Equivalence, Reduction and Minimization of Finite Fuzzy-Automata

Vladimir V. Topencharov and Ketty G. Peeva

Center of Applied Mathematics.
P. O. Box 384, 1000 Sofia, Bulgaria

Submitted by A. O. Esogbue

Abstract

A new algebraic approach to the problem of equivalence. reduction and minimization of some kinds of fuzzy-automata is given. A system of necessary and sufficient conditions for equivalence of weakly initial fuzzy-automata is formulated. Some algorithms considering the equivalence for two fuzzy-automata are constructed.

One classical problem in the theory of automata is equivalence, reduction and minimization. The problem is completely solved [12] for the cases of deterministic automata: for stochastic automata it is studied in detail in $[3,5,7]$; an attempt for the case of fuzzy-automata is given in $[9,10]$.

The theoretical foundation [8] of the well known algorithm of Even [5] and the analogies between some aspects of the theory of rings (resp. modules) and the theory of semi-rings (resp. semi-modules) indicate the way for asking a general solution in the case of fuzzy-automata. Constructing the notion of noetherian semi-module, an algorithm for equivalence of some kinds of fuzzy-automata is exhibited.

In the following, all sets are supposed to be finite; if C is a set, we denote by $|C|$ its cardinality and by C^{*} the free semigroup of words on C with the empty word $\Lambda \in C^{*}$ as unity. The length of the word $w \in C^{*}$ is denoted by $l(w) \in \mathbb{N}$ and we express two words $u, v \in C^{*}$ having the same length $k \in \mathbb{N}$ writing $l(u / v)=k$. The terminology and the notations not especially indicated in the paper are according to [7].

1. Basic Notions

We recall the definitions of semi-ring and semi-module $\{1,4,6\}$ and some notions of the theory of fuzzy-automata $\{9,11,14\}$ in form appropriated for the following.

Let C be a set with two inner binary laws of composition 270
$k_{i}: C \times C \rightarrow C, i=1,2$. We call the algebra (C, k_{1}, k_{2}) a (commutative) semiring if $\left(C, k_{1}\right)$ and $\left(C, k_{2}\right)$ are (commutative) semi-groups with unity and k_{1} and k_{2} are distributive one after the other.

Let E be a set. C be a semi-ring and let $k_{1}^{\prime}: E \times E \rightarrow E$ and $k_{2}^{\prime}: C \times E \rightarrow E$ be two laws of composition, the second being external. The algebra $\left(E, k_{1}^{\prime}, k_{2}^{\prime}\right)$ is a left semi-module over C if for each $a, b \in C$ and $x, y \in E$ the following conditions hold:
(SM.I) (E, k_{1}^{\prime}) is a commutative semi-group with unity:
(SM.2) $\quad k_{2}^{\prime}\left(a, k_{1}^{\prime}\left(x, y^{\prime}\right)\right)=k_{1}^{\prime}\left(k_{2}^{\prime}(a, x), k_{2}^{\prime}(a, y)\right)$,
$k_{2}^{\prime}\left(k_{1}(a, b), x\right)=k_{1}^{\prime}\left(k_{2}^{\prime}(a, x), k_{2}^{\prime}(b, x)\right) ;$
(SM.3) $\quad k_{2}^{\prime}\left(a, k_{2}^{\prime}(b, x)\right)=k_{2}^{\prime}\left(k_{2}(a, b), x\right)$.
The mapping $h:\left(E, k_{1}^{\prime}, k_{2}^{\prime}\right) \rightarrow\left(E^{\prime \prime}, k_{1}^{\prime \prime}, k_{2}^{\prime \prime}\right)$ is called morphism of semimodules if the following holds

$$
h\left(k_{1}^{\prime}(x, y)\right)=k_{1}^{\prime \prime}(h(x), h(y)) \quad \text { and } \quad h\left(k_{2}^{\prime}(a, x)\right)=k_{2}^{\prime \prime}(a, h(x)) .
$$

By the same way the notion of right semi-module is defined. If C is a commutative semi-ring we talk about semi-module. The category of all C -semi-modules is denoted by C-SMod.

Let M be a C-semi-module. The set $X \subseteq M$ is a system of generators for M if X generates M. A quasi-base is the minimal system of generators for M. If the quasi-base is finite, the dimension of M (denote $\operatorname{dim} M$) is the number of its vectors (elements of E).

