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Objective: To determine the molecular characteristics of human spermatogonia and optimize methods to enrich spermatogonial stem
cells (SSCs).
Design: Laboratory study using human tissues.
Setting: Research institute.
Patient(s): Healthy adult human testicular tissue.
Intervention(s): Human testicular tissue was fixed or digested with enzymes to produce a cell suspension. Human testis cells were
fractionated by fluorescence-activated cell sorting (FACS) and magnetic-activated cell sorting (MACS).
Main Outcome Measure(s): Immunostaining for selected markers, human-to-nude mouse xenotransplantation assay.
Result(s): Immunohistochemistry costaining revealed the relative expression patterns of SALL4, UTF1, ZBTB16, UCHL1, and ENO2 in
human undifferentiated spermatogonia as well as the extent of overlap with the differentiation marker KIT. Whole mount analyses re-
vealed that human undifferentiated spermatogonia (UCHL1þ) were typically arranged in clones of one to four cells whereas differen-
tiated spermatogonia (KITþ) were typically arranged in clones of eight or more cells. The ratio of undifferentiated-to-differentiated
spermatogonia is greater in humans than in rodents. The SSC colonizing activity was enriched in the THY1dim and ITGA6þ fractions
of human testes sorted by FACS. ITGA6 was effective for sorting human SSCs by MACS; THY1 and EPCAM were not.
Conclusion(s): Human spermatogonial differentiation correlates with increased clone size and onset of KIT expression, similar to
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rodents. The undifferentiated-to-differentiated developmental dynamics in human
spermatogonia is different than rodents. THY1, ITGA6, and EPCAM can be used to enrich
human SSC colonizing activity by FACS, but only ITGA6 is amenable to high throughput
sorting by MACS. (Fertil Steril� 2014;102:566–80. �2014 by American Society for
Reproductive Medicine.)
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S permatogenesis is a process that produces millions of
sperm each day in postpubertal mammals (1–3). At the
foundation of spermatogenesis are spermatogonial

stem cells (SSCs) that balance self- renewing divisions with
differentiating divisions to maintain the stem cell pool and
fuel spermatogenesis, respectively (4–6). Despite their
importance to male fertility, there is limited knowledge about
the molecular characteristics of the human SSCs, which are
typically described as Adark and Apale spermatogonia based on
nuclear staining intensity with hematoxylin (6–8).

Most of the information about spermatogonia has been
generated using rodent models and although no SSC specific
marker has been identified, some markers that are expressed
by stem and/or progenitor cells have been described (e.g.,
GFRa1, POU3F1, POU5F1 [OCT4], ZBTB16 [PLZF], NGN3,
NANOS2, NANOS3, SOHLH1, SOHLH2, FOXO1, ITGA6 [a6-
integrin, CD49f], LIN28, ID4, UTF1, CDH1, GPR125, ITGB1
[b1-integrin, CD29], EPCAM [CD326], CD9, and THY1 [CD90])
(9–38). Rodent SSCs are only definitively identified by their
ability to produce spermatogenesis when transplanted into the
testes of infertile recipient mice, an assay that was first
described by Brinster and Avarbock (39) and Brinster and
Zimmermann (40). In the transplant bioassay, each colony of
spermatogenesis produced in the recipient testis arises from a
single SSC and therefore allows quantification of stem cells
(41–44). The combination of the transplant technique with
fluorescence activated cell sorting (FACS) has provided
insights about additional phenotypic features that can be used
to isolate and enrich mouse spermatogonia. Mouse
spermatogonia have the phenotype ITGA6þ, ITGB1þ, THY1þ,
CD9þ, GFRa1þ, mitochondrial membrane potentialhigh,
Rhodamine 123 (Rho123)low, ITGAV (av-Integrin, CD51)�, KIT
(cKIT, CD117) �, MHC-I�, ALDH (aldehyde dehydrogenase)
activity�, and CD45� (16, 25, 27, 45–50). There is a lack of
consensus about whether SSC activity can also be recovered in
the Hoechst side population fraction of mouse testes (15, 46,
51, 52).

During the past few years, several laboratories have
started to describe the molecular characteristics of human
SSCs. A number of SSC markers are conserved from mice to
non-human primates and humans (Supplemental Table 1,
available online). Based on immunofluorescence and colori-
metric staining of adult human testicular sections, human
spermatogonia on the basement membrane of the seminifer-
ous tubules express UTF1, SALL4, ZBTB16, GFRa1, UCHL1,
GPR125, LIN28, EXOSC10, FGFR3, DSG2, CBL, SSX2, and
OCT2 (22, 53–63). Less is known about cell surface markers
that could be used to isolate and enrich human SSCs. THY1,
a glycophosphatidylinositol-anchored cell surface protein
that belongs to the immunoglobulin-like superfamily of
genes (64), has been shown to be expressed by neuronal cells,
CD34þ hematopoietic stem cells, fibroblasts, and endothelial
cells (65–71). THY1 is involved in diverse processes,
including cell migration, cell–cell/cell–matrix interactions
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(72), and T-cell activation (73). In the testis, THY1 has been
shown with transplantation assay to be a conserved SSC
marker in rodents (15) and non-human primates (74). Howev-
er, the expression of THY1 in human spermatogonia has been
contradictory. He et al. (59) showed that THY1 expression is
limited to a few rare cells on the basement membrane of sem-
iniferous tubules, whereas Izadyar et al. (75) showed staining
in the germ cells located toward the lumen of the tubule and
also in peritubular and interstitial cells. Both of these reports
are based on immunofluorescence staining and no trans-
plants were performed. Human to human transplants are
not possible as a routine bioassay, but xenotransplants into
the testes of infertile nude mice has emerged as a quantitative
assay for human and non-human primate spermatogonia (22,
61, 74–82).

A few studies have reported enrichment of putative human
SSCs by sorting based on cell surface marker expression
(GPR125, SSEA4, EPCAM, ITGA6, and CD9) (59, 61, 75, 80,
83), but currently only three studies have confirmed their
results by demonstrating SSC colonizing activity in the
xenotransplant assay. Magnetic activated cell sorting (MACS)
revealed enrichment of SSC colonizing activity in the SSEA4þ

and CD9þ fractions of human testis cells (61, 75) and FACS
for EPCAM resulted in a sixfold enrichment of colonizing
activity in the EPCAMdim fraction (80). At present, no human
data are available regarding whether spermatogonial markers
used in FACS are also appropriate for MACS and vice versa.
The choice of whether to use FACS or MACS depends on the
desired output. Fluorescence activated cell sorting has limited
throughput (�30 � 106 cells/d). It is fairly time consuming
and requires specialized equipment and a skilled operator,
but it allows high resolution selection of sorting gates.
Magnetic activated cell sorting has a lower resolving
power, but is generally a faster and a higher throughput
sorting strategy that can be performed on the laboratory
bench and does not require specialized equipment. A
single adult human testis that can be obtained for
research through an organ donor program can contain
more than 1 billion cells, which is far beyond the typical
sorting capacity of FACS. Magnetic activated cell sorting
can easily be scaled to accommodate this number of cells
and maximize the use of this valuable human tissue
resource for fundamental research. In addition, MACS is
technically accessible and affordable, which will facilitate
application for enriching SSCs in the clinical setting.

