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A new algebraic approach to the problem of equivalence. reduction and
minimization of some kinds of fuzzy-automata is given. A system of necessary and
sufficient conditions for equivalence of weakly initial fuzzy-automata is formulated.
Some algorithms considering the equivalence for two fuzzy-automata are
constructed.

One classical problem in the theory of automata is equivalence, reduction
and minimization. The problem is completely solved [12] for the cases of
deterministic automata: for stochastic automata it is studied in detail in
[3,5,7]; an attempt for the case of fuzzy-automata is given in [9, 10].

The theoretical foundation [8] of the well known algorithm of Even {5]
and the analogies between some aspects of the theory of rings (resp.
modules) and the theory of semi-rings (resp. semi-modules) indicate the way
for asking a general solution in the case of fuzzy-automata. Constructing the
notion of noetherian semi-module, an algorithm for equivalence of some
kinds of fuzzy-automata is exhibited.

In the following, all sets are supposed to be finite; if C is a set. we denote
by |C] its cardinality and by C* the free semigroup of words on C with the
empty word A € C* as unity. The length of the word w € C* is denoted by
/{(w) € N and we express two words u, v € C* having the same length k € N
writing /(u/v) =k. The terminology and the notations not especially
indicated in the paper are according to |7].

1. Basic NOTIONS

We recall the definitions of semi-ring and semi-module [1, 4, 6] and some
notions of the theory of fuzzy-automata [9, 11, 14] in form appropriated for
the following.

Let C be a set with two inner binary laws of composition
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k;:CXx C—C, i=1, 2.We call the algebra (C. k, k,) a (commutative) semi-
ring if (C, k,) and (C. k,) are (commutative) semi-groups with unity and k|
and k, are distributive one after the other.

Let E be a set. C be a semi-ring and let K\ : EXE—-FEand k,: C X E~E
be two laws of composition, the second being external. The algebra
(E. k', k%) is a left semi-module over C if for each a.b € C and x.y € E the
following conditions hold:

(SM.1) (E, k}) is a commutative semi-group with unity:
(SM.2)  Kki(a, ki(x. »)) = ki (ki(a. x), ky(a. ¥v))

ky(k,(a. b), x) = k'\(k5(a. x), kb, x)):
(SM.3) &} (a. ki(b. x)) = ki(k.(a. b). x).

The mapping h: (E, k}, kY- (E", k. k%) is called morphism of semi-
modules if the following holds

hki(x, ) =ki(h(x). A(y))  and  h(ky(a. x)) = k3(a. h(x))-

By the same way the notion of right semi-module is defined. If C is a
commutative semi-ring we talk about semi-module. The category of all C-
semi-modules is denoted by C-SMod.

Let M be a C-semi-module. The set X < M is a system of generators for M
if X generates M. A quasi-base is the minimal system of generators for M. If
the quasi-base is finite, the dimension of M (denote dim M) is the number of
its vectors (elements of E).

Let X be a set, not necessarily finite and let C be a semi-ring. Putting

VX= Y\ a

xex

- X, a,eC, xEX,

X

where a,_# 0 only for a finite number of elements x € X, it is easy to verify
that VX is a semi-module according to the laws of composition of the semi-
ring, called free semi-module. The set X is a minimal system of generators
for VX.

DerINITION 1. The C-semi-module M should be called noetherian if M
is a noetherian object [6] in the category C-SMod.

The following two results are important for the theory and its
applications; the proofs are omitted.

ProPOSITION 1. For a semi-module M & C-SMod the following
conditions are equivalent:

(a) M is a noetherian C-semi-module;

409-84 1-18



272 TOPENCHAROV AND PEEVA

(b) Each increasing sequence of sub-C-semi-modules of M, i.e.. M, C
M,c...cM, <., such that M;+M,_,, is finite;

(c) For each sub-C-semi-module of M there exists a finite minimal
system of generators;

(d) Each non-empty set G of sub-C-semi-modules of M € C-SMod
contains a maximal element.

ProPOSITION 2. If X+ @ is a finite set, the free semi-module VX is
noetherian.

ExAMPLES. (1) Let be given the closed interval /=0, 1} <F; let us
consider the binary operations k, = max and &, = min in /. according to the
natural order in [; the algebra (I,k,k,)=([0, 1], max, min) is a
commutative semi-ring.

(2) Let L be a distributive lattice; the algebra (L.max min),
constructed and studied in [10] is a commutative semi-ring.