Let X be a set, not necessarily finite and let C be a semi-ring. Putting

$$
V X=\searrow_{x \in X} a_{x} \cdot x, \quad a_{x} \in C, x \in X
$$

where $a_{x} \neq 0$ only for a finite number of elements $x \in X$, it is easy to verify that $V X$ is a semi-module according to the laws of composition of the semiring, called free semi-module. The set X is a minimal system of generators for $V X$.

Definition 1. The C-semi-module M should be called noetherian if M is a noetherian object [6] in the category C-SMod.

The following two results are important for the theory and its applications; the proofs are omitted.

Proposition 1. For a semi-module $M \in C$-SMod the following conditions are equivalent:
(a) M is a noetherian C-semi-module;
(b) Each increasing sequence of sub-C-semi-modules of M, i.e., $M_{1} \subset$ $M_{2} \subset \cdots \subset M_{k} \subset \cdots$, such that $M_{i} \neq M_{i-1}$, is finite;
(c) For each sub-C-semi-module of M there exists a finite minimal system of generators;
(d) Each non-empty set G of sub-C-semi-modules of $M \in C$-SMod contains a maximal element.

Proposition 2. If $X \neq \varnothing$ is a finite set, the free semi-module $V X$ is noetherian.

Examples. (1) Let be given the closed interval $I=|0.1| \subset \mathbb{F}$; let us consider the binary operations $k_{1}=\max$ and $k_{2}=\min$ in I, according to the natural order in I; the algebra $\left(I, k_{1}, k_{2}\right)=([0,1]$, max, min $)$ is a commutative semi-ring.
(2) Let L be a distributive lattice; the algebra (L, max min), constructed and studied in [10] is a commutative semi-ring.
(3) Let X be a finite set and $V X$ be the free semi-module generated by X over the semi-ring from the Example 1; the operations in the free semimodule are defined as follows:

$$
\begin{aligned}
& k_{1}^{\prime}=+: V X \times V X \rightarrow V X, \sum_{x \in X} a_{x} \cdot x+\sum_{x \in X} b_{x} \cdot x=\sum_{x \in X} \max \left(a_{x}, b_{x}\right) \cdot x, \\
& k_{1}^{\prime}=\cdot \vdots\left[0,1 \mid \times V X \rightarrow V X, \gamma\left(\sum_{x \in X} a_{x} \cdot x\right)=\sum_{x \in X} \min \left(\gamma, a_{x}\right) \cdot x\right.
\end{aligned}
$$

When X is finite, $V X$ is a noetherian semi-module (see Proposition 2).
Definition 2. The quadruple $A=(X, Q, Y, h), X, Q, Y$ being finite sets and $h: X \times Q \times Y \times Q \rightarrow[0,1]$ being a map, should be called a fuzzy(shortly F-) automaton.

As usual, X is the input alphabet, Y is the output alphabet, Q is the set of states for the F-automaton A; the map h is called membership function and we write $h\left(x_{i}, q_{j}, y_{r}, q_{k}\right)=a_{i j}^{r k} \in[0,1]$.

It is easy to show that the classical definition of fuzzy-automaton $[9,13,14]$ gives an automaton according to Definition 2 (see [1, 10]). For our purpose, however, this definition is preferable.

If the interval $[0,1]$ is replaced by the distributive lattice L (see Example 2) we obtain the more general notion of L-automaton, closely related to F-automaton.

Every F-automaton A defines the free semi-modules $V(X \times Q)$ and $V(Y \times Q)$ over the semi-ring $[0,1]$. The membership function

$$
h: V(X \times Q) \rightarrow V(Y \times Q)
$$

is defined such that $h\left(x_{i}, q_{j}\right)=\sum_{r . k} a_{i j}^{r k}\left(y_{r}, q_{k}\right)$; its corresponding matrix $M_{h}=\left\|a_{i j}^{r k}\right\|$ characterize the work of the F-automaton.
Let us consider the words $u=x_{1} \cdot x_{2} \cdots \cdots x_{p} \in X^{*}$, $v=y_{1} \cdot y_{2} \cdots \cdots \cdot y_{p} \in Y^{*}$ and the matrices $M\left(x_{i} / y_{r}\right)=\left\|m_{j k}\left(x_{i} / y_{r}\right)\right\|$, $m_{j k}\left(x_{i} / y_{r}\right)=a_{i j}^{k r}$. With the maxi-min product of matrices denoted by \circ, we obtain the expression

$$
M(u / v)=M\left(x_{1} / y_{1}\right) \circ M\left(x_{2} / y_{2}\right) \circ \cdots \circ M\left(x_{p} / y_{p}\right) .
$$

