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Abstract--A new division algorithm is presented for the residue number system (RNS). It is 5% faster 
and has an 8% smaller standard deviation of  running time than the best previously published algorithm. 
Furthermore, it uses storage proportional to the sum of  the moduli, instead of the square of  the largest 
modulus. 

1. INTRODUCTION 

1.1. The residue division problem 

A residue number system (henceforth abbreviated as RNS) is a set of representations (known 
as "residue numbers" or "residue codes") of integers, together with rules for adding, subtracting 
and multiplying them. An RNS allows hardware implementations in which an integer is represented 
simultaneously in independent, small arithmetic units operating in parallel. Addition, subtraction 
and multiplication are performed on each arithmetic unit concurrently and independently, without 
the need for carries, borrows or partial products. These operations can be done quickly, in an 
amount of time that is essentially independent of the operation and the operands themselves. As 
a result, the RNS has received considerable attention in the literature [1-7]. 

The division operation, however, is relatively slow, and its execution time depends to a large 
extent on the operands. The fastest known division algorithm for arbitrary modulus sets has an 
average execution time that is almost 50 times longer than that required for addition (assuming 
randomly distributed numerators and denominators). Also, the division time standard deviation 
about the mean, a figure of merit previously not considered, can be as large as 40% for typical 
modulus sets. Furthermore, this algorithm uses a large stored table. 

The problem considered here (henceforth called the "division problem") is to develop an RNS 
division algorithm that possesses the following attributes: (1) it works for all modulus sets so long 
as the moduli are pairwise relatively prime; (2) it does not require an inordinate amount of 
hardware or storage to implement; (3) it works for all possible divisors in the range of the RNS 
defined by the moduli. Furthermore, we would like the algorithm to be fast and have a small 
running time standard deviation. Such an algorithm would enhance immensely the appeal of the 
RNS for use as a general purpose computer number system. 

1.2. Previous work 

Several RNS division algorithms have been published. Each can be classified in one of two 
groups, as is the case with binary division algorithms [8]. These groups are referred to as the 
subtractive algorithms and the multiplicative algorithms. Members of the former employ subtrac- 
tion of multiples of the denominator (called "quotient estimates" or "estimates" for short) from 
the numerator until the difference becomes less than the denominator. The multiplicative 
algorithms, however, compute a reciprocal of the divisor, and the quotient by multiplication of this 
reciprocal by the numerator. 

Of the eight RNS division algorithms published to date, seven fall into the subtractive class. The 
eight will be referred to as the binary expansion Algorithms I, II and III (Refs [9-11], respectively), 
pure scaling algorithm [10, pp. 91-94], one sided rounding Algorithms I and II [12], Kinoshita 
algorithm [13], and large-divisor reciprocal algorithm [1]. 
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The binary expansion Algorithm I computes, in residue, the terms in the binary expansion of 
the quotient. Binary expansion Algorithm II is the same as I, except that it uses a stored table 
lookup to replace a lengthy calculation. Binary expansion Algorithm III is an adaptation to the 
RNS of the well-known CORDIC algorithm. The pure scaling algorithm uses divisor approxima- 
tions to compute quotient estimates. The approximate divisor is specially chosen so that the 
quotient estimates can be found exclusively by means of a fundamental residue procedure called 
"scaling". The one-sided rounding Algorithms I and II, as well as the Kinoshita algorithm, use 
mixed radix information about approximations to the denominator and numerator to access a 
stored table of quotient estimates. The large-divisor reciprocal algorithm uses a first order iterative 
process to compute a suitable defined reciprocal of the divisor, accurate to within an error of 1, 
for divisors which are not less than the largest mixed radix coefficient. 

Five of these algorithms have drawbacks which make them less suitable as solutions of the RNS 
division problem. The binary expansion Algorithm III requires an amount of hardware that 
increases linearly with the dynamic range of  the RNS, and is thus impractical for general purpose 
computer implementation. The large-divisor reciprocal algorithm does not work for all divisors in 
the range of  the RNS. Furthermore, it is not clear how the quotient is to be found once the 
reciprocal is computed. The pure scaling and one sided rounding Algorithm II can be used only 
for specially chosen modulus sets. The Kinoshita algorithm requires either a decimal divider or a 
very large amount  of storage. 

Of the three remaining algorithms (binary expansion Algorithms I and II and the one sided 
rounding algorithms I), the one sided rounding Algorithm I is the fastest [12, p. 162]. For  this 
reason, the one sided rounding Algorithm I will be considred the "best" RNS division algorithm 
published to date, and will be the algorithm with which our new algorithm is compared. However, 
this algorithm (henceforth abbreviated OSRA) has two shortcomings. The first is that its storage, 
although reasonable, is quite large. It requires an amount proportional to the square of  the 
maximum modulus. This large amount  is needed because the majority of the quotient estimates 
are stored rather than computed. The second drawback of the OSRA is that the standard deviation 
about the mean of its execution time is large, being as high as 40% for typical modulus sets. 

1.3. Purpose of this research and the results achieved 

The purpose of  this research was to develop an RNS division algorithm which solves the division 
problem previously stated, and (a) uses less storage than the OSRA, and (b) has a smaller mean 
execution time and better standard deviation about the mean than the OSRA. This goal was 
originally motivated by the need for an RNS division algorithm for use in optical computing [7]. 

The result of this research is an algorithm called the reciprocal algorithm (RA). It solves the 
division problem stated previously, uses less storage than the OSRA, and has a smaller mean 
execution time and better standard deviation about the mean. 

The remainder of  this paper is organized as follows. Section 2 is a review of  the RNS and various 
operations performed in it. It also contains a review of the OSRA. Section 3 presents the RA, and 
Section 4 compares its required storage and statistics of performance with those of the OSRA. 
Section 5 contains conclusions, and the Appendix contains proofs of the lemmas and theorems. 

