings of 50 and 250 for the minimal

and maximal integral intensity criterion in the wavelength

range of 950–1750 cm� 1. Spectra were also evaluated by a

signal-to-noise ratio (S/N) test using a criterion of 500 as a

threshold (signal: maximum of the amide I band; noise: the

standard deviation in the spectral range 1800–1900 cm� 1).

All spectra passing the tests were subsequently converted to

first derivatives using a nine-smoothing point Savitzky–

Golay algorithm. Derivative spectra were scaled before the

cluster analysis such that the sum squared deviation over the

indicated wavelengths (950–1750 cm� 1) equals unity (vec-

tor normalization):X
k

ðAk � ĀÞ2 ¼ 1 ð1Þ

where Ak is the absorbance at wavelength k and Ā is the

average absorbance value in the corresponding spectral

region.

Spectra with a negative quality test (19 out of 8281, ca.

0.23%) were routinely excluded from further data analysis

and appeared in the IR images as black areas. Adequate data

pretreatment and a high spectral quality turned out to be an

essential prerequisite for further multivariate data analysis.
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3. Results and discussion

We start the discussion with a short review of the

histopathological features of colon tissue. Subsequently,

the clustering methods will be introduced, and the images

obtained by applying these clustering methods to the data

set will be compared to the photomicrographs of the stained

tissue.

3.1. Histopathological architecture of colorectal

adenocarcinomas

Carcinoma cells of colorectal adenocarcinomas are ma-

lignant transformed subsets of the colonocytes. The vast

majority of these tumors originate from resorptive epithelial

cells, mainly located at the mucosal surface and in the upper
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third of tubular glands, also called crypts. In the colorectal

mucosa the epithelial cells form a layer of columnar

epithelium with well-preserved architecture. In the crypts

these cells are arranged together with other epithelial cell

types (goblet cells, stem cells, various types of functionally

differentiated endocrine cells). The lamina propria mucosae,

which is poor in lymphangia, crypts and the muscularis

mucosae constitute the mucous membrane of the colo-

rectum. Noncancerous transitional mucosa is depicted in

Fig. 1A (upper left), and at higher magnification in Fig. 1B.

Fig. 1B shows the crypts cross-sectioned with the epithelial

cells (colonocytes), goblet cells, and the lamina propria

mucosae (cf. numbering of the inset of Fig. 1).

Colorectal adenocarcinomas originate from the epithelial

cells and are able to infiltrate the subjacent layers (submu-

cosa, tunica muscularis) of colon and rectum. This is

reflected in the lower left and in the central right of the

photomicrograph of Fig. 1A. As illustrated in Fig. 1A and

C, the adenocarcinoma exhibits typical morphological signs

of malignancy: atypical histo-architecture such as multiple

layers of cells exhibiting pleomorphism, and infiltration of
Fig. 1. (A) Photomicrograph of an H&E-stained section of a colorectal adenoca

(1800� 1800 Am) was mapped before staining in the IR microspectroscopic meas

8281 individual IR spectra. Panels B and C display regions with benign (B) and m

discussion).
the submucosa. Fig. 1A displays furthermore regions with

lymphoid Peyer’s patches. The example of Fig. 1 clearly

demonstrates the complexity of the tissue histo-architecture

that faces IR spectral imaging. Tissue specimens may

contain normal tissue components, tissues exhibiting non-

neoplastic alterations (e.g. inflammation), and also neoplas-

tic tissue components.

3.2. Basic principles of IR cluster imaging

In order to partition IR tissue spectra into classes (or

clusters), and to assemble and compare ‘‘cluster images’’,

we applied three different clustering techniques to the data

set of IR microspectra. These spectra were acquired from the

tissue specimen shown in Fig. 1. The data pretreatment was

identical for all three instances.