If $P=P(A / \Lambda)$ is a matrix-column of the type $|Q| \times 1$ which elements are equal to 1 , the following composition is defined:

$$
P(u / v)=M(u / v) \circ P .
$$

Let A be an F-automaton with (Q, ε) as the F-set of initial states, sub- F-set of $Q: \varepsilon(q) \in[0,1]$ defines the membership of $q \in Q$ as an initial state of A. We denote

$$
\begin{array}{rlrlrl}
\varepsilon_{q}^{\prime}\left(q^{\prime}\right) & =1 & & \text { if } q=q^{\prime} & \varepsilon_{q}^{0}\left(q^{\prime}\right) & =0 \\
& =0 & & \text { if } q \neq q^{\prime} & & \text { if } q=q^{\prime} \\
& =a \in[0.1] & \text { if } q \neq q^{\prime}
\end{array}
$$

with the supplementary condition $\sum_{\bar{q} \in Q} \varepsilon_{q}^{0}(\bar{q}) \neq 0$ for ε_{q}^{0}. The F-automaton A, denoted in this case $\left(A, \varepsilon_{q}^{1}\right)$ (resp. (A, ε)) is called initial (resp. weakly initial) if $\left(Q . \varepsilon_{q}^{1}\right)($ resp. $(Q, \varepsilon))$ is a sub- F-set of Q.

For the F-automaton A we define $S_{\varepsilon}(u / v)=\varepsilon \circ P(u / v)$, an entry indicating the maximal degree of membership for the input word u and the output word c. (Q, ε) being fixed.

Let $A=(X, Q, Y, h)$ and $A^{\prime}=\left(X, Q^{\prime}, Y, h^{\prime}\right)$ be F-automata; (Q, ε) and ($Q^{\prime}, \varepsilon^{\prime}$) are sub- F-sets of Q and Q^{\prime}, respectively.

Definition 3. Two initial automata (A, ε) and ($A^{\prime}, \varepsilon^{\prime}$) are equivalent (notation $(A, \varepsilon) \sim\left(A^{\prime}, \varepsilon^{\prime}\right)$) if $S_{\varepsilon}(u / v)_{A}=S_{\varepsilon^{\prime}}(u / v)_{A^{\prime}}$ for all $u \in X^{*}$ and $v \in Y^{*}$. In particular:

- let $A=A^{\prime}=(X, Q, Y, h) ;$ if $(A, \varepsilon) \sim\left(A^{\prime}, \varepsilon^{\prime}\right)$, then ε and ε^{\prime} are equivalent on Q (notation $\varepsilon \sim \varepsilon^{\prime}$);
- if $\left(A, \varepsilon_{q}^{\prime}\right) \sim\left(A^{\prime}, \varepsilon_{q}^{\prime}\right)$, then the states $q \in Q$ and $q^{\prime} \in Q^{\prime}$ are equivalent (notation $q \sim q^{\prime}$);
$-A=(X, Q, Y, h)$ is equivalently embedded into $A^{\prime}=\left(X, Q^{\prime}, Y, h^{\prime}\right)$ if for each $q \in Q$ there exists an equivalent state $q^{\prime} \in Q^{\prime}$ of A^{\prime} (notation $A \subsetneq A^{\prime}$);
$-A$ is weakly equivalently embedded into A^{\prime} (notation $A \S A^{\prime}$) if for each $\varepsilon: Q \rightarrow|0,1|$ there exists $\varepsilon^{\prime}: Q^{\prime} \rightarrow[0,1]$ such that $(A, \varepsilon) \sim\left(A^{\prime}, \varepsilon^{\prime}\right)$;
$-A$ and A^{\prime} are equivalent (notation $A \sim A^{\prime}$) if $A \subsetneq A^{\prime}$ and $A \gtrsim A^{\prime}$;
$-A$ and A^{\prime} are wekly equivalent if $A \cong A^{\prime}$ and $A^{\prime} \cong A$ (notation $A \approx A^{\prime}$).

