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Abstract An algorithm for obtaining a state-feedback control law for near-optimal aircraft pursuit 
evasion in three dimensions is outlined. Key features of  the approach are the use of  singular-perturbation 
ideas to decouple the dynamics of  each of the two players and the use of a reference frame that decouples 
the slow subsystem extremals of  one player from those of the other. The resulting subproblems are then 
tractable for closed-loop solution, and the solutions may be combined to give a control law feasible for 
real-time implementation. Compared with past analyses of  pursuit--evasion games, our dynamic model 
is higher order and more realistic; therefore, our results should be of practical value for aircraft control. 
And because we use fewer time-scales than were used in past analyses of  flight dynamic problems by 
singular-perturbalion methods,  our algorithm should be more accurate. 

1. I N T R O D U C T I O N  

Most investigations in which the theory of differential games was used to model air-to-air combat 
were based on deterministic, perfect-information pursuit-evasion games. In the pursuit--evasion 
formulation, (i) there are two combatants, or players, (it) the roles of the players are fixed and 
predetermined, one being designated the pursuer and the other the evader, and (iii) the pursuer's 
objective is to minimize the time-to-capture (assuming capture is possible) and the evader's is to 
maximize it; thus the game is two-person and zero-sum. 

One of the first pursuit-evasion problems to receive attention was the game of two cars, in which 
the two players move in the same plane with fixed speeds and bounded turn rates [1-5]. 
Independently, the differential-turning game was developed; in this formulation the energies of the 
two players and their relative heading are treated as state variables [6-9]. As models of air combat, 
these two approaches are quite different, the first focusing on positional advantage and neglecting 
vehicle dynamics and the second focusing on the interplay between energy management and turning 
while ignoring position [10]. Although the results of these analyses are of qualitative interest, both 
approaches use third-order dynamic models and consequently are of limited value in determining 
optimal tactics in actual air combat. 

More recently, a pursuit-evasion game with variable-speed point-mass aircraft models in a 
horizontal plane (a fifth-order model in relative coordinates) was investigated [11-15]. The 
approach hinges on the use of a coordinate system that in a certain sense uncouples the extremal 
paths of the pursuer from those of the evader. This allows open-loop extremal trajectory maps for 
each player to be generated independently; these maps then can be combined in a common 
coordinate system to obtain isochrones and feedback controls. A special case of these results is the 
target interception problem of optimal control, in which the evader's motion is fixed and known 
to the pursuer: in this case we call the pursuer the interceptor and the evader the target. 

Because the target-interception problem is computationally easier than pursuit~vasion (re- 
quiring the generation of one extremal trajectory map instead of two), many results have been 
illustrated in terms of target interception. For example, Fig. 1 [14, 15] shows a feedback control 
solution for the case of an initial target speed of Mach number (M) 1.0, an initial interceptor speed 
of M = 0.9, and an initial relative heading of 135 ~'. Shown in the figure are the optimal bank 
controls of the interceptor as a function of the position of the target relative to the interceptor, 
as well as the isochrones (loci of constant time-to-capture). Capture is defined to occur when the 
interceptor gets within 316 m of the target. A piece of an isochrone for a pursuit-evasion problem 
is shown in relative coordinates in Fig. 2. It would take the computation of many such isochrones 
to construct a feedback chart such as the one shown in Fig. 1. 
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Fig. 1. Feedback bank control chart for optimal target 
interception in a horizontal plane (F4-C aircraft). 
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Fig. 2. A portion of an isochrone for optimal pursuit 
evasion in a horizontal plane (F4-C). 

The major shortcoming of  the analysis just described is its restriction to a horizontal plane. Since 
it is well known that vertical-plane maneuvering is important for high-performance aircraft, this 
restriction is a severe one The purpose of this paper is to outline an approach to obtaining 
near-optimal feedback controls in deterministic, perfect-information, three-dimensional aircraft 
pursuit-evasion (3DAPE). 

If both the pursuer and evader are modeled as constant-weight point-masses, the state equation 
of  the three-dimensional game is twelfth order (sixth order for each player). Consequently, the 
open-loop extremals satisfy a 24th order, two-point boundary-value problem in 12 state and 12 
adjoint variables. Although this is a computational problem of great complexity [10], numerical 
solutions of similar problems have been obtained [16, 17]. In order to achieve a solution to the 
3DAPE problem in a feedback form suitable for real-time implementation, however, simplifications 
are required. 