Clusters should contain IR spectra from histological

regions that exhibit similar spectral features. Spectra in

different clusters ideally exhibit different spectral signatures,

i.e. the inter-cluster variance should be maximal and the

intra-cluster variance minimal. Image assembly on the basis
rcinoma at a mid-power field magnification. The area shown in panel A

urements using a step size of 20 Am, and an aperture of 45 Am for a total of

align (C) anatomical features at a higher magnification (see text for further
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of cluster analysis follows the simple idea of assigning a

distinct color to all spectra in one cluster. Since each

spectrum of a mapping experiment has a unique spatial

x,y position in the map, false-color images can be generated

by plotting specifically colored pixels as a function of the

spatial coordinates.

3.3. Results from KM clustering

KM clustering is a nonhierarchical clustering method,

which obtains a ‘‘hard’’ (crisp) class membership for each

spectrum, i.e. the class membership of an individual spec-

trum can take only the values 0 or 1. It uses an iterative

algorithm to update randomly selected initial cluster centers,

and to obtain the class membership for each spectrum,

assuming well-defined boundaries between the clusters

[13,14]. In the present study we used a setting of 100 for

the maximal number of iterations and up to 11 for the

number of cluster.

The iterative algorithm of KM clustering (k-means algo-

rithm of MacQueen) can be described as follows: IR spectra

are illustrated as points in a p-dimensional space ( p is the

number of features or data points of the spectra). In this

space a number of k points is initially chosen, where each

point denotes the origin of a future cluster. Then, distance
Fig. 2. IR imaging of colorectal adenocarcinoma specimen by KM clustering. Pane

1A). Panels B–F: IR images, reassembled by KM clustering. Different clusters

parameter of number of cluster was varied (from 2 to 11, see inset).
values between the points and all objects (spectra) are

calculated. Objects are assigned to a cluster on the basis

of a minimal distance value. Next, centroids of the clusters

are calculated and distance values between the centroids and

each of the objects are recalculated. If the closest centroid is

not associated with the cluster to which the object currently

belongs, the object will switch its cluster membership to the

cluster with the closest centroid. The centroid’s positions are

recalculated every time a component has changed its cluster

membership. This process continues until none of the

objects has been reassigned [13].

Fig. 2 depicts the images assembled by KM clustering.

For comparison with histopathology, this figure displays

also a photomicrograph of the H&E-stained tissue (panel A

of Fig. 2). Panels 2B–2F display the KM clustering images,

which were assembled by using varying settings for the

number of clusters (2, 4, 6, 8, and 11, respectively). At a

first glance, the principal correspondence between histopa-

thology and KM cluster imaging is obvious.

In panel D, for example, an IR image is displayed which

was assembled using 6 clusters. All of the spectral clusters

can be clearly assigned to histological structures: dark blue

pixels encode the submucosa and blue pixels determine the

central parts of the crypts or of the adenocarcinoma,

respectively. Brown-colored areas of Fig. 2D are typical
l A: H&E-stained specimen at a mid-power field magnification (see also Fig.

are encoded by different colors. Note that in panels B–F only the initial
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for the lumen of blood vessels (cf. Fig. 1A). Furthermore,

KM cluster imaging permits identification of tissue struc-

tures such as propria and fibrovascular stock (light green),

and structures formed by smooth muscles such as lamina

muscularis mucosae, the wall of blood vessels, and, possi-

bly, remnants of the tunica muscularis (yellow). Finally, the

outer cell layers of the crypts and of the adenocarcinoma

appear as red regions in the pseudo-color map. It should be

noted that we could not discriminate additional histological

structures by KM clustering. Even if the number of clusters

was increased to 11 (see panel F) or higher (not shown),

further differentiation of histological structures was not

successful. Particularly, colonocytes from normal and tran-

sitional mucosa are indistinguishable from malign cells of

the cancerous epithelium (see, e.g. Fig. 2F).

3.4. Results from FCM clustering

FCM clustering is also a nonhierarchical clustering

method. This clustering technique partitions objects into

groups whose members show a certain degree of similarity.