(3) Let X be a finite set and VX be the free semi-module generated by
X over the semi-ring from the Example 1; the operations in the free semi-
module are defined as follows:

Ki=+:VXXVX->VX, N a-x+ N b o-x= Y\ max(a,.b,)-x
xeX xeX X€eX

Ki=-210 1| X VX>VX,y ( Noa,- x) = N min(y,a,) - x

xeX XeX

When X is finite, VX is a noetherian semi-module (see Proposition 2).

DEerFINITION 2. The quadruple 4 = (X, Q. Y, &), X, Q. Y being finite sets
and I X X QXY XQ-[0,1] being a map, should be called a fuzzy-
(shortly F-) automaton.

As usual, X is the input alphabet, Y is the output alphabet, Q is the set of
states for the F-automaton A; the map A is called membership function and
we write h(x;, g;. ¥,, q;) = ajf € [0. 1].

It is easy to show that the classical definition of fuzzy-automaton
[9. 13, 14] gives an automaton according to Definition 2 (see [1, 10]). For
our purpose, however, this definition is preferable.

If the interval [0, 1] is replaced by the distributive lattice L (see
Example 2) we obtain the more general notion of L-automaton, closely
related to F-automaton.

Every F-automaton A defines the free semi-modules V(X X Q) and
V(Y X Q) over the semi-ring |0, 1]|. The membership function

VX XQ0)- V(Y XQ)
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is defined such that h(x;,q,)=3,,a;(y,»4,); its corresponding matrix
M, = ||a}}|l characterize the work of the F-automaton.

Let us consider the words U=x, Xy X, €EX¥,
v=pyc ¥y ), €Y* and  the matrices  M(x;/y,) =|lmu(x/y ),
mjk(.r!-/_l'_,)zaf{,-’. With the maxi-min product of matrices denoted by o, we
obtain the expression

M(ufv) = M(x,/y\} o M(x,/y,) © -0 M(xp/}"p)-

If P=P(A/A4) is a matrix-column of the type |Q} X | which elements are
equal to 1, the following composition is defined:

P(u/v)y=M(u/v)o P.

Let A be an F-automaton with (Q, ¢€) as the F-set of initial states, sub-F-set
of Q: ¢(g) € [0, 1] defines the membership of ¢ € Q as an initial state of 4.
We denote

eg)=1 if g=q'  €)g')=0 if g=g¢'
=0 if g#¢ =a€l0.1] if g#¢

with the supplementary condition } ., s?,(q) # 0 for cg. The F-automaton 4,
denoted in this case (4, ¢,) (resp. (4. ¢)) is called initial (resp. weakly initial)
if (Q.¢,) (resp. (Q.¢€)) is a sub-F-set of Q.

For the F-automaton 4 we define S (u/v)=¢€ o P(u/v), an entry indicating
the maximal degree of membership for the input word u and the output word
v, (Q. ¢) being fixed.

Let A=(X,Q,Y,h) and A’ = (X, Q', Y. h') be F-automata; (Q,¢) and
(Q'. ¢') are sub-F-sets of Q and Q’, respectively.

DEerFINITION 3. Two initial automata (4, ¢) and (4'.¢’) are equivalent
(notation (4,&)~(A4".¢")) if S,(u/v),=S,(u/v), for all u€ X* and
r € Y*, In particular:

—let A=A"=(X,Q,Y,h); if (A4,e)~(A',¢’), then ¢ and & are
equivalent on Q (notation € ~ g');

—if (4.e,)~(A’, €,'). then the siates g € Q and q' € Q' are equivalent
(notation g ~ q');

— A =(X,Q,Y,h) is equivalently embedded into A' = (X, Q', Y, k') if for
each g € Q there exists an equivalent state ¢’ € Q' of A4’ (notation 4 $A4');

— A is weakly equivalently embedded into A' (notation 4 g A") if for each
£: Q — |0, 1] there exists ¢’: Q' — [0, 1] such that (4,e)~ (4'.¢');

— A and A4’ are equivalent (notation 4 ~A4') if A< A and A 2A4';

—A and A’ are wekly equivalent if A T4’ and 4’ S A (notation 4 ~ 4').
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DEFINITION 4. Let A be an F-automaton;

— A is in reduced form if for each q. ¢’ € Q the relation g ~ g implies
q=q"

— A’ is called a reduct of A if A’ is in reduced form and equivalent to 4;

— A is in minimal form if for each ¢, (i <|Q|) there does not exist &)
(i <|Q|) such that (4. e} ) ~ (4, );

— A" is called a minimal of A if it is in minimal form and if 4 x> A’.