Definition 4. Let A be an F-automaton;

- A is in reduced form if for each $q, q^{\prime} \in Q$ the relation $q \sim q^{\prime}$ implies $q=q^{\prime}:$
- A^{\prime} is called a reduct of A if A^{\prime} is in reduced form and equivalent to A;
- A is in minimal form if for each $\varepsilon_{q_{i}}^{1}(i \leqslant|Q|)$ there does not exist $\varepsilon_{q_{t}}^{0}$ $(i \leqslant|Q|)$ such that $\left(A, \varepsilon_{q_{i}}^{1}\right) \sim\left(A, \varepsilon_{q_{i}}^{0}\right) ;$
- A^{\prime} is called a minimal of A if it is in minimal form and if $A \simeq A^{\prime}$.

The above defined notions are in concordance with the classical theory of automata [7,12] and coincide with the usual terminology in the cases of deterministic, nondeterministic and stochastic automata. For the F-automata [9 | this is an attempt to unify the terminology.
2. Equivalence of F-Automata-an Algebraic Approach

For each F-automaton $A=(X, Q, Y, h)$ we define a map $t: V\left(X^{*} \times Y^{*}\right) \rightarrow V Q$ as follows:

$$
\begin{array}{rlrl}
t(A, A)=\searrow_{q \in Q} q, & t(u, v) & =\bigvee_{q_{i} \in Q} p_{j}(u / v) q_{j} & \\
& \text { if } l(u)=l(v) \\
& =0 & & \text { if } l(u) \neq l(v) .
\end{array}
$$

It is easy to verify that t is a morphism of semi-modules. Let us denote its corresponding matrix by M_{t}.

We construct the sequence $E_{0} \subset E_{1} \subset \cdots \subset E$ of subsets of $E=X^{*} \times Y^{*}$ obtained as follows:

$$
\begin{aligned}
& E_{0}=\{(\Lambda, \Lambda)\} ; \ldots . \\
& E_{i}=E_{i-1} \cup\left\{(u, v) ; u \in X^{*}, v \in Y^{*}, l(u)=l(v)=i\right\} .
\end{aligned}
$$

Let $n-\left|\left\{p_{l}(x / y)|x \in X, y \in Y, j \leqslant|Q|\}| |^{|Q|}\right.\right.$.
Proposition 3. The following statements hold:
(a) $V E_{i}$ is a sub-semi-module of $V E_{i+1}$, for each $i=0,1, \ldots$;
(b) If $t V E_{i}=t V E_{i+1}$, then $t V E_{i}=t V E_{i+p}$ for each $p=0,1, \ldots$;
(c) The quasi-base of tVE contains at most n elements:
(d) $t V E_{n-1}=t V E_{n}=\cdots=t V E$.

Proof. (a) According to the construction of E_{0}, E_{1}, \ldots, which are sets of generators (quasi-bases) for the semi-modules $V E_{i}, i=0,1, \ldots$, we have $V E_{0} \subset V E_{1} \subset \cdots \subset V E$. (b) The morphism of semi-modules t being a linear operator, the image of the sequence $V E_{0} \subset V E_{1} \subset \cdots \subset V E$ is the following
sequence $t V E_{0} \subset t V E_{1} \subset \cdots \subset t V E$; hence (see Proposition 2) for $i \in \mathbb{N}$ and $p=0,1 \ldots$. we have $t V E_{i}=t V E_{i+p}$. (c) The semimodule $V Q$ being noetherian and since $t V E \subseteq V Q$, holds $\operatorname{dim} t V E \leqslant n$. If $t V E=V Q$, the equality holds. (d) Let us consider the sub-semimodule $t V E_{i}$; it contains a certain number of vectors of the quasi-base. If $t V E_{i} \subset t V E_{i+1}$, the sub-semimodule contains at least one supplementary vector of the quasi-base. Hence if $t V E=V Q$ and since each quasi-base $t E_{i}$ contains exactly a new (supplementary) vector of the quasi-base of $t V E$, we obtain:

$$
t V E_{0} \subset t V E_{1} \subset \cdots \subset t V E_{n-1}=t V E_{n}=\cdots=t V E
$$

having obviously $\operatorname{dim} t V E_{n-1}=n$.
This result reinforces some statements and algorithms of [10].
Theorem 1. Let (A, ε) and $\left(A^{\prime}, \varepsilon^{\prime}\right)$ be two weakly initial F-automata. $(A, \varepsilon) \sim\left(A^{\prime}, \varepsilon^{\prime}\right)$ iff $\varepsilon \circ t=\varepsilon^{\prime} \circ t^{\prime}$.