Unlike KM clustering, the output of FCM clustering is a

membership function, which defines the degree of member-

ship of a given spectrum to the clusters. The values of the
Fig. 3. IR imaging of colorectal adenocarcinoma specimen by FCM clustering. Pa

Fig. 1A). Panels B–C: IR images of a two-class classification trial, showing that th

F: The class membership grades of individual IR spectra were converted to color sc

a function of the spatial coordinates.
membership function can vary between 1 (highest degree of

cluster membership) and 0 (no class membership), where

the sum of the C cluster membership values for one object

equals 1.

Thus, this method departs from the classical two-valued

(0 or 1) logic, and uses ‘‘soft’’ linguistic system variables

and a continuous range of truth values in the interval [0,1].

FCM cluster imaging uses a fuzzy iterative algorithm to

calculate the class membership grade for each spectrum.

The iterations in FCM clustering are based on minimizing

an objective function, which represents the distance from

any given data point (spectrum) to the actual cluster center

weighted by that data points membership grade [15]. In the

present study we used a setting of 0.0001 for the minimal

amount of improvements (the stopping criterion of the

iteration) and up to 11 for the number of classes.

The advantage of the FCM over KM clustering is that

both outliers and data, which display properties of more

than one class, can be characterized by assigning nonzero

class membership values to several clusters. In the IR tissue

maps assembled by FCM clustering, the membership values

can be encoded by color intensities. A high-class member-

ship value defines high color intensity and vice versa. FCM

cluster images can be then reassembled by plotting the color
nel A: H&E-stained specimen at a mid-power field magnification (see also

e sum of class memberships of an individual spectrum equals 1. Panels D–

ale levels and plotted for each of the three (D), four (E), or six (F) classes as
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scales as the function of the spatial coordinates. In Fig. 3 the

results of FCM cluster imaging are illustrated. While Fig.

3A again displays the H&E tissue specimen of Fig. 1, the

red (panel B) and blue (panel C) colored images show the

scaled spatial distribution of specific IR spectroscopic

patterns. In this two-class classification trial, the comple-

mentary nature of the red and blue clusters is clearly

discernible. The interpretation of these IR spectral maps

is, however, not straightforward. Presumably, the most

intense red regions in Fig. 3B may show submucosa and

smooth muscle tissues, which are known to contain rela-

tively high amounts of collagen (submucosa>smooth mus-

cle). Since collagen exhibits highly specific IR bands [16],

collagen-rich tissue structures can be spectroscopically

easily differentiated from other tissues of the colorectum.

The most intense blue regions of panel C show normal or

abnormal epithelial cells.

Panels D–F of Fig. 3 display maps obtained for 3, 4 and

6 clusters, respectively. These images have been generated

by superimposing 3, 4, or 6 single color FCM images. We

found that each individual color in these examples can be

assigned to specific tissue structures. On the other hand, if

the number of clusters was further increased (>6), the

interpretation of the FCM maps became more and more

ambiguous in terms of the known histopathology. To give an

example, epithelial cells originating from normal or transi-

tional mucosa and malign cells of the cancerous epithelium

could not be discriminated by FCM clustering. Even if the

number of clusters was increased to 11, the method of FCM

failed to differentiate spectra from these structures (data not

shown).

3.5. Results from AH clustering

We also tested the method of AH clustering, a technique

which has been successfully applied to many other problems

in biomedical IR spectroscopy [8,17,18]. Like KM cluster-

ing, AH clustering is also a ‘‘hard’’ clustering method, i.e.

spectra may belong to a given cluster or not. The algorithm

of this technique can be illustrated in the following way:

First, a distance matrix between all spectra is calculated.

This matrix contains the complete set of interspectral dis-

tances (measures of dissimilarity). The distance matrix is

symmetric along its diagonal and has the dimension n� n,

where n is the number of objects (spectra). In the AH

clustering algorithm, two objects that are closest to one

another (most similar) are then merged into a new object

(cluster). In this way, the dimension of the distance matrix is

reduced to (n� 1)� (n� 1). Subsequently, the distances of

the new formed object to all remaining objects are reeval-

uated, and the next two most similar objects are merged.