The above defined notions are in concordance with the classical theory of
automata |7, 12| and coincide with the usual terminology in the cases of

deterministic. nondeterministic and stochastic automata. For the F-automata
[9] this is an attempt to unify the terminology.

2. EQUIVALENCE OF F-AUTOMATA—AN ALGEBRAIC APPROACH

For each F-automaton A4 =(X.Q,Y,h) we define a map
£ V(X* X Y*)> VQ as follows:
(A, A)= N q.  tur)y= N plufr)g  if lu) =)
qEQ q;€0Q

=0 if {(u) #I(v)-

It is easy to verify that ¢ is a morphism of semi-modules. Let us denote its

corresponding matrix by M,.
We construct the sequence E, < E, < .-- < E of subsets of £ =X* x ¥*

obtained as follows:
Eq=1{(A, A}

E,=E,_UimvhueX* ve Y  lu)y=v)=i}
Let n=|{ px/MIxE X, vE Y. j<|Q}'Y
PropOSITION 3. The following statements hold:

(a) VE, is a sub-semi-module of VE,, . for each i =0, 1,...:
(b) IftVE,=tVE,, |, then tVE, =(VE,  for each p=0,1,..
(¢) The quasi-base of tVE contains at most n elements;

(d) tVE,_,=tVE,=.--=tVE.

Proof. (a) According to the construction of E, E| ..., which are sets of
generators (quasi-bases) for the semi-modules VE,, i=0,1,... we have
VE,c VE, < --- < VE. (b) The morphism of semi-modules ¢ being a linear
operator, the image of the sequence VE, < VE, —-.- < VE is the following
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sequence tVE,ctVE, c --- c tVE; hence (see Proposition 2) for i € N and
p=0,1... we have (VE,=tVE, ,. (c) The semimodule VQ being
noetherian and since (VE < VQ, holds dim¢VE < n. If tVE=VQ. the
equality holds. (d) Let us consider the sub-semimodule ¢VE;; it contains a
certain number of vectors of the quasi-base. If tVE, ctVE,  ,, the sub-semi-
module contains at least one supplementary vector of the quasi-base. Hence
if (VE=VQ and since each quasi-base (E, contains exactly a new
(supplementary) vector of the quasi-base of tVE, we obtain:

tVE,ctVE, c-..ctVE, =tVE,=--- =tVE,

having obviously dim (VE,_, = n.
This result reinforces some statements and algorithms of [10].

THEOREM 1. Let (A,¢) and (A'.¢') be two weakly initial F-automata.
(A.e)y~(A',e)iff cot=¢ot.
Proof. If lu)= l(v) for (u, v) € X* X Y*, according to Definition 6:
S(u/v)y =S8 u/v),
and since S, (u/v) =€ o (M(u/v) o P), we obtain
go (M(u/v)o P)=¢ o (M'(u/v) o P);

this expression is equivalent to €ot(u,v)=¢' ot'(u,v) for each couple
(u.v) € X* X Y* such that [(u)=I); if l(u)+#I(v), according to the
definition of ¢, holds f(u, v} =#(u.v) =0, i.e., ot =¢ o .

Conversely. let eor=2¢" o t'; obviously ¢ o t(u,v) =¢" o (u,v) for each
couple (4. v) € X* X Y* and hence € o t(u/v) =¢' o £'(u/v); but

M (u/v)=Mujv)o P if  I(u)=1Iv)
=0 if  {(u) # l(v);
it follows € o (M(u/v) o Py=¢ o (M'(u/v) o P), i.e., S (u/v), =S (u/v),. for

each (u, v) € X* X Y* such that /(u) = I(v).
A similar result is given in |9, 10].

COROLLARY 1. Let A be an F-automaton. € ~¢' iff S (u/v), =S, (u/v),
SJor each (u, v) € X* X Y* such that l(ufv)<n— 1.

Proof. If (A,e)~ (A,¢'), then S (u/v), =S, (u/v), for I(u/v)=0,L,.;
hence l(u/v) << n. If S (u/v), =S, (u/v), for each (u,v)E X* X ¥* such
that  Hu/v)<n—1, according to Proposition3(d) it follows
o (M(ufv)o P)=¢ o (M(u/v) o P); hence (4,¢€) ~ (4,¢").
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This is the fuzzy-interpretation of the well-known Carlyle theorem [3] for
equivalence of stochastic automata.