Therefore, in this study, we evaluated FACS and MACS to
isolate and enrich human SSCs based on cell surface marker
expression of THY1 (CD90), ITGA6 (CD49f) (FACS and
MACS), and EPCAM (MACS only; we previously reported
FACS for EPCAM) (80). ITGA6 is the integrin alpha chain 6.
Integrins are cell surface proteins that are made up of an alpha
chain and a beta chain and they provide a link between extra-
cellular matrix proteins and the cytoskeleton (84). ITGA6 has
been shown to regulate glioblastoma stem cells (85), is
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expressed by mouse mammary stem cells (86), and is crucial
for the survival of the MCF-7 cell line stem cells (87). EPCAM
(epithelial cell adhesion molecule) is a transmembrane glyco-
protein that mediates homophilic cell–cell adhesion (88).
Modulation of Epcam activity is thought to affect cell migra-
tion, proliferation, and invasion (88, 89) and overexpression
of Epcam plays a role in cancer development (89–91).

Fluorescence activated cell sorting fractions were
analyzed by immunocytochemistry for the human spermato-
gonial marker SALL4 (55, 80) and human-to-nude mouse
xenotransplantation. SALL4 is a member of sal-gene family
of transcription factors that is highly conserved between spe-
cies (92–98). SALL4 is expressed by the cells in an early
embryo and is important for maintaining pluripotency of
embryonic stem cells (99, 100). In addition SALL4 is a
conserved marker of undifferentiated spermatogonia (55,
101, 102) and has been implicated in the regulation of
spermatogonial differentiation in mice (101).

The MACS fractions were analyzed by human-to-nude
mouse xenotransplantation. Analyses of FACS fractions indi-
cated that, similar to the EPCAMdim fraction that we previ-
ously described, ITGA6þ and THY1dim can be used to
effectively isolate and enrich human SSCs from a heteroge-
neous testis cell suspension. In contrast, only ITGA6 was suit-
able for sorting human SSCs by MACS, as THY1 and EPCAM
provided no enrichment.

MATERIALS AND METHODS
Animals

All experiments using animals were approved by the Institu-
tional Animal Care and Use committees of the Magee-
Womens Research Institute and the University of Pittsburgh.
They were performed in accordance with the National Insti-
tutes of Health guidelines for the care and use of animals
(assurance A3654-01).
Preparation of Human Testicular Tissue

Healthy adult human testicular tissue was obtained through
the University of Pittsburgh Health Sciences Tissue Bank
and Center for Organ Recovery and Education under Univer-
sity of Pittsburgh Institutional Review Board 0506140. After
the removal of tissue, it was transported to the laboratory on
ice in lactated Ringer's solution. Cells were recovered from hu-
man testicular parenchyma using a two-step enzymatic diges-
tion described previously (74, 80, 81). Briefly, testicular tissue
was digestedwith collagenase type IV for 5minutes at 37�C on
the shaker (250 rpm), then shaken vigorously and incubated
for another 3 minutes and if necessary 2 additional minutes
at 37�C on the shaker. The tubules were then sedimented
by centrifugation at 200 � g for 5 minutes and washed
with Hank's balanced salt solution (HBSS; GIBCO). The
tubules were then digested with 0.25% trypsin/
ethylenediaminetetraacetic acid (EDTA) and DNase I. The
suspension was triturated vigorously three to five times and
incubated at 37�C for 5 minutes. The process was repeated
in 5-minute increments for up to 15 minutes total. The diges-
tion was stopped by adding 10% fetal bovine serum (FBS) and
the cells were strained through 70-mm strainer (Becton
568
Dickson). The cells were pelleted by centrifugation at
600� g for 15 minutes. Cells were then suspended in minimal
essential medium a (MEMa)þ 10% FBS at a concentration of
40� 106 cells/mL and aliquoted in cryovials. An equal volume
of cryopreservation medium consisting of MEMa þ 20% FBS
þ 20%dimethylsulfoxide (DMSO) was added drop-wise, mak-
ing the final concentration 20 � 106/mL in MEMa/15% FBS/
10% DMSO). The vials were frozen at a controlled rate using
Nalgene freezing containers (Nalgene-Nunc International)
or a CryoMed controlled-rate freezer (Thermo Scientific) and
then stored in liquid nitrogen. For experiments, the cells
were thawed rapidly at 37�C, washed and suspended in
MEMa medium containing 10% FBS.
FACS and MACS

For FACS, human testis cell suspension was stained on ice in
Dulbecco's phosphate-buffered saline (D-PBS) containing
10% FBS for 20 minutes with fluorescent-conjugated anti-
bodies (THY1-APC, clone 5E10, 0.5 mg/106 cells and ITGA6-
PE clone GoH3, 20 mL/106 cells; Becton Dickinson). The
unbound primary antibody was washed away twice with
D-PBS, the cells were filtered through a 35-mm strainer (Bec-
ton Dickinson) and 0.5 mg/mL propidium iodide (BD Biosci-
ence) was added to distinguish between live and dead cells.
The FACS analysis was done using FACSvantage SE (Beckton
Dickinson) and the positive stainingwas identified by compar-
isonwith appropriate isotype control to correct for nonspecific
binding. Sorting gates were established based on level of
marker expression as well as exclusion of dead cells stained
with propidium iodide and exclusion of cells exhibiting
nonspecific binding or autofluorescence. The MACS protocol
was similar to that of FACS, except after fluorescent-
conjugated antibody staining (THY1-PE and ITGA6-PE;
Becton Dickson; and EPCAM-PE, clone 9C4, 20 mL/106 cells;
BioLegend) and washes, anti-PE microbeads (2 mL/106 cells;
Miltenyi Biotec) were used to detect the fluorophore on the
primary antibody. The cells were then sorted on a MACS
column (Miltenyi Biotec) into positive and negative fractions.
Immunocytochemistry

Cells from FACS and MACS were spotted on Superfrost slides
and fixed with methanol. The cells were then rehydrated with
D-PBS and blocked with a buffer containing 3% bovine serum
albumin (BSA) and 5% normal goat serum to reduce nonspe-
cific binding. Rabbit anti-SALL4 (1:500; ab29112, Abcam)
antibody was added to the cells and incubated for 90 minutes
at room temperature. Isotype-matched normal IgG was used
as negative control. Primary antibody was detected using
goat anti-rabbit AlexaFluor-488 conjugated secondary anti-
body (1:200; Invitrogen). The slides were mounted with Vec-
taShield (Vector Laboratories) mounting medium containing
6-diamino-2-phenylindole (DAPI) for detection of all nuclei
and the staining was observed with a Nikon Eclipse E600
Fluorescence microscope (Nikon) and images captured with
MetaView Digital Imaging software.
VOL. 102 NO. 2 / AUGUST 2014