This process is repeated until all objects are combined into

one single cluster. The merging process can be visualized in

a tree-like diagram, which is called a ‘‘dendrogram’’. The

final partition of objects into classes is defined by ‘‘cutting’’

the dendrogram. While the clustering process is completely
unsupervised, this step is subjective and defines the number

of classes, which will appear in the cluster image. In

practice, the number of classes is rarely clearly defined

and may require additional information.

A number of different methods are known for calculating

the initial interspectral distances, and for obtaining the new

distances after merging two objects. A detailed description

of these methods can be found elsewhere [19,20]. The best

imaging results, as judged by good correlation between

histology and spectroscopy, were achieved if a combination

of D-values for obtaining the distances measures and Ward’s

algorithm for clustering was applied.

D� values : dy1y2 ¼ ð1� ry1y2Þ � 1000 ð2Þ

ry1,y2 is known as the Pearson’s correlation coefficient:

ry1y2 ¼

Xp
i¼1

y1i � y2i

 !
� p � y1 � y2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXp

i¼1

y21i � p � y21

 !
�
Xp
i¼1

y22i � p � y22

 !vuut
; ð3Þ

where p is the total number of absorbance values in the

spectra, and y1i and y2i are the i-th absorbance values of

spectrum 1 or 2, respectively. Ward’s algorithm [21] was

used since it tends to produce dense clusters.

3.6. Correlation of spectral and histopathological images

The results of the AH cluster imaging approach are

displayed in Fig. 4. Again, panel A shows the photomicro-

graph of the H&E-stained specimen, and panels B–F

display the respective AH cluster images. Like in KM or

FCM clustering (cf. Figs. 2 and 3), the cluster images were

assembled by varying only one single parameter, the num-

ber of clusters. As for KM and FCM cluster analysis, the

results of IR microspectroscopy and light microscopy are

highly correlated. For example, Fig. 4D (6 clusters) clearly

shows that each spectral cluster can be assigned to a unique

pathohistological structure: red regions encode blood ves-

sels, yellow-colored areas can be assigned to smooth muscle

tissue (muscularis mucosae, wall of blood vessels, and

partly fibrovascular stock). Furthermore, turquoise regions

encode the structures of propria and fibrovascular stock,

while crypts and adenocarcinoma are colored blue (dark and

light blue). The submucosa appears brown in the present

example. Generally, the images depicted in Fig. 4C–E

(assembled by defining 4, 6, or 8 clusters) are very similar

to the respective IR images reassembled by KM and FCM

cluster imaging.

If the number of clusters is increased to 11 (see panel F of

Fig. 4), the AH cluster imaging methodology uncovers the

typical morphology of the mucosa and also of the carcino-

ma. As shown by the dendrogram in Fig. 4G, hierarchical

clustering reveals two major clusters, with one cluster
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Fig. 5. IR microspectra obtained from a colorectal adenocarcinoma. Panel

A: Representative average spectra of the spectral clusters as obtained by AH

clustering (11 clusters, cf. Fig. 4F–H). 1—center of the crypts (cluster 11 in

Fig. 4F–H), 2—epithelial cells (crypts, cluster 10), 3—malign epithelium

(cluster 9), 4—submucosa (cluster 1). Spectra were min–max normalized

in the amide I region. Panel B: Vector normalized second derivatives of

curves 2 (epithelial cells) and 3 (malign epithelium) of Fig. 5A (for details

see text).
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composed of mesenchymal tissues (submucosa, blood ves-

sels) and the lamina muscularis mucosae (see clusters 1–5)

and the other cluster of mucosal tissues (except lamina

muscularis mucosae, see clusters 6–11). Within the cluster

image, crypts of the transitional mucosa can be easily

identified by their dark blue epithelia surrounding magenta

colored central regions (see upper left of Fig. 4F). Also, the

crypt-like architecture of the malignant glands can be

recognized as pink rings of epithelial cells encircling dark

blue central regions. Pale-blue and turquoise areas reflect

properties of the lamina propria mucosae (upper left), but

can be also found around the tumor to the lower left. From

the point of view of histology, both pale blue and turquoise

areas differ fundamentally. It should be noted that at present

we do not have a simple answer explaining this finding.