2. THE RNS AND THE OSRA 

In this section we present the RNS, and review the basic operations used when calculating in 
it. The section also contains a detailed discussion of the OSRA, which as explained in the previous 
section, is considered to be the "best" RNS division algorithm so far published. 

2.1. The residue representation 

The RNS representation of an integer X is defined as follows. Let {m~, m2 . . . . .  m,} be a set of  
positive integers greater than 1, called the "modulus"  set (or "set of moduli"). Also, let rn i be called 
the ith modulus. Then the representation of X in the RNS corresponding to the modulus set 
{m~, m2 . . . . .  mn } is the n-tuple of least nonnegative residues of X mod mi, written (xt, x2 . . . . .  x,), 
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where x~ = X mod m~. The phrase "X has the residue code (x~, x2 . . . . .  x , ) "  will sometimes be 
written 

X <---. (x , .  x:  . . . . .  x . ) ,  (1) 

and x~ will sometimes be called the " i th  residue digit of X." If the moduli are chosen relatively 
prime in pairs, then the Chinese remainder theorem guarantees that the residue representation of  
X is unique, provided that we choose X from a set of consecutive integers containing no more than 
M elements, where M is the product of the moduli. In the literature this set is chosen to be 
[0, M - 1] (where [0~, fl] denotes the set of integers between • and fl, inclusive) if positive arithmetic 
alone is desired. If  operands of  both signs are needed, then 

is used if M is odd, or 

[Y7 'l 
is used if M is even. In either case, the chosen interval is called the "interval of  definition" (ID) 
for the RNS corresponding to {ml, m2 . . . . .  m,}. 

2.2. Addition, subtraction and multiplication 

Residue addition, subtraction and multiplication are done as follows. Let " . "  denote any one 
of  these operations, and let X and Y be the operands, where 

and 

Then 

where zi is defined as 

X <--) (xl, x2 . . . . .  x,)  (2) 

Y ~ (y,, y: . . . . .  y,). (3) 

X .  Y ~ (zl, z2 . . . . .  z,), (4) 

zi = xiYi rood mi. (5) 

From this definition we see that the ith residue digit of  the result depends solely on the ith residue 
of  the operands. 

2.3. Integer division 

Integer division refers to the calculation of  a quotient X / Y  when it is known a priori that the 
quotient is an integer and the ith residue digit of Y is relatively prime to m~ for all i. It has limited 
application in itself but is used in a more general division method called the scaling procedure. 

The integer division procedure is as follows. Let X and Y ¢ 0 be in the ID, and let 

and 

Then Z, the integral quotient, is 

where 

X ~ (xl, x2 . . . .  , x,)  (6) 

Y ~ (Yl, Y2 . . . . .  Y,). (7) 

Z <---} (Zl, z2, • • • , z,), (8) 

zi = xiy71 mod mi, (9) 
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and yfl is the unique integer such that 

1 ~<y~t  ~ < m i -  1 (10) 

and 
y~y71= 1 rood mi. ( l l )  

The integer y~-~ is called the multiplicative inverse of y~ mod m~. Clearly, integer division consists 
of a single residue multiplication of the numerator by the inverse of the denominator. 

2.4. The scaling procedure 

If the quotient is not known a priori to be an integer, then rounding of the result must be 
performed. The predominant form of rounding in the literature is "truncation" rounding, which 
converts the quotient X~ Y to the greatest integer less than or equal to it, written LX/Y] .  If Y is 
an element of a set of "special" divisors, the truncated quotient L X / Y ]  can be found in a relatively 
simple manner, if we can accept the answer specified on a proper subset of the moduli. This is done 
by a procedure called the "scaling" procedure, which will now be described. 

The scaling procedure is used only when the divisor Y is a product of first powers of moduli. 
Suppose that Y is the single modulus m~. Then the truncated quotient 

~X~ X - X m o d Y  X - x i  
(12) 

Y m~ 

where, as usual, x~ is the ith residue digit of X. Since LX/YJ  is an integer, it can be found in this 
case by using the integer division method described above. Since the moduli are relatively prime 
in pairs, m 7 ~ mod mj exists for all j 4= i. Therefore, the j th  residue digit of the truncated quotient, 
written L.X/Y_]j, is 

LX/YJj= ( x j -  x~)y/' rood m/, j # i. (13) 

A method for finding the ith residue digit, called the base extension procedure, will be discussed 
later. If  the divisor Y is a product of k > 1 single powers of moduli, then the truncated quotient 
can be found by successive applications of the preceding method, once for each modulus in the 
divisor. The interested reader is referred to Ref. [10] for a complete description of the scaling 
algorithm for this case. 

2.5. The mixed radix representation 

The mixed radix representation is a weighted (i.e. "positional") representation of an integer 
which is well-suited for the RNS. It allows the magnitude of the integer to be determined, and will 
now be described. 

The mixed radix representation of a nonnegative operand X in the ID is defined to be 
n - I  n 2 

X = x. 1--I mi+ x._l  l-I m i + " F  x2ml-k- Xl, (14) 
i = l  i = 1  

where 0 ~< xj < mj, for all j. The mixed radix representation of a negative X in the ID is defined 
to be that of the positive integer M + X. In this case, 

n - I  n - 2  

m + X = x. 1-I mi + x . - i  I~ mi + "  " + x2ml + xt,  (15) 
i = 1  i = 1  

where, as in equation (14), 0 ~< xj < mj, for all j. In either case, xj is called the j t h  mixed radix digit 
of X. The mixed radix digits are found by successive scaling by the moduli, in a process called mixed 
radix conversion [10]. Throughout the remainder of this paper, we will denote the mixed radix digits 
of X by 

X ~ ( x . ,  x . _  l . . . . .  xj ) .  (16) 

Furthermore, we will refer to x. and x~ as the most significant and least significant mixed radix 
digits, respectively. 