Fertility and Sterility®
Immunofluorescence

Human testicular tissue fragmentswerefixedwith 4%parafor-
maldehyde overnight, paraffin-embedded and sectioned
(5 mm). The tissue slides were deparaffinized, rehydrated, and
incubated for 30 minutes in sodium citrate buffer (10 mM so-
dium citrate, pH 6.0, 0.05% Tween-20) for antigen retrieval.
The tissue was then blocked with a buffer containing 3%
bovine serum albumin and 5% normal serum from the host
species of the secondary antibody. Subsequently, sections
were stained for 90 minutes at room temperature with the
following primary antibodies in antibody diluent: mouse
anti-UTF1 (1:50; MAB4337, Millipore) goat anti-ZBTB16
(1:50; AF2944, R&D Systems), rabbit anti- KIT; goat anti-KIT
(1:400; A4502, DakoCytomation; 1:50; AF332, R&D Systems),
rabbit anti-SALL4 (1:500; ab29112, Abcam; 1:40; ab181087,
Abcam), mouse anti-ENO2 (1:500, LS-B2890, LSBio), rabbit
anti-UCHL1 (1:1,000; 7863-0507, Biogenesis), rabbit anti-
EPCAM (1:200; ab71919, Abcam), and rabbit anti-ITGA6
(1:100; ab75737, Abcam). Isotype-matched normal IgG was
used as negative control. Primary antibodywas detected using
AlexaFluor-488 or AlexaFluor-568 conjugated secondary an-
tibodies (1:200; Invitrogen). The slides were mounted with
VectaShield mounting medium containing DAPI (Vector Lab-
oratories) for detectionof nuclei. Sectionswere observedwith a
Nikon Eclipse E600 fluorescence microscope and images
captured with MetaView Digital Imaging software. For the
quantification of marker overlap, single-positive cells for
each marker and double-positive cells were counted in cross-
sections of seminiferous tubules. Total stained cell numbers
were divided by the number of seminiferous tubule cross-
sections (at least 100 per sample � 3 replicate samples).
Colorimetric Immunohistochemistry

Human testicular tissue fragments were fixed with 4% para-
formaldehyde overnight, paraffin-embedded, and sectioned
(5 mm). The tissue slides were deparaffinized, rehydrated,
and incubated for 30 minutes in sodium citrate buffer
(10 mM sodium citrate, pH 6.0, 0.05% Tween-20) for antigen
retrieval. The tissue was then incubated in peroxidase block
for 10minutes, washed in PBS, and blocked with a buffer con-
taining 3% bovine serum albumin and 5%normal goat serum.
Subsequently, sections were stained for 90 minutes at room
temperature with rabbit anti-UCHL1 (1:1,000; 7863-0507,
Biogenesis). Isotype-matched normal IgG was used as nega-
tive control. Primary antibody was detected using goat anti-
rabbit horseradish peroxidase (HRP)-conjugated secondary
antibody (1:200; sc-2054, Santa Cruz Biotechnology) for
30 minutes. Metal-enhanced 3,30 diaminobenzidine (DAB)
substrate kit was used to detect staining (Thermo Scientific).
The tissue was then counterstained with periodic acid-Schiff
and hematoxylin (Sigma-Aldrich).
Whole Mount Immunohistochemistry

Human testicular tissue was teased apart using Collagenase
type IV (1 mg/mL) and DNase I (1 mg/mL) in D-PBS. The tissue
was then fixed overnight with 4% paraformaldehyde. The tu-
bules were permeabilized using PBS and 0.1% Triton-X,
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blocked with a blotto milk solution in D-PBS (D-PBS þ
0.02 mg/mL blotto dry milk powder þ 5% Triton-X), and
stained with a rabbit anti-UCHL1 (1:500; 7863-0507, Biogen-
esis) and goat anti-KIT (1:50; AF332, R&D Systems) primary
antibodies overnight at 4�C. The primary antibodies were de-
tected with donkey anti-rabbit IgG AlexaFluor568 and donkey
anti-goat IgG AlexaFluor488 (1:200; Invitrogen). Finally, the
seminiferous tubules were mounted with VectaShield
mounting media containing DAPI (Vector Laboratories) with
raised coverslips and imaged with fluorescent microscopy.
Xenotransplantation and Whole Mount
Immunofluorescent Quantification of Human SSC
Colonizing Activity in Mouse Seminiferous
Tubules

The human-to-nude mouse xenotransplantation was per-
formed as a biological assay to investigate colonizing activity
of putative human SSCs. After FACS andMACS, unsorted and
sorted testicular cell fractions were transplanted into the testes
of busulfan-treated (40 mg/kg; Sigma, at 5–6 weeks of age),
immune-deficient nude mice (NCr nu/nu; Taconic) as previ-
ously described (74, 80–82). Briefly, xenotransplantation was
performed 5 weeks after busulfan treatment by injecting cell
suspensions containing 10% trypan blue (Invitrogen) into
the seminiferous tubules of recipient mouse testes through
the efferent ducts. Approximately 7 mL of cell suspension
was injected per testis. For quantitative analysis of
colonization by human donor spermatogonia, the testes were
recovered 8 weeks after transplantation, the tunica was
removed, and the intact seminiferous tubules were dispersed
gently with Collagenase IV (1 mg/mL) and DNase I
(1 mg/mL) in D-PBS. The tubules were fixed for 4 hours in
4% paraformaldehyde and the whole mount
immunofluorescence was carried out by dehydrating samples
in a graded series of methanol dilutions before incubating in
MeOH:DMSO:H2O2 (4:1:1) solution for 3 hours. The tubules
were then rehydrated, blocked with a blotto milk solution in
D-PBS (D-PBS þ 0.02 mg/mL blotto dry milk powder þ 5%
Triton-X), and stainedwith a rabbit anti-primate testis cell pri-
mary antibody (81) at a 1:800 dilution overnight at 4�C. The
primary antibodywas detectedwith goat anti-rabbit IgGAlex-
aFluor488 (1:200; Invitrogen). Finally, the seminiferous
tubules were mounted with VectaShield mountingmedia con-
taining DAPI (Vector Laboratories) with raised coverslips and
imagedwith fluorescent microscopy. Spermatogonial colonies
were counted based on the following criteria: at least four cells
exhibiting spermatogonialmorphology (ovoid shapewithhigh
nuclear-to-cytoplasmic ratio) and located on the basement
membrane in a continuous area of recipient seminiferous
tubule (%100 mm between cells).

Statistical Analysis

We analyzed the data using linear mixed effect models, and
performed Tukey's tests, as described in Hothorn et al. (103),
to compare differences among the percent of SALL4þ cells
in unsorted versus sorted cell fractions in the immunocyto-
chemistry experiments and colonizing activity in the
human-to-nude mouse xenotransplant bioassay.
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RESULTS
Acquisition of Human Testicular Tissue

Testicular tissues used in this study were obtained from a total
of 12 postpubertal organ donors (aged 14–50 years). Testes
weighed 11.3–26.0 g and produced a theoretical yield (after
correcting for tissue removed for pathology and immunoflu-
orescence studies) of 1.4 � 109 � 0.14 � 109 cells per donor.
All human testis cell suspensions used in this study were cry-
opreserved as described previously and thawed at a later date
for experimentation. Human testicular cells used in this study
were frozen for 1–15 months.