Proof. If $l(u)=l(v)$ for $(u, v) \in X^{*} \times Y^{*}$, according to Definition 6:

$$
S_{\varepsilon}(u / v)_{A}=S_{\varepsilon^{\prime}}(u / v)_{A}
$$

and since $S_{\varepsilon}(u / v)=\varepsilon \circ(M(u / v) \circ P)$, we obtain

$$
\varepsilon \circ(M(u / v) \circ P)=\varepsilon^{\prime} \circ\left(M^{\prime}(u / v) \circ P\right) ;
$$

this expression is equivalent to $\varepsilon \circ t(u, v)=\varepsilon^{\prime} \circ t^{\prime}(u, v)$ for each couple $(u, v) \in X^{*} \times Y^{*}$ such that $l(u)=l(v)$; if $l(u) \neq l(v)$, according to the definition of t, holds $t(u, v)=t^{\prime}(u, v)=0$, i.e., $\varepsilon \circ t=\varepsilon^{\prime} \circ t^{\prime}$.

Conversely, let $\varepsilon \circ t=\varepsilon^{\prime} \circ t^{\prime}$; obviously $\varepsilon \circ t(u, v)=\varepsilon^{\prime} \circ t^{\prime}(u, v)$ for each couple $(u, v) \in X^{*} \times Y^{*}$ and hence $\varepsilon \circ t(u / v)=\varepsilon^{\prime} \circ t^{\prime}(u / v)$; but

$$
\begin{aligned}
M_{t}(u / v) & =M(u / v) \circ P & & \text { if } \quad l(u)=l(v) \\
& =0 & & \text { if } \quad l(u) \neq l(v)
\end{aligned}
$$

it follows $\varepsilon \circ(M(u / v) \circ P)=\varepsilon^{\prime} \circ\left(M^{\prime}(u / v) \circ P\right)$, i.e., $S_{\epsilon}(u / v)_{A}=S_{\epsilon^{\prime}}(u / v)_{A}$, for each $(u, v) \in X^{*} \times Y^{*}$ such that $l(u)=l(v)$.

A similar result is given in $[9,10]$.

Corollary 1. Let A be an F-automaton. $\varepsilon \sim \varepsilon^{\prime}$ iff $S_{\epsilon}(u / v)_{A}=S_{\epsilon^{\prime}}(u / v)_{A}$ for each $(u, v) \in X^{*} \times Y^{*}$ such that $l(u / v) \leqslant n-1$.

Proof. If $(A, \varepsilon) \sim\left(A, \varepsilon^{\prime}\right)$, then $S_{\epsilon}(u / v)_{A}=S_{\epsilon^{\prime}}(u / v)_{A}$ for $l(u / v)=0,1, \ldots ;$ hence $l(u / v) \leqslant n$. If $S_{\epsilon}(u / v)_{A}=S_{\epsilon}(u / v)_{A}$ for each $(u, v) \in X^{*} \times Y^{*}$ such that $l(u / v) \leqslant n-1, \quad$ according to Proposition 3(d) it follows $\varepsilon \circ(M(u / v) \circ P)=\varepsilon^{\prime} \circ(M(u / v) \circ P)$; hence $(A, \varepsilon) \sim\left(A, \varepsilon^{\prime}\right)$.

This is the fuzzy-interpretation of the well-known Carlyle theorem [3] for equivalence of stochastic automata.

Corollary 2. For a given F-automaton A the following statements are equivalent:
(a) $\varepsilon \sim \varepsilon^{\prime}$:
(b) $\varepsilon \circ M_{t}=\varepsilon^{\prime} \circ M_{t}$.

Corollary 3 [10]. For a given F-automaton A the following statements are equivalent:
(a) $\varepsilon_{q_{i}}^{1} \sim \varepsilon_{q_{j}}^{1} ;$
(b) The ith and jth rows in the matrix M_{t} are identical.