A new RNS division algorithm 17 

2.6. The base extension procedure 

The base extension procedure is a method for computing unknown residue digits of  an operand. 
These digits can be those which have been erased by the sealing procedure, or can be those 
corresponding to extra moduli. The base extension procedure is essentially a mixed radix 
conversion, and is described in full generality in Ref. [10]. The division algorithm presented in this 
paper uses a special case of the procedure. This special type of  base extension, henceforth called 
a "broadcast",  will now be discussed. 

A broadcast is defined as a base extension in which the operand to be extended, X, is nonnegative 
and less than some modulus m~ for which x~ is known. Here, it is assumed that all residue digits 
of  X are found by a stored table which contains the full length residue representations for all 
nonnegative integers less than the maximum modulus. Broadcasts are used in the scaling and mixed 
radix conversion procedures. 

2. 7. The O S R A  

This subsection contains a detailed discussion of the OSRA, presented for later comparison. 
Experimentally derived statistics of  its average running time will be given in Section 4. We begin 
with a short discussion of  notation. 

Let X and Y denote the numerator and denominator, respectively. The OSRA uses an iterative 
procedure, so we will use X, to denote the numerator at iteration i. Also, we will denote the mixed 
radix digits of  X~ and Y by 

x,,--, <x.,  x ._ ,  . . . . .  x, > (17) 

and 

Y ~ <Y,, Y,- i . . . . .  Yl >, (18) 

with x,  and y,  the most significant. Furthermore, we will let xk and yl be the most significant 
nonzero mixed radix digits of  X~ and Y, respectively. Also, we will denote by E;+ I an estimate of  
the quantity X~/Y. This notation is the same as that used by Banerji et al. [2], except that E~+~ is 
used instead of  Z~+t. 

2. 7. I. Overview o f  the method. The OSRA finds the truncated quotient L X / Y I  for any X and 
Y # 0 in the ID L0, m - 1]. The moduli can be any positive pairwise relatively prime integers, and 
they are assumed to be ordered as m, > • • • > ml . 

The OSRA proceeds as follows. In the ith iteration, it makes an estimate Ei+ ~ of the quantity 
X~/Y, and tests to see if this estimate equals zero. If it does, then the algorithm stops, and L X / Y ]  
is the sum of  the estimates plus an error term. Otherwise, Xi+ ~ is computed and a new estimate 
is made. 

2. 7.2. Formal statement o f  the O S R A .  The OSRA uses the iteration 

Xi+, = X~ - Ei+, Y, (19) 

where X0 = X, with stopping conditions Xr = 0 or E, + 1 = 0. When one of  the stopping conditions 
is satisfied, the truncated quotient is given by 

= Ei + I "~- E', (20) 
i=0 

where 

0, i f  X , = O  or Ei+, =O and X, < Y, (21) 
E ' =  1, i f E i + l = O a n d X , > ~ Y .  

The estimate Ei+~ is found from mixed radix information about rounded approximations to Xi 
and Y. Y is approximated as 

Y ~ (Yt + l)ml_ l "'" ml, (22) 
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and 2",. is approximated as 

Xi ~ Xkmk_ t " "" ml . (23) 

Using these approximations, the quotient estimate E~+~ is computed as 

[0i j if 
i f k  = l ,  

Xk , i f k = l + l ,  

~ X k L  m' , i f k > l .  (24) 

The residue codes for kXk/(Yt + 1)_] and kmt/(yt + 1)_] are found by accessing a table which stores 
the residue representation of all possible quotients [_e/(Y/+ 1)], for 1 ~< • ~< m n -  1. This table is 
indexed by the quantities xk (or equivalently m~) and y~, and the residue code for the estimate is 
read out. The residue codes for all possible products mr+ ~ . . .  ink_ j, for k > l + 1 are stored in 
another table, indexed by k and l. The residue representation of  Xk is found by a broadcast of Xk 
to all other moduli. 

A Pascal version of  the OSRA is given in Fig. 1. 

3. THE R E C I P R O C A L  A L G O R I T H M  

The reciprocal algorithm (RA) is the major result of  this research. It computes the truncated 
quotient L X / Y ]  in smaller mean execution time, with less variability about the mean, and while 
using much less storage than the OSRA. The reduction in storage is a result of  the fact that the 
quotient estimates are computed, rather than stored. The computation involves a newly defined 
reciprocal of  the divisor, and is performed (for most modulus sets) in an extra "scratch pad" 
modulus. This extra modulus is not necessary, however, if the moduli can be chosen arbitrarily. 

The notation used in Section 3 is the same as that used in Sections 1 and 2. Furthermore, we 
define 

P, = f i  m i (25) 
i = 1  

and P0 = 1. 

3.1. Overview o f  the RA  

The RA computes the truncated quotient L X / Y I  for any x and Y :~ 0 in the ID [0, M - 1] 
defined by the mod m, > m, 1> " "  > m~. These moduli may be any pairwise relatively prime 
integers. In the ith iteration, the algorithm makes a quotient estimate Ei+~ of  the quantity X / Y ,  
and tests to see if a stopping condition is satisfied. If it is, the truncated quotient is the sum of 
the estimates plus an error term. Otherwise, a new numerator X~+~ is calculated, and this process 
is repeated. 

The RA has a smaller average execution time than the OSRA, and slightly smaller standard 
deviation. Most importantly, the RA uses much less storage. 