Immunohistochemical Staining of Human
Testicular Sections

Immunohistochemical costaining analysis was done to inves-
tigate the coexpression of known mouse and/or non-human
primate spermatogonia markers in adult human testis.
ZBTB16 and SALL4, which mark most stem and progenitor
spermatogonia in rodents (102), were expressed in cells located
on the basement membrane. Roughly 89% of ZBTB16þ cells
were also positive for SALL4 (Fig. 1A–1D), but also a small
population of ZBTB16þ cells (11%) did not express SALL4. A
subpopulation of SALL4þ cells also did not express ZBTB16
(11%) (Fig. 1D). CostainingwithSALL4andKIT showed limited
overlap between the two markers (Fig. 1E–1H). UTF1 expres-
sion was also restricted to cells on the seminiferous tubule
basement membrane (Fig. 1I–1L). Costaining with UTF1 and
SALL4 indicated that 65% of the SALL4þ cells express both
markers, whereas 35% of expressed SALL4 only. Seventeen
percent of UTF1þ cells express UTF1 only (Fig. 1L). To confirm
that UTF1 is not expressed by differentiating spermatogonia,
we costained UTF1 with a differentiation marker KIT
(Fig. 1M–1P) and found that there is almostnooverlap between
these twomarkers. Based on these results, we believe thatUTF1
is a more restricted marker of stem and progenitor spermato-
gonia thanSALL4. This interpretation is consistentwith results
of van Bragt and colleagues (24) who concluded that UTF1 is
restricted to Asingle, Apaired, and Aaligned4 spermatogonia in
rats. Similar to SALL4, UCHL1 expression is less restricted
than UTF1 (Fig. 1Q–1T) with 75% of UCHL1þ cells coexpress-
ing both markers and 25% expressing UCHL1 only. UTF1þ

cells were UCHL1þ 87% of the time and UTF1þ only 13%
(Fig. 1T). Costaining with KIT, confirms that although UCHL1
is less restricted than UTF1, it is not expressed by differenti-
ating cells, demonstrated by limited costaining with KIT
(Fig. 1U–1X). We also analyzed the expression pattern of a
novel marker ENO2, which exhibited nearly complete overlap
of expression with UCHL1 (Fig. 1Y–1BB). By transitive logic,
ENO2 is a marker of undifferentiated spermatogonia in hu-
mans because it exhibits nearly complete overlap with
UCHL1, which has very little overlap with KIT. The overlap be-
tween ENO2 and SALL4 is less complete, with 78% of the
ENO2þ cells expressing SALL4 and 12% expressing ENO2
only (Fig. 1CC–1FF). These results indicate that ENO2 expres-
sion is slightly broader than SALL4 expression in human un-
differentiated spermatogonia. Sections stained with isotype
control IgG are shown in Supplemetal Figure 1.
Supplemental Figure 2 (available online) summarizes our
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interpretation of these results in terms of the order and breadth
of marker expression by human spermatogonia.
Correlation of Spermatogonial Markers with Dark
and Pale Descriptions of Nuclear Morphology and
Clone Size

To correlate molecular markers of human spermatogonia
described in this studywithclassicdescriptions ofnuclear stain-
ing intensity (Adark and Apale), we performed colorimetric
immunohistochemistry for UCHL1 followed by periodic acid-
Schiff and hematoxylin counterstaining. The results in
Figure 2A confirm that UCHL1 is expressed by Adark and Apale

spermatogonia, which are considered the reserve and active
stem cells of the human testis, respectively (104, 105). To
correlate UCHL1 expression with clone size, we performed
immunofluorescent analysis of UCHL1 expression in whole
mount preparations of human seminiferous tubules. UCHL1
was expressed by cells located on the basement membrane of
the seminiferous tubules and arranged as single cells and
clones of two, four, and sometimes eight interconnected cells.
In contrast, KIT-expressing cells were typically arranged in
clones of 4, 8 and sometimes 16 interconnected cells (Fig. 2B–
2F). The density of undifferentiated spermatogonia on the base-
ment membrane of human seminiferous tubules appears more
than in rodents (cf. Fig. 2B to previous reports for mouse) (17,
19, 30, 102), whereas KITþ differentiating spermatogonia are
considerably less dense in human tubules than in mouse (cf.
Fig. 2C to previous reports for mouse) (17, 30, 102).
Immunohistochemical Evaluation of Cell Surface
Markers in Adult Human Testes

THY1, ITGA6, and EPCAM are cell surface markers that have
each been used to isolate and enrich SSCs in other species (15,
16, 25, 74). Previous studies indicated that these cell surface
markers are conserved in human testes (59, 75, 80, 83) and
we hypothesized that each could be used to isolate and
enrich human SSCs by FACS and MACS. We were not able
to confirm the expression of THY1 in adult human testes by
immunohistochemistry in the present study. However, other
investigators (59, 75, 83) have reported that this marker is
expressed in human testes.

Immunohistochemical analysis of ITGA6 expression in
healthy adult human testis sections indicated that this antigen
is expressed bymany germ cells, including cells located on the
basement membrane of seminiferous tubules (Supplemental
Fig. 3A–3C, available online) and that EPCAM is expressed
by cells on the basement membrane of the seminiferous
tubules, as well as a few cells located more toward the lumen
(Supplemental Fig. 3D–3F).
Expression of THY1 in Adult Human Testicular Cell
Suspensions

THY1 is a marker of mouse, rat, and non-human primate SSCs
(15, 25, 74), as well as a marker for mouse and human
hematopoietic stem cells (106–108). Therefore, we
hypothesized that THY1 is a marker for human SSCs and
analyzed the expression on adult human testicular cells using
VOL. 102 NO. 2 / AUGUST 2014



FIGURE 1

Valli. Sorting spermatogonia from human testes. Fertil Steril 2014.
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FIGURE 1 Continued

Expression of ZBTB16, UTF1, SALL4, UCHL1, ENO2, and KIT in human seminiferous epithelium. Immunofluorescence costaining for SALL4 and
ZBTB16 (A–D), SALL4 and KIT (E–H), UTF1 and SALL4 (I–L), UTF1 and KIT (M–P), UTF1 and UCHL1 (Q–T), UCHL1 and KIT (U–X), UCHL1 and
ENO2 (Y–BB), and SALL4 and ENO2 (CC–FF) in adult human testis. 6-Diamino-2-phenylindole (DAPI) staining (blue) identifies all the nuclei. The
bar graphs show quantification and relative proportion of each costaining. The quantification is shown as the mean number of positive cells
per cross-section of a seminiferous tubule. At least 100 seminiferous tubules were counted from three different organ donors. Bar graphs in D,
H, L, P, T, X, and BB indicate the mean number of marker positive cells per tubule. Error bars represent SEM. Scale bars ¼ 100 mm.
Valli. Sorting spermatogonia from human testes. Fertil Steril 2014.
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FACS and MACS. Adult human testis cell suspensions stained
with THY1 showed three populations of cells based on their
level of fluorescence and on negative PE axis, which helps us
plot the cells on a multicolor histogram and therefore
eliminate autofluorescence. As indicated in Figure 3A, the
three distinct populations were THY1bright, THY1dim, and
THY1�. The negative gate was established based on staining
with isotype control IgG (Supplemental Fig. 4A). The THY1
bright, dim and negative fractions represented 12.2% � 4.2%,
19.0% � 4.0%, and 46.5% � 7.0% of the live cells,
respectively. Immunofluorescence staining revealed that 6.8%
� 0.1% of unsorted human testicular cells express human
spermatogonia marker SALL4, compared with 7.2% � 0.3%
in the THY1� fraction (P< .01), 15.5% � 0.9% in the THY1dim

fraction (P< .01), and only 0.4% � 0 in the THY1bright

fraction (P< .01) (Fig. 3B and 3D–3G). To confirm the
immunocytochemistry results and to functionally correlate
THY1 expression in adult human testis to SSC colonizing
activity, the human-to-nude mouse xenotransplantation assay
was performed. The transplant results confirm that SSC colo-
nizing activity was depleted from THY1bright fraction (0.57 col-
onies/105 cells; P< .01 compared with the unsorted controls).
Most of SSC colonizing activity was recovered in the THY1dim

fraction (48.2 colonies/105 cells; P< .01 compared with the un-
sorted controls), comparedwith 9.03 and9.67 colonies/105 cells
FIGURE 2