Our approach to making 3DAPE feedback solutions tractable is based on the singular- 
perturbation technique of time-scale separation of  the dynamics of  each aircraft [18-20] and on 
the use of the decoupling coordinate system introduced in [11-15]. In the interests of accuracy, our 
guiding principle is to use as few time-scales as possible. The equations of motion are written in 
a singularly perturbed form such that the reduced (outer, slow) problem is the three-dimensional 
energy-state (3DES) dynamic model [18, 21]. The same coordinate system that decouples the 
players' extremals in the horizontal plane also decouples the players' extremals in the 3DES case; 
therefore, solution of  the reduced problem is much the same as the solution given in [11 15]. The 
3DES formulation contains both the two-cars and differential-turning formulations as special 
cases. 

Under the key assumption that the capture (termination) condition is independent of the 
boundary-layer (inner, fast) variables, the boundary-layers of  each aircraft are independent of  the 
other. In our analysis, we treat the boundary-layer equations in two ways, depending on the 
proximity of  the current state to the 3DES solution. For the initial boundary layer and in the 
regions of large transitions between branches of the 3DES solution, we use complete time-scale 
decoupling of  the variables of the nonlinear boundary-layer system. As is well known, this leads 
directly to a nonlinear feedback control law [22 25]. In the vicinity of the 3DES solution, we leave 
the equations coupled, but transform them to a new variable which gives a more accurate estimate 
of the fast variables on the 3DES solution [26, 27], and finally linearize about the 3DES solution 
to obtain linear feedback control corrections. 
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When specialized to the target-interception problem, our approach is similar to two other recent 
derivations of feedback guidance laws for three-dimensional problems by singular-perturbation 
techniques [24, 25]. However, both of those other investigations used complete time-scale sepa- 
ration of all variables, differing only in the ordering of the speeds of the variables. In light of recent 
time-scale analysis [28], such sweeping time-scale separation seems suspect and it is not known how 
near optimal the resulting guidance laws are. In any case, because of  the less severe time-scale 
decoupling, our algorithm should be more accurate. It is significant, however, that the guidance 
algorithm in [24] has been extensively simulated [29] and even flight tested to some extent, thus 
demonstrating that this class of  algorithm can be implemented in real time. 

Before beginning the detailed development of  our algorithm, we wish to point out that pursuit- 
evasion is a special case of  air-to-air combat, in which one of the aircraft has negligible offensive 
capability. In the more general case, both aircraft have offensive capability and objectives, and that 
problem is much more complex [30-33]; indeed, there has been no attempt to solve it in three 
dimensions. 

2. D Y N A M I C  M O D E L I N G  

We begin with the assumption that each aircraft, the pursuer and the evader, is adequately 
modeled as a constant-weight point-mass. In the wind system of axes, the motion of each aircraft, 
or player, is then governed by the equations of  motion: 

2 =  V c o s T c o s z  

)) = V cos 7 sin Z 

/~ = Vsin7 

(t" = g ( T -  D - sin 7) 

= gn sin O /V  cos7 

= g (n cos 0 - cos ~)/V, (1) 

where ( ' )  = d( )~dr and the state variables are horizontal position (x, y), altitude (h), speed (V), 
heading angle (Z), and flightpath angle (7) [34]. The thrust and drag per unit weight are given by 

T = ~TM(h, V) 

D = Do(h, V) + D~(h, V)n:. (2) 

The constraints on the control variables/~ (throttle setting), 0 (bank angle), and n (load factor) 
are 

0~</~<l 

n m ~ n ~ n M = min[n~, L(h,  V)], (3) 

where n~ is the maximum (structural) load factor and £ is the lift per unit weight as limited by 
maximum angle of  attack, UM, 

£ (h, V) = eL, (h, V)O~MR (h)V"S/2W.  (4) 

In this equation, Ct,, is the lift-curve slope, p is the atmospheric density, S is the wing-reference 
area, and W is the weight. 

Time-scale analysis of (I) reveals that for a typical high-performance aircraft, x and y are the 
slowest state variables, 7 and • are the fastest, and h and V are of  intermediate speed [28]. Our 
basic approach is to use as few time-scale separations as possible while still leaving each subproblem 
tractable for real-time implementation. To this end, we introduce the energy variable, defined by 

E = V2/2g + h. (5) 

and replace V by E in the equations of motion. Since E is slow relative to h, we can then put x, 



100 M.D. ARDEMA and N. RAJAN 

Y, ;6 and E on the same time-scale (Z is put on this time-scale because o f  our  goal to use as few 
time-scales as possible). The two faster variables, h and 7, are then put on separate, faster 
time-scales. The resulting singularly perturbed system is 

.,~ = V cos 7 cos Z 

); = V cos ? sin ;( 

E =  V ( T -  D ) =  P ( E , h , n ,  fl) 

= gn sin O / V cos?  