Proof. Let $\varepsilon_{q_{t}}^{1} \sim \varepsilon_{q_{j}}^{1} ;$ according to the Corollary 2 of Theorem 1, $\varepsilon_{q_{i}}^{1} \circ M_{t}=\varepsilon_{q_{j}}^{1} \circ M_{t}$: but by the construction of ε_{q}^{1} this means that the i th and j th rows in M_{t} are identical, hence $(a) \Rightarrow(b)$. The inverse implication (b) \Rightarrow (a) is directly verified.

The following auxiliary result is an important criterion to ascertain the equivalence of two F-automata.

Lemma. If $(A, \varepsilon) \sim\left(A^{\prime}, \varepsilon^{\prime}\right)$ then $\operatorname{dim}(\operatorname{Im} t)=\operatorname{dim}\left(\operatorname{Im} t^{\prime}\right)$.
Proof. According to Theorem $1, \varepsilon \circ t=\varepsilon^{\prime} \circ t^{\prime} \Leftrightarrow \varepsilon \circ M_{1} \cdot$. This matrix equality leads to $\operatorname{dim}(\operatorname{Im} t)=\operatorname{dim}\left(\operatorname{Im} t^{\prime}\right)$.

Let A and A^{\prime} be two F-automata.
Theorem 2. If ε is given, the problem of finding ε^{\prime}, if it exists, such that $(A, \varepsilon) \sim\left(A^{\prime}, \varepsilon^{\prime}\right)$ is algorithmically decidable.

As a proof we give the algorithm (see Fig. 1).
The computing program is not easy to realize, useful standard programs are missing.

3. Reduction and Minimization of Fuzzy-Automata

The problem of reduction and minimization of F-automata is a consequence of the theory of equivalence of F-automata, but they have a high importance in applications. This part is a completion of very rich ideas of [10].

Closely connected with the problem of reduction of F-automata is the following statement:

Figure 1

Theorem 3. Let M_{t} be the matrix associated to the F-automaton A. If M_{t} contains two identical rows, there exist two F-automata A^{\prime} and $A^{\prime \prime}$, with $|Q|-1$ states each, such that $A \sim A^{\prime}$ and $A \sim A^{\prime \prime}$.

Proof. Let in M_{t} the rows corresponding to the states q_{i} and q_{j} be identical and let $Q^{\prime}=Q-\left\{q_{i}\right\}, Q^{\prime \prime}=Q-\left\{q_{j}\right\}$; the corresponding matrix $M_{i^{\prime}}$ (resp. $M_{t^{\prime \prime}}$) for the F-automaton A^{\prime} (resp. $A^{\prime \prime}$) is obtained by M_{t} eliminating the i th (resp. the j th) row. We shall prove that $A \sim A^{\prime}$ (resp. $A \sim A^{\prime \prime}$). The equivalent state to $q \in Q, q_{i} \neq q \neq q_{i}$ is $q \in Q^{\prime}$ (resp. $q \in Q^{\prime \prime}$) and vice versa, because $\varepsilon_{q}^{\prime 1} \circ M_{t}=\varepsilon_{q}^{\prime 1} \circ M_{t^{\prime}}\left(\right.$ resp. $\left.\varepsilon_{q}^{1} \circ M_{t}=\varepsilon_{q}^{\prime \prime 1} \circ M_{t^{\prime \prime}}\right)$. The equivalent state to $q=q_{i}, q_{j} \in Q$ respectively is the state $q_{i} \in Q^{\prime}$ (resp. $q_{j} \in Q^{\prime \prime}$). The state equivalent to $q_{i} \in Q^{\prime}$ (resp. $q_{j} \in Q^{\prime \prime}$) is $q_{i} \in Q$ (resp. $q_{j} \in Q$). The proof in these conditions is a consequence of the definition of ε_{a}^{1}, of the construction of M_{t} and a direct verification holds.

Corollary. For every F-automaton there exists a reduced F-automaton. All reduced F-automata associated to a given F-automaton have sets of states with the same cardinality.

Theorem 4. For finite F-automata the relation of equivalence is decidable.

The block-scheme (Fig. 2) of the algorithm proving the equivalence of two F-automata A and A^{\prime} is in fact the proof of the Theorem 4.