UCHL1 expression in adult human testis. (A) UCHL1 staining in periodic aci
expressed by Adark and Apale spermatogonia. (B, D) UCHL1 and (C, E) KIT sta
are smaller (mostly 1–4 cells), whereas KIT clones tend to be bigger (>8 ce
Valli. Sorting spermatogonia from human testes. Fertil Steril 2014.
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in unsorted and THY1� fractions, respectively (Fig. 3C). Based
on these results, there is roughly a fivefold enrichment of SSC
colonizingactivity in theTHY1dim fractionofhuman testis cells.
Immunohistochemical assessment of human colonizing events
in recipient mouse testes indicate that colonizing cells are
located on the basement membrane of seminiferous tubules
and contain ENO2þ undifferentiated human spermatogonia
as well as ENO2� human cells that are presumablymore differ-
entiated germ cells (Supplemental Fig. 5, available online). We
previously reported that all cells in human colonizing events
express the germ cell marker VASA (80).
Expression of ITGA6 inAdult Human Testicular Cell
Suspension

To determine whether ITGA6 is expressed on human sper-
matogonia and could be used as a positive selection marker
to enrich human SSCs, adult human testicular cell suspen-
sions were stained with a PE-conjugated antibody against
ITGA6 and sorted by FACS. Two distinct populations of cells
were gated—ITGA6� and ITGA6þ (Fig. 3H), which repre-
sented 27.6% � 7.6% and 11.6% � 3.0% of the live cells,
respectively. The negative gate was established based on
staining with isotype control IgG (Supplemental Fig. 4B).
Immunocytochemistry of the ITGA6 sorted fractions and
d-Schiff and hematoxylin-stained adult human testis section. UCHL1 is
ining in whole mount staining of adult human testis. (F) UCHL1 clones
lls). Scale bar ¼ 50 mm.

VOL. 102 NO. 2 / AUGUST 2014



FIGURE 3

Expression of THY1 and ITGA6 in adult human testis. (A) Fluorescence-activated cell sorting was used to characterize and sort human testicular cells
based on the level of THY1 expression. Based on THY1-APC staining intensity and negative PE autofluorescence, three populations were
identified—THY1bight, THY1dim, and THY1neg. Negative gates were defined by analysis of human testis cells stained using APC-conjugated isotype
control antibodies (Supplemental Fig. 4A). (B) After the sort, all sorted fractions, as well as the unsorted cells, were fixed and immunocytochemistry
(ICC) for SALL4 was performed. SALL4þ cells were enriched in the THY1dim fraction compared with the unsorted cells. (C) To confirm the ICC
results, human-to-nude mouse xenotransplants were also performed. Two months after transplant, colonies of human spermatogonia were
identified in mouse recipient testes. (C, J insets) Examples of colonies of human spermatogonia in whole mount preparations of recipient mouse
seminiferous tubules stained with the rabbit anti-primate antibody. Colonies in each recipient testis were counted and normalized to 105 viable cells
transplanted per testis. (D–G) Representative images of SALL4 staining from each sorted fraction and unsorted cells. (H) Fluorescence-activated cell
sorting for ITGA6 in human testis resulted in two different populations based on ITGA6 -PE staining intensity and negative FITC autofluorescence—
ITGA6þ and ITGA6�. Negative gates were defined by analysis of human testis cells stained using PE-conjugated isotype control antibodies
(Supplemental Fig. 4B). (I) After the sort, all sorted fractions, as well as the unsorted cells, were fixed and ICC for SALL4 was performed. SALL4þ

cells were enriched in the ITGA6þ fraction compared with the unsorted cells. (J) To confirm the ICC results, human-to-nude mouse xenotransplants
were also done. Two months after transplant, colonies of human spermatogonia were identified in mouse recipient testes. Colonies in each
recipient testis were counted and normalized to 105 viable cells transplanted per testis. (K–M) Representative images of SALL4 staining from each
sorted fraction and unsorted cells. At least 10 views were counted from each fraction based on 6-diamino-2-phenylindole (DAPI) staining and SALL-
4 staining. Different letter indicate P<.01; same letters indicate P>.05. Bar graphs in B, C, I, and J are presented as mean� SEM. Scale bar¼ 100 mm.
Valli. Sorting spermatogonia from human testes. Fertil Steril 2014.
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FIGURE 4

ORIGINAL ARTICLE: REPRODUCTIVE SCIENCE
unsorted cells revealed that 13.8% � 6.2% of cells in the
ITGA6þ fraction were SALL4þ (Fig. 3I and 3M), compared
with 2.6% � 0.2% in the unsorted cell population (P< .01)
(Fig. 3I and 3K). SALL4þ cells were depleted from the
ITGA6� fraction (0.38% � 0.1%; P< .01 compared with the
unsorted controls; Fig. 3I and 3L). To confirm the immuno-
cytochemistry results, colonizing activity in ITGA6 sorted
and unsorted cells was assessed by xenotransplantation
into nude mouse testes. On average, 49.3 colonies/105 cells
were found in mice transplanted with cells from the ITGA6þ

fraction (P< .01 compared with the unsorted controls),
whereas only 4.1 colonies/105 cells and 3.7 colonies/105 cells
were observed from mice transplanted with unsorted and
ITGA6� cells, respectively (Fig. 3J). Thus, SSC colonizing ac-
tivity resides predominantly in the ITGA6þ fraction of hu-
man testis cells and is enriched approximately 12-fold
compared with the unsorted population.
Magnetic-activated cell sorting (MACS) of human testicular cells for
THY1, EPCAM, and ITGA6. Human testicular cells were MACS sorted
into two fractions—negative and positive. Both positive and negative
fractions from MACS, as well as unsorted cells, were transplanted
into nude mouse testis. (Inset A–C) Two months after transplant,
colonies of human spermatogonia were identified in whole mount
preparations of recipient mouse seminiferous tubules using the rabbit
anti-primate antibody. Colonies in each recipient testis were counted
and normalized to 105 viable cells transplanted per testis. (A, B) For
THY1 and EPCAM, no significant difference was found between the
unsorted cells and the sorted fractions (P>.05). (C) ITGA6þ fraction
was enriched roughly threefold compared with unsorted cells
(P<.05). Bar graphs are presented as mean � SEM. Scale bar ¼
100 mm. Different letter indicate P<.05, same letters indicate P>.05.
Valli. Sorting spermatogonia from human testes. Fertil Steril 2014.
Enrichment of Human Spermatogonia Using
MACS