~/~ = V sin y 

2oj, = gn cos 0 /V  - g cos 7 / V, (6) 

where, f rom (5), 

V(E,  h) = [2g(E - h)] '/2. (7) 

To zero-order  in ~, the optimal controls  for a system such as (6) can be written as an algebraic 
feedback law depending on the current  state variables and on the adjoint variables o f  the reduced 
solution [22-25]. The reduced problem, obtained by setting ~ = 0, is the energy-state approximat ion 
[18, 21]. It is assumed that Theorem 2.2 o f  [20] holds for (6). 

In our  approach,  the nonlinear  guidance law just discussed will be used only when the current 
state is "far  away"  from the reduced solution in terms of  altitude. When the current state is "near"  
the reduced solution, we will use a linear guidance law based on boundary- layer  analysis o f  a state 
system of  the equat ions o f  mot ion  slightly different than (6). The reduced solution of  (6) defines 
an optimal energy-state path in the (V, h) plane; let this path be denoted by 

f ( h ,  V) = O. (8) 

We then make the change of  variable h ~ . / ;  replace sin ? by 7 and cos ? by 1, and put f and 7 
together on a fast time-scale to get (from [27]) 

:(" = V ' C O S Z  

~' = V' sin Z 

E = p '  

= gn sin 0 / V' 

where 

~;' = g (n  c o s  0 - 1 ) / V ' ,  (9) 

ck = v f , - g j ; ,  

= g fv /V ,  ([0) 

and where h ' ( E , f )  and V ' ( E , f )  are to be determined from (5) and (8) and 
P ' ( E , £  n, fl) = P ( E ,  h, n, ~), L ( E , f )  = 8 f (k ,  V)/Sh, and . f ~ (E , f )  = ~f(h,  V)/SV.  The reduced 
problem associated with (9) is the same as that associated with (6), i.e. it is the 3DES, except for 
the a posteriori calculation o f  7- For  (6), the reduced value o f  ), is always zero, whereas for (9) 
it is equal to the actual value along the reduced path. Thus, boundary- layer  corrections based on 
(9) should be more  accurate than those based on (6), both because o f  the less severe time-scaling 
o f  (9) and because o f  the more  accurate reduced value o f  7. The assumption that 7 is small 
is necessary in order  to get a formulat ion with the 3DES as a reduced problem; this assump- 
tion should be quite good since ? has been found to be < 3 along the reduced solution in typical 
cases [27]. 

N o w  denote the pursuer and evader by subscripts p and e, respectively, and let s, = (xi, .)', E,, Z~) t, 
i =- p, e, and 

E'I 
gc 
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In pursuit-evasion, the cost functional is time-to-capture, 

J = dt, ( l l )  

which p desires to minimize and e to maximize, assuming capture to occur. The evolution of  the 
state of each player is governed by a system of equations (6) or (9). The termination time 6 is 
determined by a capture condition; i.e. a state constraint is imposed such that 

s(t)e,Y- c ~8 V t e [ 0 ,  tr), (12) 

and 

s(tf) ~ J-.  (13) 

Here, Y is the target or capture set. It is essential to our approach that J -  be a subset of the slow 
subspace only, and, therefore, that the coupling between the two players is restricted to the reduced 
(3DES) problem. The 3DES solution will then contain all the game features of  the problem (such 
as the assumed roles of the players, capturability, and location of barriers and other singular 
surfaces). The boundary layers of each player may then be analyzed independently; their role is 
to provide near-optimal transitions to the 3DES solution at the initial time, and between branches 
of the 3DES solution at later times. 

In the following sections, we will consider, in turn, the 3DES problem and the boundary-layer 
problems associated with (6) and (9). 

3. T H R E E - D I M E N S I O N A L  E N E R G Y  STATE 

Setting ~ = 0 in (6) and (9) leads to the same reduced problem, the 3DES system: 

E =  P ( E , h , n ,  fl) 

)( = gn sin 0 / V 

2 = Vcos~( 

3:' = V s i n X  

n cos 0 = 1. (14) 

It is easy to verify that all conditions of Theorem 2.3 of [20] are met and, therefore, that the 
extremals of (14) will indeed be the same as those obtained by applying necessary conditions to 
(6) or (9) and then setting c = 0. 