The following result is connected with the existence and the explicit construction of a minimal F-automaton to a given F-automaton.

Theorem 5. Let $A=(X, Q, Y, h)$ be an F-automaton. If $\varepsilon_{q_{r}}^{1} \sim \varepsilon_{q_{b}}^{0}$ and

Figure 2

Fig. 2-Continued.
$\varepsilon_{q_{n}}^{0}$ contains $1 \in[0,1]$ as a component, there exists an F-automaton $\bar{A}=(X, \bar{Q}, Y, \bar{h})$, with $|Q| \quad 1$ states, such that $A \approx \bar{A}$.

Proof. Let $\left(Q, \varepsilon_{q_{h}}^{1}\right)$ and $\left(Q, \varepsilon_{q_{b}}^{0}\right)$ be a sub- F-set of Q; let

$$
\varepsilon_{q_{h}}^{U}=\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{b-1}, 0, \varepsilon_{b+1}, \ldots, \varepsilon_{n}\right)
$$

verify the condition of the theorem and

$$
\varepsilon_{q_{b}}^{1}=(0, \ldots, 0,1,0, \ldots, 0)
$$

be equivalent to $\varepsilon_{q_{b}}^{0}$. We construct the F-automaton $\bar{A}=(X, \bar{Q}, Y, \bar{h})$ as follows:

$$
\bar{Q}=Q-\left\{q_{b}\right\}, \quad \bar{h}: V(X \times \bar{Q}) \rightarrow V(Y \times \bar{Q}), \quad \bar{h}\left(x_{i}, q_{j}\right)=\sum_{r . k} a_{i j}^{r k}\left(v_{r}, q_{k}\right),
$$

where $\bar{a}_{i j}^{r k}=\max \left(a_{i j}^{r k}, \min \left(\varepsilon_{k}^{0}, a_{i j}^{r b}\right)\right)$. We shall show the states $q_{j}, j \neq b$, with the same indices in A and \bar{A} are equivalent. For the words with length $l=1$ we have

$$
\bar{a}_{i j}^{r}=\max _{k+b}\left(\bar{a}_{i j}^{r k}\right)=\max \left(\max _{k+b}\left(a_{i j}^{r k}\right), \max _{k+b}\left(\min \left(\varepsilon_{k}^{0}, a_{i j}^{r b}\right)\right)\right)=\max _{k}\left(a_{i j}^{r k}\right)=a_{i j}^{r} .
$$

Writing the last equality we have in mind that $\varepsilon_{q_{b}}^{0}$ contains $1 \in[0,1]$ as a component, i.e., $\max _{k \neq j}\left(\min \left(\varepsilon_{k}^{0}, a_{i j}^{r b}\right)\right)=a_{i j}^{r b}$, because

$$
\max _{k \neq b}\left(\min \left(\varepsilon_{k}^{0}, a_{i j}^{r b}\right)\right)=\min \left(\max _{k \neq b}\left(\varepsilon_{k}^{0}\right), a_{i j}^{r b}\right)=a_{i j}^{r b}
$$

Suppose the states $q_{j}, j \neq b$, w-equivalent, i.e., for arbitrary words $u \in X^{*}$, $v \in Y^{*}$ such that $l(u)=l(v)=w$, the following holds: $\bar{p}_{j}(u / v)_{\bar{A}}=p_{j}(u / v)_{A}$. According to the hypothesis $\max _{k \neq b}\left(\min \left(\varepsilon_{k}^{0}, p_{k}(u / v)\right)=p_{b}(u / v)\right.$. Then we obtain

$$
\begin{aligned}
\bar{p}_{j}\left(x_{i} u / y_{r} v^{\prime}\right)= & \max _{k \neq b}\left(\min \left(\bar{a}_{i j}^{r k}, \bar{p}_{k}\left(u / v^{\prime}\right)\right)\right)=\max \left(\max _{k \neq b}\left(\min \left(a_{i j}^{r k}, p_{k}(u / v)\right)\right),\right. \\
& \min \left(a_{i j}^{r b}, \max _{k \neq b}\left(\min \left(\varepsilon_{k}^{0}, p_{k}\left(u / v^{\prime}\right)\right)\right)\right) \\
= & \max _{k}\left(\min \left(a_{i j}^{r k}, p_{k}(u / v)\right)\right)=p_{j}\left(x_{i} u / y_{r} v\right),
\end{aligned}
$$