Analysis of FACS indicated that ITGA6 and THY1 can be used
to effectively isolate and enrich human SSCs from a heteroge-
neous testis cell suspension. However, the FACS sorting
approach has limited throughput (�30 � 106 cells/d). There-
fore, we decided to evaluate a higher throughput sorting
approach (MACS) to maximize the use of human testicular
cells and compare the results with FACS. We evaluated the
fractionation of human testis cells by THY1 MACS where
there is no option to distinguish between bright and dim
expression of THY1. The cells were sorted into THY1 positive
and negative fractions using MACS and then transplanted
into nude mouse testes to analyze SSC colonizing activity
relative to unsorted human testis cells. Unsorted cells pro-
duced 4.8 � 2.5 colonies/105 cells, compared with 6.1� 2.0
and 7.3 � 3.7 colonies/105 cells in THY1� and THY1þ frac-
tions, respectively (P>.05, compared with unsorted and
each other), indicating that MACS did not effectively frac-
tionate SSC colonizing activity based on THY1 expression
(Fig. 4A). Similar to the THY1 FACS results in this study, we
previously reported the SSC colonizing activity is enriched
in the EPCAMdim fraction of human testis cells (80). Therefore,
it is not surprising that MACS did not effectively fractionate
SSC colonizing activity from human testis cells based on
EPCAM expression (Fig. 4B).

In contrast, MACS was effective for isolation and enrich-
ment of human SSC colonizing activity based on ITGA6
expression (Fig. 4C). The SSC colonizing activity in the ITGA6þ

MACS fraction was enriched more than threefold (9.6 � 0.9
colonies/105 cells) compared with the unsorted fraction (2.9
colonies/105 cells; P< .05; Fig. 4C). The SSC colonizing activity
was nearly depleted in the ITGA6� fraction, which produced
only 0.3 � 0.2 colonies/105 cells, indicating that almost all
SSCs were recovered in the ITGA6þ fraction.

DISCUSSION
In rodents, SSCs are defined by their ability to establish and
maintain spermatogenesis when transplanted into infertile
mouse testes (39, 40, 109, 110). Although there is no
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specific molecular marker of rodent SSCs (except possibly ID4
[18]), stem and progenitor spermatogonia can be described
collectively by expression of some or all of the following
markers: GFRa1, POU3F1, POU5F1, ZBTB16, NGN3,
NANOS2, NANOS3, SOHLH1, SOHLH2, FOXO1, ITGA6,
LIN28, ID4, UTF1, CDH1, GPR125, ITGB1, EPCAM, CD9,
and THY1 (9–38, 45, 111), and by their clonal arrangement
on the basement membrane of seminiferous tubules (Asingle,
Apaired, Aaligned; 112). In humans, stem spermatogonia are
described primarily as Adark and Apale based on the intensity
of nuclear staining with hematoxylin (6–8). There is limited
information about how dark and pale descriptions of
nuclear morphology correlate with transplantation
potential, molecular markers, or clone size, although recent
progress on the molecular details has been published by von
Kopylow and colleagues (56, 57) and also Lim and
colleagues (58).

In the present study, we show that spermatogonia on the
basement membrane of human seminiferous tubules have the
phenotype of SALL4þ, ZBTB16þ, UTFþ, UCHL1þ, and ENO2þ

(Fig. 1). The expression of SALL4, ZBTB16, UTF1, and UCHL1
in human testes has been reported previously (22, 53–55, 59,
63). ENO2 is a gene that was identified by Oatley and
co-workers because it is up-regulated in ID4-GFPþ spermato-
gonia (personal communications). This is the first study to
demonstrate that ENO2 is expressed by human spermatogonia
and coexpressed with established markers of human stem and
progenitor spermatogonia (i.e., UCHL1 and SALL4) (55, 59).
This is also the first study to quantify the expression of
these markers at the cellular level and describe their
expression relative to other stem and progenitor markers by
costaining. We believe this systematic molecular profiling
will identify subpopulations of cells (e.g., putative stem,
progenitor and differentiating cells) that will become the
subject of future investigations.

Most cells that express SALL4, ZBTB16, UTF1, UCHL1, and
ENO2do not express the differentiationmarker KIT, as demon-
strated by direct costaining (i.e., UCHL1/KIT, SALL4/KIT, and
UTF1/KIT) or transitive logic (UCHL1/ENO2; Fig. 1). These re-
sults suggest that SALL4, ZBTB16, UTF1, UCHL1, and ENO2
markhumanundifferentiated spermatogonia and immunohis-
tochemical analysis confirms that UCHL1 is expressed byAdark

and Apale spermatogonia, the putative SSCs in human testes
(Fig. 2). Examination of these markers in whole mount prepa-
rations of seminiferous tubules provides novel insights into
human spermatogenic lineage development. Our results indi-
cate that UCHL1 tended to be expressed by smaller clones
(1–4 cells), whereas KIT is expressed in larger clones (usually
R8 cells). Collectively, these results indicate that several
markers of rodent stem and progenitor spermatogonia are
conserved in humans and that spermatogonial differentiation
in humans is correlatedwith increased clone size and initiation
of KIT expression, similar to rodents (17, 102).

Spermatogenesis is an extremely productive system that
produces millions of sperm per gram of testicular tissue each
day in rodents and humans (1–3). However, our results
suggest that the dynamics of spermatogenic lineage
development in humans may be different than rodents. In
rodents, rare undifferentiated spermatogonia are heavily
VOL. 102 NO. 2 / AUGUST 2014
outnumbered by transit-amplifying differentiated spermato-
gonia (113). In contrast, we found that the number of undiffer-
entiated spermatogonia in human testes was greater than the
number of KITþ differentiated spermatogonia (Fig. 2;
Supplemental Fig. 2). Thus, it appears that the highly produc-
tive spermatogenic system in rodents depends on a small
pool of stem and progenitor spermatogonia and a large pool
of transit-amplifying cells, whereas the human spermatogenic
lineage is characterized by a relatively larger pool of stem and
progenitor cells and a smaller pool of transit-amplifying cells.

Fluorescence-activated cell sorting is suitable for charac-
terizing relatively small cell populations (%30� 106) and can
be used to achieve significant enrichment of SSCs (15, 25, 45,
50, 74, 80, 114–117). When coupled with molecular marker
screening (using markers that are restricted to stem and
progenitor spermatogonia) and the stem cell transplant
assay to validate sorted fractions, FACS can be a powerful
tool for dissecting the molecular phenotype of SSCs. In the
current study, we used SALL4 immunocytochemistry to
screen sorted cell populations. We considered SALL4 an
excellent marker for screening human stem and progenitor
spermatogonia because it is conserved in mice (55, 101,
102), rats (Gassei and Orwig, unpublished), monkeys (55),
and humans (55), including expression by human Adark and
Apale spermatogonia (55). SALL4 immunocytochemistry
provided a rapid assessment of sorted fractions and was an
excellent predictor of the results from human-to-nude mouse
SSC xenotransplantation, which has an inherent 2-month
delay to analysis. Based on the data presented, we believe
that UTF1, ZBTB16, UCHL1, and ENO2 would also be good
markers to rapidly screen for human stem and progenitor
spermatogonia.