Equations (1), (6), (9), and (14) are valid in any inertial reference frame with rectangular 
Cartesian coordinates (x, y, h). We now adopt an inertial frame such that the pursuing aircraft is 
at the origin at capture (i.e. at time tr) and the evader is on the x-axis at a prespecified distance 
R from the origin (Fig. 3). As shown in [21], this reference frame has the advantage that the terminal 
and transversality conditions of the pursuer are uncoupled from those of  the evader; as a result, 
we may generate the open-loop extremal solutions of each player independently. The disadvantage 
is that the frame varies from encounter to encounter, which makes it necessary that the results be 
transformed into a common, relative reference frame in order that they be useful for constructing 
feedback controls. 

Example 3DES open-loop extremals for an F4-C aircraft were computed in [21] and are shown 
in Figs 4 and 5. In Fig. 4 are displayed extremal trajectories in the (h, V) plane for several values 
of  Er and fixed Xr. Trajectories that start from relatively high values of energy lie entirely on the 
maximum speed boundary, VM (E). Trajectories starting from lower values of energy start on the 
corner speed locus (locus of  maximum instantaneous turn rate), V~(E), then jump to an interior 
point and quickly transition to VM. Trajectories that start at low energies start on V~ and end on 
the terrain limit. 

Figure 5 shows the projection of extremal trajectories in the horizontal plane for various values 
of final heading Xf, with final energy Er fixed. All trajectories start (in forward time) with throttle 
off (/3 = 0), corner speed (V = V~), and bank angle saturated. After a few seconds, the throttle is 
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Fig. 3. Encounter-dependent, decoupling, inertial reference frame. 

switched to full (fl = 1), and after a few seconds more the speed jumps to maximum (V = VM). 
Then, the bank becomes unsaturated, and gradually decreases to near zero at termination. 

Our approach to constructing feedback solutions to the 3DES problem is (i) to flood the state 
space with numerical, open-loop solutions for the pursuer in the encounter-dependent, inertial 
reference frame, (ii) to do the same for the evading aircraft, and (iii) to transform the two solutions 
into a reference frame fixed to one of the players and plot isochrones in this reference frame 
to get feedback (state-dependent) control laws. For each player, these control laws are in the 
form of tabular data giving the controls fl, O, and n in terms of the current relative position 
(Xp - x~, yp - y~,/.p - Z~) and the energies of  the two aircraft (Ep, E~). It is during this last step that 
capture requirements on the relative values of E may be imposed. For example, requiring that 
Ep ~> E~, or, more appropriately, that V,,,(Ep)>~ V~(E,.), where }~,(E) is the loft ceiling locus, 
eliminates otherwise optimal pairs of trajectories and consequently reduces the capturability region. 

The control laws resulting from the 3DES solution may be written symbolically as fl,(s), 0~, (s), 
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and n~, (s), i = p, e. We m a y  use this solut ion also to express the slow adjoint  variables and the fast 
state and adjoint  variables of  each aircraf t  in terms of  all the slow state variables.  Tha t  is, we can 
form s ta te-feedback laws A~(s), h,, (s), 7~, (s), 2h (S), and ,L. (s). It is these feedback expressions that 
are needed in the contro l  a lgor i thms der ived ' in  the foll'~wing two sections. 

4. N O N L I N E A R  C O N T R O L  L A W  

When the state of  a player  is far away from the reduced solution, we use (6) as the basis for 
boundary- l aye r  analysis o f  that  player.  Specifically, (6) is used when Ih - hr(E)] > 6, where h is the 
current  altitude, halE) is the reduced solution alt i tude at the current  energy E, and 6 is a preselected 
constant .  

There  are two b o u n d a r y  layers associated with (6), one for the alt i tude dynamics  and one for 
the f l ightpath dynamics .  These bounda ry  layers are basically the same as those in [24], and we will 
follow that  reference in our  development .  The  difference is that  in [24] the slow variables are further 
t ime-scale decoupled,  whereas  in our  approach  they are not. Because the te rminat ion  condit ion is 
independent  o f  the fast state variables h and ?, and because both the pursuer  and the evader  wish 
to minimize the transit ion times to, and between, branches  o f  the reduced solution, the boundary-  
layer analysis that  follows is independent ly  valid for bo th  players,  and (for the most  part)  we do 
not  use subscripts  p and e. 