i.e., the states with the same indices for automata A and \bar{A} are $(w+1)$ equivalent and thus equivalent. For each $\bar{\varepsilon}=\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{b-1}, \varepsilon_{b+1}, \ldots, \varepsilon_{n}\right)$ for \bar{A}, there exist an equivalent $\varepsilon=\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{b-1}, 0, \varepsilon_{b+1}, \ldots, \varepsilon_{n}\right)$ for the automaton A. For a given $\varepsilon=\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}\right)$ for the automaton A, the corresponding equivalent $\bar{\varepsilon}=\left(\bar{\varepsilon}_{1}, \bar{\varepsilon}_{2}, \ldots, \bar{\varepsilon}_{n}\right)$ for \bar{A} is defined by the correspondence $\bar{\varepsilon}_{i}=\max \left(\varepsilon_{i}, \min \left(\varepsilon_{b}, \varepsilon_{i^{\prime}}^{0}\right)\right), i \neq b$, where ε_{i}^{0} is the i th component in the vector $\varepsilon_{q_{b}}^{0}$. Indeed, having in mind the definition, we obtain

$$
\begin{aligned}
S_{\epsilon}(u / v)_{A} & =\varepsilon \circ P(u / v)=\max _{i}\left(\min \left(\varepsilon_{i}, p(u / v)\right)\right. \\
& =\max _{i \neq b}\left(\max _{i \neq b}\left(\min \left(\varepsilon_{i}, p_{i}(u / v)\right), \min \left(\varepsilon_{b}, \max \left(\varepsilon_{i}^{0}, p_{i}(u / v)\right)\right)\right)\right) \\
& =\max _{i \neq b}\left(\min \left(\max \left(\varepsilon_{i}, \min \left(\varepsilon_{b}, \varepsilon_{i}^{0}\right)\right)\right), \bar{p}_{i}(u / v)\right) \\
& =\max _{i \neq b}\left(\min \left(\bar{\varepsilon}_{i}, \bar{p}_{i}(u / v)\right)\right)=S_{\bar{\epsilon}}(u / v)_{\bar{A}} .
\end{aligned}
$$

References

[^0]2. J. Brunner and W. Wechler. Zur Theorie der R-fuzzy Automaten. I, Wiss. Z. Tech. Unic. Dresden 26. No. 3/4 (1977). 647-652.
3. J. W. Carlyle. Reduced forms for stochastic sequential machines, J. Math. Anol. Appl. 7 (1963), 167-175.
4. S. Eilenberg. "Automata. Languages and Machines," Vol. A, Academic Press, New York:London, 1974.
5. S. Even. Comments on the minimization of stochastic machines. IEEE Trans. Electron. Comp. 14. No. 4 (1965), 634-637.
6. C. Faith, "Algebra: Rings, Modules, Categories." Springer-Verlag, New York/Heidelberg/Berlin, 1973.
7. A. Paz. "Introduction to Probabilistic Automata." Academic Press. New York/London. 1971.
8. K. Peev'a, "Categories of Stochastic Automata," Ph.D. dissertation, Center of Applied Mathematics, Sofia. 1977.
9. E. S. Santos. Max-product machines, J. Math. Anal. Appl. 37 (1972), 667-686.
10. E. S. Santos, On reduction of Maxi-min machines. J. Math. Anal. Appl. 40 (1972). 60-78.
11. E. S. Santos and W. G. Wee, General formulation of sequential machines, Inform. and Control 12 (1968), 5-10.
12. P. II. Starke, "Abstract Automata," VEB Deutscher Verlag der Wiss.. Berlin, 1969.
13. W. G. Wee and K. S. Fu, A formulation of fuzzy automata and its application as a model of learning system, IEEE Trans. Systems Sci. Cybernet. 5, No. 3 (1969).
14. L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning, Memo. ERL-M 411. Univ. of California, Berkeley, Calif.. 1973.

[^0]: 1. J. Brunner, Zur Theorie der R-fuzzy Automaten, II, Wiss. Z. Tech. Unil. Dresden 27, No. 3/4 (1978), 693-695.