Spermatogonial stem cell transplantation is the experi-
mental ‘‘gold standard’’ for assaying SSCs (118, 119).
Spermatogonial stem cell transplantation in humans may
someday be feasible in the clinical setting (120), but cannot
be used as a routine bioassay. However, Nagano et al. (77)
demonstrated that human SSCs can engraft the testes of
infertile, immune compromised mice. Human SSCs do not
produce complete spermatogenesis in mouse seminiferous
tubules, but they do execute several functions that are
consistent with the activity of SSCs: [1] they migrate to the
basement membrane of seminiferous tubules without being
phagocytosed by mouse Sertoli cells; [2] they proliferate to
produce characteristic chains and networks of
spermatogonia; and [3] they persist for several months.
Human-to-nude mouse xenotransplantation is becoming a
routine bioassay for human SSCs (22, 61, 75, 77–80).

Studies using FACS followed by transplantation of sorted
fractions have established that ITGA6, THY1, and EPCAM are
markers of SSCs in rodents (15, 16, 25). Similar methodology
with FACS or MACS followed by human-to-mouse xeno-
transplantation has been used to demonstrate that EPCAM,
CD9, and SSEA4 are markers of human SSCs (61, 75, 80).
Human testis cells have also been fractionated by MACS
based on expression of GPR125, THY1, and ITGA6 (59, 83,
121), but stem cell activity in sorted fractions was not tested
by transplantation.
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Flow cytometry analyses in the current study identified
two distinct THY1þ populations in the human testis that we
designated dim and bright. SALL4 staining as well as xeno-
transplant results suggested that most of the SSCs were in
the THY1dim fraction and SSC colonizing activity in that frac-
tion was enriched approximately fivefold compared with un-
sorted human testis cells (Fig. 3C). Almost no SSCs are found
in the THY1bright fraction. Similar to the THY1 results reported
in the present study, we previously reported that SSC colo-
nizing activity is recovered in the EPCAMdim fraction of
human testis cells and depleted in the EPCAMbright and
EPCAM� fractions (80). Interestingly, neither of these
markers could be used to effectively fractionate and enrich
SSC colonizing activity from the human testes using MACS.
The SSC colonizing activity was recovered in both the bound
and flowthrough fractions and colonizing activity in each
fraction was similar to unsorted controls (Fig. 4A and B).
Perhaps this result can be attributed to the low expression
level of these two antigens in human SSCs. Considering our
MACS results, it is noteworthy that THY1 MACS is routinely
used to sort SSCs from mouse testes (116, 122–126). These
results may indicate that there are species-specific differences
in the level of THY1 expression. Alternatively, these results
may indicate technical differences between direct labeling
with bead-conjugated THY1 primary antibodies (mouse) and
indirect labeling using bead conjugated secondary antibodies
(current study). The bead conjugated anti-mouse THY1 anti-
bodies did not cross-react with the human THY1 antigen
(data not shown). Flow cytometric analysis of ITGA6 in hu-
man testis cells revealed only two distinct populations, posi-
tive and negative, and most of SSC colonizing activity was
recovered in the ITGA6þ fraction, which was enriched 12-
fold compared with unsorted controls (Fig. 4J). In contrast
to THY1 and EPCAM, cells with SSC colonizing activity could
be effectively isolated and enriched from heterogeneous hu-
man testis cell suspensions using ITGA6 MACS. However,
the level of enrichment achieved by ITGA6 MACS (3.3-fold)
was less than ITGA6 FACS (12-fold). Sorting resolution by
FACS is typically more than MACS because FACS allows for
gating of cell populations based on simultaneous evaluation
of several parameters, including viability (PI�), cell size
(forward scatter of incident light), cell complexity (side scatter
of incident light), and specific immunoreactivity
(autofluorescent�, nonspecific binding�).

We identified several proteins with expression limited
primarily to undifferentiated spermatogonia (KIT� cells)
located on the basement membrane of seminiferous tubules
in human testes. These markers may provide insights into
the molecular mechanisms that regulate the function of hu-
man SSCs and can be used to screen human cell populations
or tissues for putative SSCs. In addition, they can be used to
validate newly discovered markers of human stem and pro-
genitor spermatogonia using costaining approaches similar
to those used in the current study to validate the expression
of ENO2 in human undifferentiated spermatogonia. In the
present study and a previous study (80), we demonstrated
that human SSCs have the cell surface phenotype THY1dim,
EPCAMdim, and ITGA6þ. SSEA4 and CD9 are also cell surface
576
markers of human SSCs that have been validated by human-
to-mouse xenotransplantation (61, 75). These markers can
now be used alone or in combination to achieve significant
enrichment of human SSCs for downstream studies.
Magnetic-activated cell sorting can also be used for isolation
and enrichment of SSCs before initiation of SSC cultures, as
previously described for mice (116, 127). ITGA6 (current
study), CD9 (61), and SSEA4 (75) are also amenable to
immunomagnetic sorting, which has virtually unlimited cell
sorting capacity and will facilitate isolation of SSCs from
human testes that can contain more than one billion cells.
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SUPPLEMENTAL FIGURE 1

Isotype controls for (A) ZBTB16 and SALL4, (B) UTF1 and SALL4, (C) SALL4 and KIT, (D) UTF1 and KIT, (E) UTF1 and UCHL1, (F) KIT and UCHL1, (G)
ENO2 and UCHL1, (H) ENO2 and SALL4. Scale bars ¼ 100 mm.
Valli. Sorting spermatogonia from human testes. Fertil Steril 2014.
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SUPPLEMENTAL FIGURE 2

Summary of marker expression in adult human testis. Colored bars
indicate the overlap of markers based on data from Figure 1.
Striped area indicates range in data. UTF1 seems to be the most
restricted marker of human spermatogonia, followed by ZBTB16
and SALL4. There is also almost no overlap between these markers
and differentiation marker KIT. UCHL1 and ENO2 are more widely
expressed on the basement membrane of the seminiferous tubule
and have slightly more overlap with KIT.
Valli. Sorting spermatogonia from human testes. Fertil Steril 2014.
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SUPPLEMENTAL FIGURE 3

ITGA6 and EPCAMexpression in adult human testis sections. Immunofluorescence staining for ITGA6 (A, C) and EPCAM (D, F) in adult human testis.
6-Diamino-2-phenylindole (DAPI) staining (blue) (B, E) identifies all the nuclei. Scale bars ¼ 50 mm.
Valli. Sorting spermatogonia from human testes. Fertil Steril 2014.