The necessary condi t ions for  m in imum time control  o f  system (6) may  be written as 

s =  H~, ~ = - -  H~ 

,~/~ = n ; , ,  ~,~,, = - H h 

2.~ 22 = - -  H. = H~ .... ( ;, 

H/~ = O, Ho = O, H. = O. H = 0 ,  (15) 

where subscripts  denote  part ial  differentiation and where 

2~gn sin 0 ),;g 
H = A  c o s T + B - 2 E V D i n 2 +  V c o s 7  + 2 h V s i n T + ~ - ( n c o s 0 - - c o s T )  

+ ktt(n -- n~) +/~2(n -- £ )  +/~3(fl -- 1) + ~4[] 

with 

(16) 

A ( s , A ( s ) , h ) = 2 x V c o s  X + 2, ,Vsin Z B ( s , A ( s ) , h ,  f l ( s ) )= l + AEV(flTM Do). (17) 

In (16), the #i are multipliers for  the control  constraints  (3), £ is given by (4), and Di is defined 
by (2). No t ing  that  the thrott le  control  fl is complete ly  determined by the reduced solution, we have 
written fl (s) and we need not  consider var ia t ions  of  fl in the bounda ry  layers. 

The zero-order  app rox ima t ion  to the alt i tude bounda ry  layer is obta ined by introducing the 
stretching t r ans fo rmat ion  ~ = t/( into (15) and then setting c = 0: 

) ' = d (  

- -  A sin 7 + 

s' = 0 ,  2 ' = 0  

h ' =  HI,,. 2~'~ = - Hh 

0 = H,,. 0 :  - H ,  

H~ = 0, H.  = 0. H = 0, 

)/dzt. The last five o f  these equat ions  are, when written out in full, 

n cos 0 - cos 7 = 0 

2~gn sin 0 sin ), g 
V cos 2 7 + )-h V cos 7 + 2 ~ sin ~, = 0 

cos 0 
2~ - - -  - 2. sin 0 = 0 

COS 7 

(~8) 

where ( 

( A M V ~ A  1 3 1 3  H 
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- 22E VD, n + 2,. g sin 0 2rg cos 0 
Vcos3  ,-t V -{'- ].LI -~- ].L2 ~--- 0 

).~gn sin 0 
A cos 7 + B - 2 , : V D , n  2 +  " + 2  h V s i n ? = O .  (19) 

V cos 3' 

These five algebraic equat ions may be used to eliminate 7, 2:., O, and n and thereby to obtain an 
expression for the altitude adjoint  in state-feedback form; we write this feedback law as 

Aj,, (s, hi) = 2h,(si, Ai(s), hi, fli(s)) i = p, e. (20) 

A general approach  to the simultaneous solution o f  (19) may be found in [24]. Here, we will 
briefly illustrate (20) for the case o f  a bounded  load factor "be low"  the corner speed, V > Vc(E).  
In this case, n = n~ and we further assume that n~ >> 1 and 13'1 <{ 1 (i.e. we set sin t' = 7 and cos 7 = I). 
Simultaneous solution o f  (19) then gives 

• 1 )°/~ ~ A A + B + 17 )~u VDin~ (21) t . , ,= - + V  - - -  - 

w h i c h  is in the form of  (20). 
Next we consider the 7' boundary  layer. The zero-order  approximat ion  is obtained by substituting 

z~ = t/c e in (15) and then setting ~ = 0: 

s" = 0 ,  J." = 0 

h"=O. ;~;; = 0 

7 " = H ~ ,  ) , 5 . ' = - H  i 
H,~ = 0, H,, = 0, H = 0, (22) 

where ( ) " =  d( )/dL~. 'The last three o f  these are the algebraic equations: 
cos 0 

2~ - -  - 2~. sin 0 = 0 
cos 7 

-2x E VDin + 2~g sin 0 2 g  cos 0 
° d + ~ t  + / / 2  = 0  

V cos 7 V 
).zgn sin 0 2rg 

;, + ).~, V sin 7 + ~ -  (n cos 0 - cos T) = 0. (23) .,f cos + B -- ).L VD, n~- + V cos T 

These equat ions are to be used to solve for 0 and n as functions o f  all other  variables except L.  
This results in algebraic state-feedback expressions for the controls,  which we express as 

Oi(s, hi, 7,) = 0,(si, hi, 7i, Ai(s), A,,, (s, hi), fli(s)) 