Yellow regions in Fig. 4F can be clearly assigned to smooth

muscles structures (muscularis mucosae and wall of blood

vessels). At the mesenchymal site (submucosa), which is

indicated as structure 1 in Fig. 1A, we distinguish between

ocher and brown zones. The color shift from brown to ocher

correlates well with histopathology: while brown areas

depict the original submucosal connective tissue, this tissue

is replaced at the tumor site by ocher colored dense desmo-

plastic connective tissue.

Interestingly, the central parts of the malignant glands of

Fig. 4F are encoded by the same color as the colonocytes of

the mucous membrane. Thus, glandular structures of the

adenocarcinoma are composed of an outer layer of carcino-

ma cells (which undoubtedly differ spectroscopically from

colonocytes) and carcinoma cells of the central parts exhib-

iting similar spectral features to colonocytes. In the follow-

ing, we will discuss the spectral changes on which these

classification results are based.

3.7. Spectral changes

The software implementation of hierarchical cluster anal-

ysis includes an ‘‘average spectra’’ option, i.e. average

spectra of spectral clusters can be easily obtained and stored

for further analysis. In panel H of Fig. 4, we show average

spectra (vector normalized second derivative spectra) as

obtained from the 11 class classification trial of Fig. 4F. It

should be noted that each spectrum of Fig. 4H was obtained

by averaging hundreds of individual spectra. Thus, the

spectra obtained have an exceptionally high signal-to-noise

ratio (>8.000 in the amide I region). Even tiny spectral

features are not fortuitous but represent real IR spectral

properties of a certain tissue structure.

The most striking spectral differences can be found

between spectra of class 1 (submucosa, brown) and 11
Fig. 4. IR imaging by AH clustering (D-values, Wards algorithm). In this exampl

color. To reassemble the IR images, the assigned color for each spectral cluster is

images are reassembled by color encoding 2, 4, 6, 8, or 11 classes (see panels

adenocarcinoma (red areas of panel F) can be clearly separated from the respective

F, see also Fig. 1). Panel G displays the dendrogram with the respective color ass

derivatives) are given in panel H (numbering corresponds to the class numbering
(center of crypts, magenta). In the discussion above, we

pointed out that the submucosa is a collagen-rich tissue,

exhibiting typical collagen bands at 1202, 1282, 1336

(amide III) [16], and 1453 cm� 1. Interestingly, the spectra

obtained from the central parts of the crypts exhibit highly

characteristic IR bands as well. These bands are different

from those of collagen and can be found at 1044, 1079,

1121, 1314, and 1373 cm� 1 (see traces 1 and 4 of Fig. 5A).

Most of these bands can be assigned to mucine, a glyco-

protein rich in cysteine. Mucine is known to be present
e of cluster imaging, spectra of a specific cluster are encoded by a specific

displayed at the coordinates at which each pixel spectrum was collected. IR

B–F). In the 11-class classification trial, the malign epithelial cells of the

epithelial cells of non-neoplastic crypts (blue and dark blue regions of panel

ignments of the 11-class classification trial. The class-mean spectra (second

of the dendrogram).
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either as a precursor in secretory granules of mature goblet

cells or, after its secretion, in the lumen of the crypts (cf.

Fig. 1B). Due to the heterogeneity of the distinct types of

mucine, the band assignment differs slightly in literature. To

give an example, the position of the most prominent mucine

peak was found between 1035 and 1050 cm� 1 [6,22,23]. In

the light of the spectral differences between traces 1 (mucine

rich regions of the crypts) and 4 (submucosa), the differ-

ences between spectra originating from the epithelial cell

layer of the crypts (trace 2 of Fig. 5A) and from epithelial

cells of the carcinoma (trace 3) are rather small. However,

for a better visualization these subtle differences were

‘‘amplified’’ by calculating second derivatives (cf. traces 2

and 3 in Fig. 5B).