3.2. Formal statement o f  the RA  

The RA uses the iteration 

Xi +, = Xi - Ei +, Y, (26) 

where X0 = X, with stopping conditions Xr < Y or E,+~= 0. When the stopping condition is 
satisfied, the truncated quotient 
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PROGRAM OSRA (INPUT, OUTPUT); 

(* This program uses the One Sided Rounding Algorithm to compute the truncated 
quotient, QUOT, of numerator NUMER and denominator DENOM. Its purpose is to 
illustrate the OSRA, and therefore the residue representation is not used since its use 
would obscure the essentials of the OSRA*) 

VAR NUMER, DENOM, QUOT: INTEGER; 
MSLOCN,MSLOCD,MSDIGITN,ESTIMATE : INTEGER; 
MODULUS : ARRAY[1..10] OF INTEGERS; 
MRDIGITSN: ARRAY.[1..10] OF INTEGERS; 
MRDIGITSD: ARRAY[1..10] OF INTEGERS; 
LABEL 5; 

BEGIN 
QUOT:=0; 
CONVERT(DENOM,MRDIGITSD,MSLOCD); 
MSDIGITD := MRDIGITSD(MSLOCD); 
WHILE NUMER < > 0 DO 

BEGIN 
CONVERT(NUMER,MRDIGITSN,MSLOCN); 
MSDIGIT:= MRDIGITSN(MSLOCN); 
IF MSLOCN < MSLOCD 
THEN ESTIMATE :=0 
ELSE IF MSLOCN = MSLOCD 

THEN ESTIMATE:= FINDQUOT(MSDIGITN,MSDIGITD) 
ELSE IF MSLOCN=MSLOCD + 1 

THEN ESTIMATE:= MSDIGITN 
*FINDQUOT(MODULUS(MSLOCD),MSDIGITD) 

ELSE ESTIMATE:= MSDIGITN 
* FINDQUOT(MODULUS(MSLOCD),MSDIGITD) 
* FINDPROD(MSLOCN,MSLOCD); 

IF ESTIMATE = 0 
THEN BEGIN 

IF NUMER > = DENOM 
THEN QUOT:= QUOT +1; 
GO TO 5 
END 

ELSE BEGIN 
QUOT: = QUOT + ESTIMATE; 
NUMER: = NUMER - ESTIMATE * DENOM; 
END; 

END; 
5: WRITELN(QUOT); 

END. 

*Procedure CONVERT (X,Y,Z) returns in Y the mixed radix digits of X, and returns in Z 
the location of the most significant nonzero digit. Function FINDQUOT(X,Y) returns the 

quantity and represents the quotient table used by OSRA. Function FINDPROD 

(X,Y) returns the product ml+l...mk_ 1 when passed k,1 in X,Y, respectively. It represents 

the modulus products table used by OSRA*) 

Fig. 1 

= 2 Ei+l WE', 
i=0 

where 

The (i + 1)st quotient estimate is 

E, = {0, if Xr< Y, 
1, if E,+I = 0. 

E/+I 

L x k ~ j m k  ' i fk  =l ,  

i f k = l + l ,  

i f k > l + l .  

(27) 

(28) 

(29) 
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This estimate is an approximation of the quantity 

which can be shown to be a low estimate of XffY, in error by at most 1. The approximation is 
accomplished by using approximations of  X~ and [_m/Y_l, as follows. X~ is approximated by its most 
significant mixed radix term, viz. 

Xi~ x~pk_l. (31) 

The quantity [_M/Y_] is approximated as 

where as defined earlier, the most significant nonzero mixed radix digit of  Y is the lth. 
3.2.1. Calculation of the estimate E~+ ~. The estimate Ei+~ is calculated using either the scaling 

procedure or stored tables, depending on k and 1. 
I f K  > / ,  two stored tables are used; one for [_PffYI and the other for the product mt+~ • • • mk I. 

The product table is identical to the table used in the OSRA. The divisor reciprocal table storing 
residue encoded values of  [PI/YJ is new and will now be discussed. 

The residue encoded value of [_Pt/YJ is found by a search of a table Tt. In order to discuss the 
entries in Tt, we introduce the following notation. We will denote byj~ <J2 < . . .  <Js the unique 
values that [_PffYJ can assume as Y ranges throughout [P~_ ~, P ~ -  1]. Furthermore, we will let Yj, 
denote the largest Y in [Pt-~, P~ -  1] such that [_Pj/Y_] =j ,  The values Yj, can be thought of  as the 
values of  Y for which [_PffY_] "changes" as Y assumes values starting at P ~ -  1 and decreasing to 
P l - i .  The values j~ are then equal to [_PI/(Yj,).J. 

Divisor reciprocal table Tt stores the ordered pairs of  integers (Yj,,j~) for i = 1, 2 . . . . .  s in 
increasing order on j~. The integers ~, are mixed radix encoded, while the integers ji are residue 

coded. 
The residue coded value of  [P~/YI is found by using the mixed radix digits of Y to search the 

entries ~, in Tt. The search continues until the pair (Yj,,,L) such that 

Yj,,+, < Y ~< Yj,, (33) 

is found. At such a time, the residue encoded value of  [_Pt/Y] =•  is read out. This process needs 
to be done only once, at the beginning of a division problem. 

The size of Tt is bounded by mr, because [.Pt/Y] ~ mr. This makes the storage used by the RA 
proportional to the sum of the moduli, which is an improvement of  the OSRA storage. 