Ni(s, h,  7) = ni(s~, hi, T,, A,(s), Ah, (S, he), fl,(s)), (24) 

where i =  p for implementat ion by the pursuer and i = e for implementat ion by the evader. 
To illustrate the solution o f  the 7 boundary  layer, we again consider the case n = n, >> 1, 171 <~ 1 ; 

equat ions (23) then give the feedback controls  as 

0 = s i n  V ( ) L ~ : V D ~ n ~ 7 ~ _ B _ , ; h V ? )  

n = n~, (25) 

with 2~, given by (21). Equat ion (25) is in the form of  (24). 
A flow diagram of  the implementat ion,  for the pursuer, o f  the feedback control  algori thm derived 

in this section is shown in Fig. 6. The most  significant characteristic o f  the algori thm is that, as 
mentioned earlier, all the interaction between the two aircraft takes place in the reduced, or 3DES, 
solution. The opponent  information enters the control  laws via the functions A (s) and fl(s). The 
purpose o f  the control  laws Op and Np is, in effect, to drive the pursuing aircraft to its 3DES 
solution, under the assumption that  the evading aircraft is always on its own 3DES solution. 
Finally, we note that the informat ion needed for implementat ion by the pursuer consists o f  the 
values of  all o f  the pursuer 's  state variables but o f  only the values o f  the evader 's  slow state 
variables. 
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Fig. 6. Pursuer implementation of nonlinear state-feedback control, ]h o - hrr(Ep) [ > 6. 

5. L I N E A R  C O N T R O L  L A W  

When the state o f  a player is near the reduced solution, [h - hr(E)l ~< 6, we adopt  (9) for our  
boundary- layer  model,  to gain improved accuracy. Once again, because the boundary- layer  mot ion  
is identical and independent  for both players, we will not,  for the most  part, use subscripts p and 
e, with the unders tanding that the results will apply to either player. 

The necessary condit ion for minimum-t ime control  o f  system (9) are 

where 

H = A + B -  2~.VD,n 2 + 

s = / 4 , ,  ~ = - / 4 ,  

,.? = Hi.,, c;[, = - / 4 ,  

,;; = Hi.., e L =  - / 4 , .  

H/¢ = 0, H e = O ,  //~ = 0, H = 0 (26) 

2/gn sin 0 2~,g(n c o s 0  - 1) 
V + ),i(~7 + q/P) + V 

+ # l (n  - n,) + l~2(n - £ )  + #3(/3 - 1 )  + ~4/3 (27) 

and where we have dropped the primes denot ing functional dependence on E and f As before, 

fi is determined by the reduced solution, /3 (s). 
To obtain the zero-order  approximat ion  to the boundary- layer  equations,  we set ~. = t /c  and 

then c = 0 in (26) to obtain 

s ' = 0 ,  2 ' = 0  

.f; = ~569,~ + ~,bP~ 

)';i, = - Hth 
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1’; = g (tlb cos H&j Vh 

A;, = -if,& 

H,j = 0, H,, = 0. H = 0. (38) 

Because we are interested in obtaining control laws for use in the vicinity of the reduced solu- 
tion, we will linearize (28) about the reduced solution, which is an equilibrium point of these 
equations [20]. 

Setting t = 0 in (26) gives the following algebraic expressions valid on the reduced solution: 

0=4,“P,+cc/,pr 

O=n,cos8,- I 

0 = - H,, 

0 = - A, 

0 = Axr cos 8, - A,r sin 8, 

(29) 

Expanding all fast state and adjoint variables and all control variables about their reduced values. 

then using (8) and (29) gives 

.fb =./; + 6, = 6, 

(30) 

Substituting (30) into (28), using (29), recalling that E and /i are constant to zero-order in the 
boundary layer, and retaining only first-order terms in the perturbation variables 6, gives 

(s; = ad, + c#N?.,. - 2 VD,ntjci,> 

“I,= -.A?- 
[ 

+ 
xi., v, 

2E.J V, D, + VD,,) + mvL- td,, + &h,,_ 
1 

where 

(I = l//,/J + lbf, - 4,dfP 
--- . 
(i, 

(32) 

and where the subscript r has been dropped, with the understanding that all coetficients in (31) 
and (32) are to be evaluated on the reduced solution at the current, actual value of E. 