A closer inspection of the derivative spectra shown in

Fig. 5B revealed reproducible spectral differences at 1044,

1079, 1121 and 1373 cm� 1. From the discussion above, it is

apparent that most of these changes are characteristic for

mucine (see also traces 9–11 of Fig. 4H). In the following,

we will illustrate that this surprising observation coincides

with basic principles known for a long time in histopathol-

ogy and also with our findings in earlier studies.

In these studies, we showed that cancerous and noncan-

cerous cultured immortal cells exhibited similar IR spectra,

whereas terminally differentiated and metabolically inactive

cells display a significantly different spectral pattern

[24,25]. The most impressive spectral changes were found

for the PO2
� bands at 1088 (sym) and 1234 cm� 1 (antisym).

It was postulated that the intensity of the PO2
� bands could

be correlated with the grade of divisional activity. Since in

cancer cells the division rate is usually higher than in

precursor cells, the average spectrum from cancer tissue

should differ from that of ‘‘normal’’ (benign) tissues with a

lower mitotic index.

The experimental findings of the present study, however,

seem to be contradictory to these conclusions. Obviously,

instead of signs for a higher divisional activity of the

carcinoma, we found only a mucin-like difference pattern.

To answer this question, we need to discuss histology and

pathohistology of the intact mucosa and of colorectal

adenocarcinomas.

The mucosal epithelium of the gastrointestinal tract is a

thin layer of epithelial cells (colonocytes), which undergoes

a continual turnover and renewal. It is continuously replaced

by outward displacement from the crypts with typical cell

lifetime of about 6 days. In the descending colon, stem cells

of resorptive epithelial cells are located at the crypt’s base

and cellular migration occurs in an outward direction. Thus,

epithelial cells of the mucosa are cells with a very high

proliferation rate. The highest mitotic activity can be found

at the base of the crypts.

In colorectal adenocarcinomas, which originate from

resorptive epithelial cells, the cell dynamic described above

is significantly altered. Depending on the histological grad-

ing, the proliferative capability, age and renewing rate of

carcinoma cells are increased. Histologically, the variability
of cell size and shape is higher and the epithelium becomes

multilayered. From a spectroscopic point of view, it is also

important to note that these changes are accompanied by an

overall loss of other cell types, such as secretive goblet cells,

as the adenocarcinoma represents a selective clonal prolif-

eration of the malign cell type.

The latter facts could explain the unexpected spectral

differences observed between the epithelial layer of the

crypts and epithelial cells of the adenocarcinoma. First

and foremost, while the aperture size of 45 Am allowed

the collection of ‘‘pure’’ spectra from the adenocarcinoma,

spectra from the epithelial cell layer should exhibit signs

from adjacent histological structures, since the thickness

of the epithelial cell layer is about 15 Am, i.e. much

smaller than the aperture of 45 Am used in the experi-

ments. As a consequence, spectral ‘‘impurities’’ from

adjacent tissue structures, e.g. goblet cells filled with

mucine, are highly possible. On the contrary, in adeno-

carcinomas the layers of epithelial cells are usually thicker

(cf. Fig. 1B and C) and contain fewer amounts of goblet

cells. Thus, in order to resolve ‘‘pure’’ spectra from the

epithelium of normal crypts a spatial resolution of less

than 15 Am is required. Furthermore, it is possible that

mucine-like spectral differences strongly superimpose

existing variances in the PO2
� region. These divisional

activity-related spectral alterations are expected to be

rather small as the colonocytes itself are cells with a

very high mitotic rate. Additionally, it is likely that in

moderately differentiated carcinomas (G2 grading) the

physiologically high levels of cellular proliferation and

growth are only slightly increased.

3.8. Computational considerations

As discussed above, we find that the best correlation

between histopathology and spectral images was observed if

the data were processed by hierarchical cluster analysis.