If  k --- l, the scaling procedure is used to compute the estimate. The residue code for the divisor 
reciprocal [.PffY] is found by stored table as discussed above. Its product with xk is scaled by 
mod mk. As discussed previously, the scaling procedure erases those residue digits which corre- 
spond to the scaling moduli. The kth digit of the estimate is restored by a broadcast from the nth 
(if k < n), because in this case it can be shown that Ei+~ < m,. However, in the case k = n, the 
n th digit cannot be restored from a single original modulus, in general, because Ei+t could exceed 
m,_ ~ for general modulus sets. Consequently, in general the RA requires the use of  a "scratch pad" 
mod m, + l = m, - 1. This modulus is used to restore (by broadcast) the erased n th digit of  E~+ 
when k = n, because in this case it can be shown that E~+ ~ < m, - 1. Note that for modulus sets 
such that m,_ ~ = m, - 1, the extra modulus is not needed. In this case, the nth digit of  E~+ ~ can 
be restored from the (n - 1)st digit. Consequently, it is recommended that the modulus set be 
chosen such that m,_ t = m, - 1 if the RA is to be used. 
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3.3. Proof of the validity of the RA 

The RA will be shown correct in four steps. The first, Lemma 1, shows what range of values 
Ei+, must have if the algorithm is to stop eventually. The second step, Lemma 2, shows that if 
the stopping condition Er+,= 0 is satisfied, then X, < 2 Y. The third step, Lemma 3, shows that 
the estimate E~+l either equals zero, or lies in the "convergence" range established by Lemma 1. 
Finally, Theorem 1 shows that the RA halts and computes the truncated quotient LX/YJ. All 
proofs are in the Appendix. 

Lemma 1 

For the iteration 

we have 

X~+~ = X~ - E~+, Y, (34) 

x~ 
o < Ei+, ~<-~ =~ 0 < X~+, < Xt. 

Lemma 2 

For the RA estimate, viz. 

Ei+l  

we have Ei+ 1 = 0 =~ Xi < 2 Y. 

[x L j j, 
x L J, 

i fk  --l, 

i f k + l + l ,  

i f k > l + l ,  (35) 

Lemma 3 

For the RA estimate (repeated in Lemma 2 above), we have 

_<x, 
0~Ei÷l  ~ T '  

for all X~, Y # 0. 

Theorem I 

The RA eventually halts, at which time 

= F~ e ,÷,  + E ' ,  
/~0 

where 

0, if X,< Y, 
E ' =  1, if E,+ ~ ffi 0. 

A Pascal version of the RA is given in Fig. 2. 

(36) 

(37) 

3.4. Examples of use of the RA 

The first example shows the calculations when the scratch pad modulus is not used, and the 
second shows how it is used. In these examples, angle brackets "(a3, a2, a, )"  will denote mixed 
radix digits, with the least significant digit on the right. Parentheses "(r3, r2, r,)" will denote residue 
digits. The symbol "d" will denote a "don't care" residue digit. The operation count is the sum 
of the number of additions, subtractions and multiplications needed. 
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PROGRAM RA (INPUT, OUTPUT); 

*This program uses the Reciprocal Algorithm to compute the truncated quotient, QUOT 
f numerator NUMER mad denominator, DENOM. Its purpose is to illustrate the RA, and 
therefore the residue representation is not used, since its use would obscure the essentials of 
the RA *) 

VAR NUMER, DENOM, QUOT: INTEGER; 
INVERSE: INTEGER; 
MSLOCN, MSLOCD, MSDIGITN, ESTIMATE: INTEGER; 
MODULUS: ARRAY[1..10] OF INTEGERS; 
MRDIGITSN: ARRAY[1..10] OF INTEGERS; 
MRDIGITSD: ARRAY[I..10] OF INTEGERS; 
LABEL 5; 

BEGIN 
QUOT:=0; 
CONVERT (DENOM,MRDIGITSD,MSLOCD); 
RECIP (MRDIGITSD, INVERSE); 
CONVERT (NUMER,MRDIGITSN,MSLOCN); 
WHILE NUMER > = DENOM DO 

BEGIN 
MSDIGITN:= MRDIGITSN (MSLOCN); 
IF MSLOCN -- MSLOCD 
THEN BEGIN 

ESTIMATE := (MSDIGITN * INVERSE) DIV MODULUS(MSLOCN); 
IF ESTIMATE = 0 
THEN BEGIN 

QUOT := QUOT + I; 
GO TO 5 

END; 
END; 

ELSE IF MSLOCN = MSLOCD +1 
THEN ESTIMATE := INVERSE * MSDIGITN 
ELSE ESTIMATE := INVERSE * MSDIGITN* FINDPROD(MSLOCN,MSLOCD); 

QUOT:= QUOT + ESTIMATE; 
NUMER:= NUMER - ESTIMATE * DENOM; 
CONVERT (NUMER, MRDIGITSN, MSLOCN); 

END; 
5: WRITELN (QUOT); 

END. 

* rocedure CONVERT (X,Y,Zl returns in Y the mixed radix digits of X, and returns in 
the location of the most sighi]icant nonzero digit. RECIP (X,Y) searches the divisor 

reciprocal table using the mixed radix digits in X. It returns the divisor reciprocal in Y. 
Function FINDPROD (X,Y) returns product ml+l...mk_ 1 when passed k,1, in X,Y, 
respectively. It represents the modulus product table *) 

Fig. 2 

Example 1 
For  the modulus  set {m3, m2, mj } = {17, 13, 11}, compute  1_2200/20/. 
Solution. Extra  modulus  m 4 = 16 is needed for some division problems because m2-¢= m 3 -  1 

However ,  for  this division problem, m 4 is not  needed. 

Step 1. Mixed radix conversion o f  Ygives Y ,--, (0,  1, 9)  and l = 2. The conversion 
requires 4 operations.  

Step 2. Find 1_Pz/Y_] by searching the table T2 with Y ,-, (0,  1, 9) .  T2 contains the 
entries 

We find (0, 1 ,6 )  < Y ~< 

((0, 12, 10), (1, 1, 1)) 
((0,  6, 5) ,  (2, 2, 2)) 
((0,  4, 3) ,  (3, 3, 3)) 
((0,  3, 2) ,  (4, 4, 4)) 
((0,  2, 6) ,  (5, 5, 5)) 
((0,  2, 1 ),  (6, 6, 6)) 
((0,  1, 9) ,  (7, 7, 7)) 
((0,  1, 6) ,  (8, 8, 8)) 
((0,  1, 4) ,  (9, 9, 9)) 
((0,  1, 3) ,  (10, 10, 10)) 
((0,  1, 2) ,  (11, 11, 0)) 
((0,  1, 0) ,  (13, 0, 2)). 
(0,  1 ,9) ,  so that  [_P2/YJ = (7, 7, 7). 
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Step 3. 