Our procedure for deriving linear state-feedback control laws is now as follows. First, we solve 
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(31) for the perturbation variables, 6,(r~), and then evaluate the solutions at r~ = 0, 5,(0) = 6,0. In 
these calculations, we assume that the character of the load factor control does not vary locally; 
i.e. if it is bounded (unbounded) on the reduced solution it is bounded (unbounded) in the linearized 
boundary layer. The values 6,0 are then used to construct feedback control laws via (30); these laws 
will be of the form 

(}9,(S, hi, ),i) = Or, (S) -t- 60i (S/, A,(s), h,, ),,. fl,(s), hr, (S), 7r, (S), V/r, (S),),~, (S)) 

N,(s, h,, 7,) = g/r,(S) -t- 6hi (S i, A,(s), h,, 7,,/7,(s), h~, (s), "}'r, (S), n, (s), L;r (s)) 

i = p , e  (33) 

and will be linear in h, and 7, 
The solution of (31) will depend on the local nature of the reduced solution, as well as on whether 

the reduced load-factor control is bounded. There are not as many cases to consider as it would 
seem, however, since many combinations may be ruled out theoretically and others rarely occur 
in practice [21]. Here, we will illustrate the derivation of a control law for a specific case. 

Suppose that the reduced solution is flight along a terrrain limit below the corner speed locus 
(the crosshatched locus in Fig. 4) and further suppose that the reduced load-factor control is 
bounded. For reduced flight along a terrain limit, hv, 

g2 
V - g V/r = (34) f = h - h T ,  f h = l ,  f v = O ,  q$=V,  O = O ,  7 = 0 ,  a = O ,  / - - ~ ,  V3, 

and for bounded load-factor control below the corner velocity 

=n~, 5 , = 0 ,  P2=O, 61,, . = 0 .  (35) /7 

Consequently, (31) become, with 

where 

n~>> l. 

3;= v6, 

6 ~ - g 6  
Vz. . 

6 ;., = C61 

6~. = - V6>.~, (36) 

3" 2 Ag 2 3g-z:.n, 
C -  V4 )-~:PhJ, V 5 (37) 

If CVg/'2: > 0, then Theorem 2.2 of [20] is satisfied and the two stable modes have eigenvalues 

1 (CVg'~ TM i (CVg'~ TM 

s , . , -  ~ \ ~ , ;  / _ ( ~ \  2,, ,] " (38) 

6.. = A 2 exp(st), 6~1 = m 3 exp(st), 6>. = A 4 e x p ( s t )  (39) 

A (;) = -- 's) A (4 `) 
V 

To solve (36), we set 

51= Al exp(st), 

to get the mode shapes 

A (,) _ g A ]i) 
s , VT./.. 

A ~i) = ~ A (4 '), (40) 

where s,, i = 1,2, are given by (38). Writing the solutions in terms of the two stable model shapes 
and evaluating at q = 0 gives, in view of  (30) and (40), 
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7+ V).:.\  sl + s 

6m, , -  I(sIA~I)+s2A~Z)) 

6~ <, = a ~2) (41  ) A~ t> + -4  , 
7 

where subscript c denotes current values. Solving the first two of  these for A~ I) and A~ ~-, and 
substituting into the last gives 

6~. ° = ~ [ - s l  s2f~ + V(s, + s2)7,.]. (42) 

Putting this expression in the last o f  (30) and using (38), 

1 
6oo - n , 2  6>,: ,~ 

(4VrCrlli4F(gVrCrl"+' ] 
30, + = ~ -  (h  c - -  hT) -P- Vr), c , (43)  t,x ,,+,,,) L\ 4,L, ) 

where subscript r has been added to emphasize that the coefficients in this equation arc to be 
evaluated on the reduced solution at the current value of  energy, E~. Finally, the controls to be 
implemented are 

1 
0 = C O S  i__+644~ 

Hs 

n = n~ (44) 

From (43) we see that 600 is proportional to deviations from reduced solution values for both . /and 
7 and that use o f  the control law (44) will tend to drive the state toward the reduced solution. 