VOL. 102 NO. 2 / AUGUST 2014 580.e3
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SUPPLEMENTAL FIGURE 4

Isotype controls for (A) THY1 and (B) ITGA1 fluorescence-activated cell sorting. Negative gates were defined by analysis of human testis cells stained
using (A) APC-conjugated and (B) PE-conjugated isotype control antibodies.
Valli. Sorting spermatogonia from human testes. Fertil Steril 2014.
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SUPPLEMENTAL FIGURE 5

Rabbit anti-primate antibody and ENO2 costaining of recipient mouse testes xenotransplanted with human testis cells. Immunofluorescence
costaining for the primate antibody (A, C) and ENO2 (B, C) in human-to-nude mouse xenotransplants testis. 6-Diamino-2-phenylindole (DAPI)
staining (blue) identifies all the nuclei. Scale bars ¼ 50 mm.
Valli. Sorting spermatogonia from human testes. Fertil Steril 2014.
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SUPPLEMENTAL TABLE 1

Germ cell markers in rodents, non-human primates, and humans.

Rodents Non-human primates Humans

Comments ReferencesRT-PCR
IHC
ICC TR RT-PCR

IHC
ICC TR RT-PCR

IHC
ICC TR

Germ cella

ID4 X IHC-XS
IHC-WM

X As (18)

EXOSC10 X IHC-XS Ad (56)
OCT2 IHC-XS Ad (58)
FGFR3 X IHC-XS Ad, Ap (57)
EGR3 IHC-WM As, Apr (128)
NANOS2 X IHC-XS

IHC-WM
X IHC-XS As, Apr, Ad,Ap, B-RS (30–32, 129, 130)

GFRa1 IHC-XS
IHC-WM

X IHC-XS IHC-XS As-Aal4, Ad, Ap, B1, B2 (49, 59–61, 74, 111, 114, 131)

UTF1 X IHC-XS X IHC-XS As-Aal4, Ad, Ap, BM (24, 54)
ZBTB16 IHC-XS

IHC-WM
X IHC-XS X IHC-XS As-Aal, Ad, Ap, B1, B2, BM (13, 14, 22, 59, 60, 74, 101, 102, 132)

SALL4 IHC-XS
IHC-WM

IHC-XS X IHC-XS As-Aal, Ad, Ap, B (55, 101, 102, 132)

POU5F1 (OCT4) IHC-XS
IHC-WM

X IHC-XS As-Aal, BM (133–135)

POU3F1 IHC-XS X Spermatogonia on the BM (37)
RET IHC-XS As-Aal (9)
BCLB6 IHC-XS X Rare cells on the BM. RS in stage 7 (125, 136)
LHX1 IHC-XS X Rare cells on the BM. RS in stage 7 (125)
ETV5 IHC-XS X On the BM (125)
NANOS3 X IHC-XS

IHC-WM
As-A1 (30–33)

SOX3 IHC-XS As-Aal (137)
GPR125 IHC-XS

IHC-WM
X IHC-XS X IHC-XS

ICC
As-Aal, rare cells on the BM (20–22, 59, 132)

LIN28 (TEX17) IHC-XS
IHC-WM

IHC-XS IHC-XS As-Aal, rare cells on the BM (19, 62)

UCHL1 (UCHL1) IHC-XS IHC-XS X IHC-XS Spermatogonia, cells on the BM (22, 59, 132, 138)
NGN3 IHC-XS

IHC-WM
X IHC-XS As-Aal, Ap, B1-4, PS (28, 29, 74, 137)

SOHLH1 X IHC-XS
IHC-WM

GFRa1� spermatogonia (34, 139)

SOHLH2 X IHC-XS
IHC-WM

GFRa1� spermatogonia (34–36, 139)

CBL X IHC-XS BM (53)
DSG2 X IHC-XS BM (53)
SAGE1 IHC-XS B (58)
TRA-1-81 IHC-XS Rare cells on the BM (132, 140)
MAGEA4 IHC-XS IHC-XS BM, some spc (59, 61, 132, 133, 141)
SNAP91 X IHC-XS BM, some spc (53)

Valli. Sorting spermatogonia from human testes. Fertil Steril 2014.
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SUPPLEMENTAL TABLE 1

Continued.

Rodents Non-human primates Humans

Comments ReferencesRT-PCR
IHC
ICC TR RT-PCR

IHC
ICC TR RT-PCR

IHC
ICC TR

RBM X IHC-XS IHC-XS As-A4
Ad, Ap, B-RS

(142–146)

RARɣ X IHC-XS
IHC-WM

Aal-A1 (147)

KIT X IHC-XS
IHC-WM

X X IHC-XS X IHC-XS Aal-RS
Ap, B1-4, PS, BM

(45, 59, 74, 75, 102, 114, 148–152), current
publication

STRA8 X IHC-XS
IHC-WM

X As-RS (153–155)

TAF4b IHC-XS X As-Spc (156)
DAZL X IHC-XS IHC-XS X IHC-XS As-Spc (22, 81, 157, 158)
VASA IHC-XS IHC-XS X As-RS (22, 114, 132, 159, 160)
mRNA-221/222 IHC-XS X On the BM (122)
mRNA-146 X Undifferentiated spermatogonia (161)
mRNA-20 X IHC-XS X Undifferentiated spermatogonia (162)
mRNA-106a X IHC-XS X Undifferentiated spermatogonia (162)
miRlet7 IHC-XS On the BM (163)

Cell surfaceb

GFRa1 IHC-XS
IHC-WM

X IHC-XS IHC-XS As-Aal4, Ad, Ap, B1, B2 (49, 59–61, 74, 111, 114, 131)

KIT X IHC-XS
IHC-WM

X X IHC-XS X IHC-XS Aal-RS
Ap, B1-4, PS, BM

(45, 59, 74, 75, 102, 114, 148–152)

THY1 (CD90) X X IHC-XS X (15, 25, 59, 74, 75, 83, 114), current publication
CDH1 (CD324) IHC-XS

IHC-WM
X As-Aal (17, 164)

CD9 IHC-XS X IHC-XS X BM (26, 27, 61, 117)
CD29 (b1-integrin) X X IHC-XS BM (16, 23, 148)
CD49f (ITGA6) X IHC-XS X IHC-XS

ICC
X BM (16, 45, 59, 75, 83, 114, 121, 148), current

publication
EPCAM IHC-XS X X X (22, 25, 26, 80, 165), current publication
SSEA4 IHC-XS X IHC-XS X (75, 114, 132, 140, 166)
GPR125 IHC-XS

IHC-WM
X IHC-XS X IHC-XS

ICC
As-Aal, rare cells on the BM (20–22, 59, 132)

Note: Aal ¼ A aligned spermatogonia; Ad ¼ A dark spermatogonia; Ap ¼ A pale spematogonia; Apr ¼ A paired spermatogonia; As ¼ A single spermatogonia; B ¼ type B spermatogonia; BM ¼ basement membrane; ICC ¼ immunocytochemistry; IHC-WM ¼ immu-
nohistochemistry whole-mount; IHC-XS ¼ immunohistochemistry cross-section; mRNA ¼ messenger RNA; PS ¼ pachytene spermatocytes; RS ¼ round spermatids; RT-PCR ¼ reverse transcriptase–polymerase chain reaction; Spc ¼ spermatocytes; TR ¼ transplant.
a We attempted to sort the germ cell markers in the order of their expression from undifferentiated to differentiating spermatogonia.
b Examined with flow cytometry or fluorescence-activated cell sorting experiments. FGFR3 and TRA-1-81 are also cell surface markers but not included here because they have not been studied in the context of flow cytometry or fluorescence-activated cell sorting.
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