Step 4. 

Mixed radix conversion on X0 gives X0 ~ (15, 5, 0). Since X0/> L we 
proceed with k = 3. Add 4 to the operation count. 
Since k = 1 + 1, we compute 

17 13 11 

x3: 15 2 4 

LP2/YA: x7 7 7 

El: 3 1 6 

Y: x3 7 9 

El Y: 9 7 10 

Xo: 7 3 0 

Xl: 15 9 1 

Step 5. 

Step 6. 

Add 3 to the operation counter. 
Mixed radix conversion on X~ gives X~ ,--, (0, 9, 1). 
Add 4 to operation counter. We have XI/> Y and k = 2. 
We calculate 

17 13 11 

x2: 9 9 9 

LPdY_J: x7 7 7 

12 11 8 

Scale by m2: - -  11 11 0 

1 0 8 

x4 6 

E2: 4 4 

restore using m3: 4 4 4 

Step 7. 

Step 8. 

Step 9. 

Add 3 to the operation counter. 
Since E2 ~ 0, we compute X2 = X~ - E2 Y ~ (3, 7, 9). Add 2 to the operation 
counter. 
Mixed radix conversion on X2 gives )(2 ~ (0, 1, 9). Add 4 to operation 
counter. We have )(2/> Y and k = 2. 
k = l, so we compute 

x 2: 

t_P:/YJ: 

Scale by m2: 

17 13 11 

1 1 1 

x7 7 7 

7 7 7 

- 7  7 7 

0 0 0 

x4  6 

E2: 0 0 

restore using m3: 0 0 0 

Add 3 to the operation counter. 
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Step 10. Since E3=0,  we stop and compute the quotient Q~--*(3, 1 ,6 )+  
(4, 4, 4) + (1, 1, 1) = (8, 6, 0) ,--* 110, answer. Add 1 to the operation counter 
because of the addition of the error term. The operation count for the 
problem is 30. 

Example 2 
For the same modulus set, find t2043/171J. 
Solution. Scratch pad mod m 4 = 16 is needed for this example. 

Step 1. Mixed radix conversion on Y gives Y ~ {1,2, 6>. Add 4 to the operation 
counter. 

Step 2. LP3/Y] is found by search of table T 3 using <1, 2, 6). The ordered pairs 
found in the search are ((1, 2, 8), (14, 1, 3, 14)) and ((1, 1, 8>, (15, 2, 4, 15)), 
because <1, 1 , 8 ) <  Y -~< <1, 2, 8). So tP3/YJ*--~(14, 1,3, 14). Note that 
mod 16 information has been included and that in general, I", will be the 
only table which will include information for the (n + 1)st residue digit. 
Mixed radix conversion on X0 gives X0 ~ (14, 3, 8>. Add 4 to the operation Step 3. 

Step 4. 

Step 5. 

Step 6. 

counter. 
Since k = 1, we compute 

X3; 

UP3 / Y_J: 

scale by m3: 

17 13 11 16 

14 1 3 14 

x14 1 3 14 

9 1 9 4 

- 9  9 9 9 

0 5 0 11 

x l 0  2 1 

El: 11 0 11 

restore using m4: 11 11 0 11 

Add 3 to operation counter. 
X~ is calculated as 

E~: 11 11 0 11 

Y: x l  2 6 d 

Ej Y: 11 9 0 d 

Xt: 9 6 8 d 

Add 2 to operation counter. 
Mixed radix conversion on X~ gives X~ ~ <1, 1, 8). Add 4 to operation 
counter. Since Xt < Y, stop with 

The operation count for the problem is 17. 

4. C O M P A R I S O N  OF  T H E  R A  W I T H  T H E  O S R A  

This section is a comparison of the RA with the OSRA. The comparison is made for three figures 
of merit. These are stored table size, mean execution time and standard deviation of execution time. 
Execution time is measured by the number of residue additions, subtractions and multiplications 
required by a division problem. 
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4.1. Comparison of  storage requirements of  RA with OSRA 

The total storage used by the OSRA is given by the expression 

(mn--1)(mn-- 2) ( n - - 2 ) ( n - - 1 )  (38) 
2 2 

The first term in the storage required by the Let/y1+ 11 table, assuming that table entries for 
ct <YI+ 1 are not stored (since they equal zero). Such a table is of size ( m , -  1 ) ( m , -  2)/2, since 
1 ~< ~ ~< mn - 1 and 1 ~< Yl ~< mn - 1. The second term is the total storage required by the table of 
products ml+ i • .- mk_ l, and is (n - 2)(n - 1)/2. 

The total storage used by the RA is 

SRA < ~ ( m l -  1) -~ (n -- 2)(n -- 1) (39) 
I = 1  2 

This will now be shown. 
The RA uses n + 1 stored tables. One of these tables stores products ml+ ~ • • • mk_ ~ for k > l + 1, 

and its size is (n - 2)(n - 1)/2 as explained for the OSRA. Tables Tt, for 1 = 1, 2 , . . . ,  n are used 
to determine LPI/Y_J when PI-l ~< Y ~< PI - 1. Table TI stores ordered pairs (Yl~,Ji), where Yj, is the 
mixed radix form of the largest Y such that LP/Y.J  =Ji, andji  is one of the s unique volumes that 
UP/Y_J can have for P/- ~ ~< Y ~< PI - 1. The size of TI is s, and it can be shown that 

S ~--- 

"m I -- 1, 

2L.,/-P,J - Pl-l, 

2Lv/-P,J - / ' ,_ ,  - 1 ,  

if ml ~< Pt- ~, 

i f P , _ l > l - 1  and [ JJ #L'v/P']' 

ifm,>,,-, 

However, a simple upper bound for s is found 

(40) 

as follows. Conservatively, s ~< mr, because 
1 <~ L P / Y J  <~ mr. But since we always have ~, = P / -  1, the first ordered pair need not be stored. 
Therefore, a simple upper bound for s is m j -  1. 