A flow diagram of  the implementation for the pursuer of  the control algorithm method discussed 
in this section is shown in Fig. 7. 
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~p 
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6np (~, hp, ~p, . . . )  ' ~  (-)p (~. hp, .,p) 
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Fig. 7. Pursuer implementation of linear state feedback control, Jhp h. (Er)l ~< +$. 
i i ,  
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6. I M P L E M E N T A T I O N  ISSUES 

Past pursuit-evasion differential game solutions have not been useful in practical aircraft control 
applications, primarily because the dynamic models used were too simple. In the most ambitious 
analysis, the three-dimensional energy-state (3DES) dynamic model was used, and in the present 
paper we have derived feedback control algorithms that are based on the 3DES pursuit evasion 
solution. Specifically, time-scale separations have been introduced such that the 3DES appears as 
the reduced system of the singularly perturbed point-mass equations. Our guiding principle is to 
use as few time-scales as possible and still leave the problem tractable. For current states ~'far away" 
from the 3DES solution, time-scale decoupling of the two fast variables is required to arrive at 
a nonlinear algebraic state-feedback law for the controls. When the state is '~close'" to the 3DES 
solution, we make a change of fast variable, keep both fast variables on the same time-scale, and 
derive a linear feedback law for control increments to be added to the 3DES controls. 

Most of the technical and computational complexity of the algorithm resides in the 3DES 
problem; the algebraic feedback laws resulting from the boundary-layer analysis are quite simple. 
A key assumption is that the capture condition is defined in terms of only the slow w~riables. 
Consequently, it is in the 3DES solution that assumptions regarding the player's roles (pursuer, 
evader, interceptor) enter into the algorithm, that capturability is determined, and that barrier 
surfaces and other typical differential game phenomena arise. The computational task of 
constructing 3DES feedback solutions is formidable; however, this computation may be done 
off-line and the results converted to tabular data for on-board use. 

There are two issues connected with our general approach that need further consideration. The 
first is the treatment of the instantaneous jumps between the branches of the 3DES solution, a 
consequence of modeling the altitude h as a fast variable. In our approach, we have implicitly 
assumed that when one of these jumps is reached, a switch to the nonlinear control law, with the 
new reduced values as equilibrium point, is made. It is clear that in terms of more closely following 
the 3DES solution, it would be better to anticipate the jump by switching control laws earlier, but 
there are no guidelines for this. In the context of the singularly perturbed point-mass equations, 
these jumps are interior transition layers, and what is needed is a detailed investigation of these 
layers for the three-dimensional case. Transition layers for two-dimensional (vertical plane) flight 
have been studied computationally on one time-scale [35] -d  analytically on two time-scales 
[36, 373. 

The other issue is a consequence both of modeling/7 as a fast variable and of our key restriction 
that capture is specified only in terms of slow variables. Placing constraints on the final energies 
of the two players limits their possible final altitudes, but the range of possible values may still be 
great. Consequently, the difference between the altitudes of the aircraft at termination may be 
substantial, the implicit assumption being that the pursuer's weapon is able to close this altitude 
gap. If this assumption is not valid, the pursuer must reduce the altitude difference to a prespecified 
value, while the evader attempts to prevent this. 

There are several possible approaches to including an altitude-matching requirement, the most 
obvious of  which is to relax our key restriction and impose a maximum altitude difference as part 
of the capture criteria. The altitude-matching requirement would then lead to a terminal boundary 
layer, of necessity coupled between the two players; this would change the entire structure of the 
problem and make it much more complex. Second, we may define an independent "end-game", 
to be initiated when "capture",  in the 3DES sense, has been achieved. If energy-state modeling is 
used for this end-game, conceptual complexities arise, such as the need to consider the relative 
informational advantages of the players [7]. It may even happen that the pursuer is not able to 
close the altitude gap to the required value, implying successful evasion and thereby contradicting 
the capturability conclusion of the 3DES game. Finally, we may use a heuristic engineering 
approximation to model terminal altitude changes [25]. If altitude match proves to be an issue, 
further investigation will be required to determine the best resolution. 

7. C O N C L U D I N G  R E M A R K S  

In summary, we have outlined an approach to three-dimensional aircraft pursuit-evasion that 
has potential use for an on-board automatic controller. The dynamic model and time-scale 
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a s s u m p t i o n s  s h o u l d  give real is t ic  resul ts ,  a n d  the  c o m p u t a t i o n a l  r e q u i r e m e n t  s h o u l d  be well w i th in  

r ea l - t ime  c a l c u l a t i o n .  T o  va l ida t e  the  a l g o r i t h m ,  it w o u l d  be h igh ly  de s i r ab l e  to  c o m p a r e  its 
p e r f o r m a n c e  wi th  t h a t  o f  o p e n - l o o p  o p t i m a l  s o l u t i o n s  o f  the  full p o i n t - m a s s  m o d e l ,  to  c o n d u c t  

c o m p r e h e n s i v e  s i m u l a t i o n s ,  a n d ,  even tua l ly ,  to  fl ight test  it. 
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