This method is an unsupervised computational method in

the sense that neither reference data nor any starting con-

ditions like presumed cluster centers are required. The

endpoint of the hierarchical cluster analysis is somewhat

arbitrary, in that, subsequent to the computations, the

number of clusters is selected that gives the best discrimi-

nation. In the CytoSpec implementation of hierarchical

cluster analysis, this is achieved by terminating the calcu-

lations at the level of two clusters. The membership list of

the clustering process (up to a preset value of 50 clusters) is

maintained. Thus, it is possible to check the images created

prior to the last merging processes and to determine empir-

ically at which level the discrimination between the various

tissue types and disease state is lost in the final clustering

process. This step, in principle, could be rendered complete-

ly unsupervised as well if a criterion, such as the density or

homogeneity of the cluster, or the merging distance between

the clusters is used as an indicator for the endpoint of the

calculations.



Table 1

Comparison of the total CPU times taken for KMC, FCM, and AH cluster

imaging

Cluster analysis Calculation time CPU time dependence

k-means clustering 7 min tKMf const1� k� n

fuzzy C-means clustering 30 min tFCMf const2� k� n

hierarchical clustering 4.5 h tAHf const3� n2

Calculations were carried out on a 966-MHz Intel Pentium IV workstation

equipped with 512-MB RAM, running under the Windows 2000 operating

system. 8281 vector-normalized first derivative spectra in the spectral

region of 950–1750 cm� 1 were clustered, and images of 11 clusters were

reassembled. The CPU times specified are measured from the initialization

of the distance matrix calculation to the display of the final cluster images.

The third column indicates a first-order approximation of the processing

time dependence on the number of objects (n) and the number of classes (k)

(see Discussion for details).
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The best correlation between histopathology and spectral

images was found if the data were processed by hierarchical

clustering, using a combination of the so-called D-values as

the distance measure and Ward’s algorithm for clustering. In

our opinion, the high grade of correspondence seems to be

the major advantage of hierarchical clustering over the

methods of KMC and also over FCM clustering. Further-

more, the results of hierarchical clustering are always

independent from starting conditions as no random initial-

ization of k (KM clustering) or C (FCM clustering) starting

points is required.

The major drawback of AH clustering is the high compu-

tational requirements, which becomes more and more impor-

tant when large data sets have to be analyzed. From the

algorithm of hierarchical clustering, it is apparent that the

CPU time scales with the square of the number of objects

(spectra, n). At large n (n>1000), this dependence is mainly

due to the task of searching for the global minimum in the

distance matrix. Furthermore, the allocation of computer

memory (RAM) by the distance matrix is sizable. To give

an example, the size of the distance matrix also scales with n2

andwas in the current study 274.3MB (n� (n� 1)/2 distance

values, stored as 8 byte double precision values; n = 8281).

Since 32-bit operating systems such as Windows or Linux

can normally handle 2 GB of address space for applications,

the theoretical limit for AH cluster imaging on PCs can be

easily calculated (23170 spectra, ca. 150�150 spectra).

For KM and FCM clustering, the computational effort

scales in a first-order approximation linearly with n. Thus,

compared to KM and FCM clustering, the AH algorithm is

significantly more time-consuming at large n. For the

present study, the calculation time for AH clustering was

4.5 h compared to 30 min for FCM, and only 7 min for KM

clustering (see Table 1 for details). In a practical environ-

ment, this is unacceptable. Although, further developments

of computer hardware will considerably increase CPU

speed, AH cluster analysis will be also in the future not

the appropriate technique for routine analysis of IR imaging

data (e.g. recorded by large focal plane array detectors). This

task can be taken much more efficiently by supervised
classifiers, such as ANNs, trained and validated on the basis

of large databases of IR tissue microspectra. For validation

and compilation of these databases, however, cluster anal-

ysis is an indispensable explorative data analysis technique.
4. Conclusions

Spatially resolved IR microspectroscopy in combination

with digital imaging techniques is a powerful new technique

which can be used to assemble false color images from

histological specimens. In the present study, we applied

three different clustering techniques to microspectroscopic

data from colorectal adenocarcinoma sections: KM, FCM,

and hierarchical clustering. The use of any of the clustering

algorithms dramatically increased the information content of

the IR images, as compared to the functional group mapping

technique. In terms of tissue structure differentiation, AH

clustering (Pearson’s product momentum correlation coeffi-

cient, Ward’s algorithm) proved to be the best, but also the

most CPU intensive image methodology.
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