From these formulas, it can be seen that the RA storage is proportional to the sum of the moduli, 
while the OSRA storage is proportional to the square of the maximum modulus. 

4.2. Statistics of  execution time for the RA and OSRA 

The RA and OSRA were simulated on the following five modulus sets: 

M1 = {3, 5, 7, 11, 13, 17, 19, 23, 29, 31}; 

M2 = {31, 37, 41, 43, 47, 53, 55, 59, 61, 63}; 

M3 = {23, 29, 31, 37, 41, 43, 47, 53, 59, 61}; 

M4 = {37, 41, 43, 47, 53, 55, 59, 61, 63, 64}; 

M5 = {2, 3, 5,7, 11, 13, 17, 19,23,29}. 

Each set was chosen to have the same number of moduli because the execution time of the 
algorithms is dependent on the number of moduli. Each modulus was chosen so that its residues 
are representable by at most six binary bits. This enables arithmetic to be performed by 
commercially available 4K x 8 PROMS in the large moduli. 

Subject to the above two restrictions, modulus set M 1 is the set of smallest odd relatively prime 
moduli. Set M2 is the set of largest odd relatively prime moduli. Set M3 is the set of largest odd 
prime moduli. Set M4 is the set of largest relatively prime moduli. Set M5 is the set of smallest 
relatively prime moduli. 

Simulating programs for the RA and OSRA were written. These programs and their flowcharts 
are given in Ref. [13]. 
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Table I, Time statistics for the RA and OSRA 
Execution time Standard deviation 

and difference (%) and difference (%) 

Modulus sets RA OSRA % RA OSRA % 
{3, 5, 7, 11, 13, 17, 19, 23, 29, 31} 47.6 50,35 5 18.0 20.2 i 1 
{37, 41,43, 47, 53, 55, 59, 61, 63, 64} 47.3 49.4 4 17.0 18.2 7 
{23, 29, 31,37, 41, 43, 47, 53, 59, 61 } 47.0 49.2 4 16.7 179 7 
{2, 3, 5, 7, 1 i, 13, 17, 19, 23, 29} 47.7 50.4 5 18.3 20.7 12 
{31, 37, 41,43, 47, 53, 55, 59, 61, 63} 47.25 49.2 4 t7.0 17.9 5 
Average: 47.4 49.7 5 17.5 19.0 8 

For  each of  M 1 - M 5 ,  the RA and  O S R A  were s imulated on a sample set of  40,000 division 
problems,  r andomly  selected over the ID [0, M -  1] defined by each modulus  set. The sample 
average execution times and  sample s tandard  deviat ions of execution time are listed in Table  4.1. 
The sample average execution time is measured in units  of  n u m b e r  of  elementary residue operat ions  
(viz. addit ions,  subtract ions  and  multiplications).  Table  accesses and compares  were not  counted,  
following the l i terature prevalent  method  of measur ing execution time for residue ari thmetic 

algori thms [10, 12]. 
F r o m  Table  1 we see that  the RA uses 2.3 (5%) fewer residue operat ions  per problem than  the 

OSRA,  for the modu lus  sets chosen. Fur thermore ,  the s tandard  deviat ion of the R A  is 1.5 
opera t ions  (8%) less than that  of  the OSRA,  for the modulus  sets chosen. 

5. C O N C L U S I O N  

The purpose of  this s tudy was to develop an RNS division algori thm which uses less storage 
than  the (OSRA) and  has a smaller mean  execution time and s tandard  deviat ion abou t  the mean  
than  the OSRA.  

The result achieved is an  a lgor i thm called the (RA). It is shown to be correct, examples are given 
and  its statistics of performance are presented. It solves the division problem using a reciprocal 

approach,  which is heretofore considered only in the Soviet l i terature [1]. For  typical modu lus  sets, 
it is an improvement  of  the best previously published a lgor i thm (OSRA).  Specifically, 

(1) it uses significantly less storage than the OSRA;  
(2) it has a smaller mean  execution time a n d  smaller s tandard  deviat ion abou t  the 

mean  than  the OSRA.  

Acknowledgement--The author is grateful to Professor Stuart A. Collins Jr for suggesting the topic. 
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A P P E N D I X  

Lemma 1 
For the iteration .t',.+ i = X~ - E~+ i I", we have 

O<Ei+l-<Xi=~'O<~Zi+ <X,. 

Proof We have 

Lemma 2 
For the RA estimate, viz. 

.~ y ~ X ~ -  Y<~Xi+~<Xj-(O)Y,,*O<<.X~+j<Xj. 

e,÷l 

P ~ I '  if k = 1, 

xs L ~ J ,  i f k = l + l ,  

IP, Im x s L ~ ]  /+l .. 'mk_l ,  i f k > l + l ,  

we have 

E~+, = O ~  Xi<2Y. 

Proof We have E~+ t = 0 ~ k = 1, obviously. Therefore, we must show that 

By assumption, we have 

Xj= xsPs_m + xs-lPs-2 + " " + & 

and 

Y =YIPI-I +Yt-IPI-2 + ""+Yl  =YsPk-I +Ys-IPs-2 + " "  +Yl,  

since k = 1. Furthermore, since Pk-t ~< Y ~< P s -  1, we have 1 ~< LPklY] <~ mk. 
We will first show that LPs/Y] =j  ~ LPs/(/+ 1)] + 1 ~< Y, for j ~ [1, ms]. This is because 

[ ~ ] =*'J +Pk 1 1 =j=*.jY <~Pk <~(j+ I )Y-- I  ~< Y - j + - ~  

+j---~ <~ Y =, + 1 <~ Y, ~ j +  

since Y is an integer. Now, let LPJY] =J, for j ~ [1, ms]. 
We have E~+ j = 0 :* Lxsj/rns] = 0 =, xkj <mk ~ ' j  # rnk. Also, for j ~ [1, ms - 1], 

f mk mk 
xk < mk J 

Xk ~ -- 1, if mk 
J 

I Lm'j X~< 7 P * - I + P k - ' - - l '  ifm--~kJ 

L Om'J) Xi~< "-f - 1  P k _ t + P k _ l - - l ,  i f ~ .  k 

not an integer, 

is an integer, 

not an integer, 

is an integer, 
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ol x,(L j - 1, if mk not an integer, 
J 

if mk is an integer, 
J 

Xs[YIP- - , i f k = l ,  

L msJ 
E,+,= [p,] 

xs ~ , i f  k = l  + l, 

x, L~j mr+,.., ms_,, if k > l + 1, 

we have O~<Ei+ I 6 X i / Y ,  for all X~, Y#O.  
Proof. Clearly, E~+ t ~> 0 in each case k = I, k = l + 1 and k > l + 1. Now, by assumption, 

X i f x s P s _ l + x j , _ t P s _ 2 +  ' + x  I 

and 

Y = Y t P t - I + Y t - i P t - 2  + ' "  +Yr.  

We will s h o w E i + t ~ < X d Y f o r e a c h e a s e k = / , k = l + l  a n d k > l + l .  F o r k = l :  

Therefore, X~ < 2 Y. 

Lemma 3 

For the RA estimate 

But 

,1 

So we have 

• m k  

But jrmk/j qPs -,  - J  = (ms + I-ms b)ek-, - J  - Ps + es- ,  i-mslj -J, where l a b denotes the quantity a mod j. Furthermore 

= P k - I P k l j + , + ( j - 1 )  j - - ~  +2j .  

P~+P,_tI-mkij-j<P,-IPkIj+, +(j-- 1) j~-~ +2j 

*'P~-,I-m~lj<(J-~) j%-~ + 3J-IP~b+,. 

But 3j - I P k l j + ,  > 0  for j ~ [ l , m  k - 1], and [-mklj<.j - I, for j ¢ [ I , m  k - 1]. So, we must show 

P , ,  L for j ¢ [ l , m  k -- 1]. 

L m~ J = L  L- 

where "r=T' denotes the least integer greater than or equal to ~,. We will show that Xi < 2Y by showing that jXi  < 2 jY  
f o r j ~ [ l , m  k -  1]. 

We want to determine if 
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Let x~Pk-I =Xi--E,  for 0~<~ < Pk- i .  Also, let IP, Ir denote Pkmod Y. We have 

Now Y>~Pk-I ,  SO O<~E/Y< 1. Also, 

Therefore, 

0~<[Pk l r< l ,  and X i - E  Xk < l .  
Y Pk mk 

For k =1 + 1: 

= [!x,-o(P,-IP, I,) I 
PkY J 

o<.(x'-°lP~l" <l, and so Ei+l~ [ ~ J  ~Jfi. 
Pk Y Y 

[~J /P,-,/ x, Pk_, X~ 
Ei+l=xk =xk L Y J < ' T < ' Y  

For k > l +  1: 
PI xkPk I Xj 

E~+t = xk [ ~  J ml+t " " m ~ _ ,  <.xk-~m,+t " " mk_, = - - ~  <. T .  

Therefore. in each case k = l. k = I + 1, and k > l + 1 we have 0 ~< Ei+ i <~ X / Y .  

Theorem 1 

The RA eventually halts, at which time 

where 

Ei+l+E' .  

if X , <  L 
E ' =  01 i f E , + , = 0 .  

Proof. Halting will be proven first. 
Let {Xi} and {E~+ i }, for i = 0 ,  1 . . . . .  denote the sequence of  numerators and estimates, respectively. By Lemma 3, we 

have 0 <<, Ei+ t <<, Xi/Y, for all i. If El+ I = 0, the RA halts. If E~+ l > 0, then X~+ t < Xj by Lemma 1. Therefore {X~} is a 
decreasing sequence of  positive integers, and so {E~+l} is also. Therefore, eventually for some r, X, < Y or Ej+l = 0, and 
the RA halts. 

Now, to show that RA computes 1X/YJ  we have 

X I = X - E I Y, 

X2 = X I -- E2 Y, 

X,=X,_~-E,Y, 

and either Xr < Y or Ej+ i = 0. We have 

Xr=Xr_l-ErY, 

=X,_2-E,_~Y-E,Y, 

= X , _ 3 - E , _ 2 Y - E , _ I Y - E , Y ,  

. . . . .  X - - E  t Y - E 2 Y  . . . . .  E,_ t Y - - E r Y .  

T h e r e f o r e ,  

and so 

x =(E, +E2+'"+E,)Y+X,, 

= Z E,+,+ 
i=0 

Let E'  = IX,~ Y.J. If X, < Y, then E '  = 0. If E, + j = 0, then by Lemma 2, X, < 2 Y. But X,/> Y because otherwise the RA 
would have stopped before calculating E, + ~. Therefore, Y ~< X, < 2 Y, and so E '  = 1. Therefore, 

if X , <  Y, °i ifE,+,=o. 
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