COROLLARY 2. For a given F-automaton A the following statements are
equivalent:

(a) e~¢':
(b) eoM,=¢" oM,

CoroLLARY 3 [10]|. For a given F-automaton A the following
statements are equivalent:

(@) &g~ &g
(b) The ith and jth rows in the matrix M, are identical.

Proof. Let sél ~ s},j; according to the Corollary2 of Theorem I,
&q,° M, =€, o M,: but by the construction of ¢, this means that the ith and
Jth rows in M, are identical, hence (a)=-(b). The inverse implication
(b) = (a) is directly verified.

The following auxiliary result is an important criterion to ascertain the
equivalence of two F-automata.

LEMMA. [f (4,&)~(A'.¢) then dim(Im ¢) = dim(Im ¢').

Proof. According to Theorem 1, ¢cot=¢' ot <> ¢0oM,. This matrix
equality leads to dim(Im ¢) = dim(Im ¢').
Let 4 and 4’ be two F-automata.

THEOREM 2. If ¢ is given, the problem of finding &', if it exists. such that
(A, &)~ (A’. &) is algorithmically decidable.

As a proof we give the algorithm (see Fig. 1).
The computing program is not easy to realize, useful standard programs
are missing.

3. REDUCTION AND MINIMIZATION OF FUzzy-AUTOMATA

The problem of reduction and minimization of F-automata is a conse-
quence of the theory of equivalence of F-automata, but they have a high
importance in applications. This part is a completion of very rich ideas of
[10].

Closely connected with the problem of reduction of F-automata is the
following statement;
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ENTER € M, M.

COMPUTE
dm Imt=r,dmImt =r"

0 FALSE
TRUE

FORM SYSTEM

Me ¢ M' = Me" SM,.

€20, 1=, ¢

SOLVE SYSTEM
FOR €

TRUE SYSTEM
1S
COMPATIBLE
PRINT 1A, e) IS PRINT NO EXISTS €
EQUIVALENT TO (A", e™) SUCH THAT (&,e )} IS
EQUIVALENT TO (A", ")
END
FIGUrE |

THEOREM 3. Let M, be the matrix associated to the F-automaton A. If
M, contains two identical rows, there exist two F-automata A’ and A", with
|Q| — | states each, such that A~ A’ and A ~A".

Progf. Let in M, the rows corresponding to the states g; and g; be iden-
tical and let Q' =Q — {q;}, Q" =Q — {g;}; the corresponding matrix M,
(resp. M,.) for the F-automaton A’ (resp. 4”) is obtained by M, eliminating
the ith (resp. the jth) row. We shall prove that 4 ~ A4’ (resp. 4 ~A"). The
equivalent state to g€ Q, g, £ g+ g, is g € Q' (resp. g € Q") and vice versa,
because ¢,' o M, =¢,' o M, (resp. ;o M, = ¢! o M,.). The equivalent state
to ¢ =gq;, q; € Q respectively is the state g, € Q' (resp. ¢, € Q"). The state
equivalent to g; € Q' (resp. ¢, € Q") is ¢, € Q (resp. q; € Q). The proof in
these conditions is a consequence of the definition of ¢, of the construction
of M, and a direct verification holds.
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COROLLARY. For every F-automaton there exists a reduced F-automaton.
All reduced F-automata associated to a given F-automaton have sets of
states with the same cardinality.

THEOREM 4. For finite F-automata the relation of equivalence is
decidable.

The block-scheme (Fig. 2) of the algorithm proving the equivalence of two
F-automata 4 and A4’ is in fact the proof of the Theorem 4.

The following result is connected with the existence and the explicit
construction of a minimal F-automaton to a given F-automaton.

THEOREM 5. Let A= (X.Q.Y.h) be an F-automaton. If &, ~¢ and

ENTER €, M, My
Io1\ el tellqeq
legtq e o

COMPUTE
dim Im t=r, dom Im t"'=¢"

PRINT A IS NOT
EQUIVALENT TO A"

PRINT A 1S NOT
EQUIVALENTLY END
EMBEDDED INTO A

FORM SYSTEM
M M= M M
q ' €q") !

FIGURE 2
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?
[ FRINT & 1S

EQUIVALENTLy
EMBEDDED INTO A"

PRINT A 1S o
EQUIVALENT TO A" ——_'Q

PRINT A" IS NOT
EQUIVALENTLY ————={ END
EMBEDDEC INTO A

MM oM,

FiG. 2—Continued.

E_Sh contains 1€ [0,1] as a component, there exists an F-automaton
A= (X.0Q, Y, h), with |Q| — 1 states, such that A ~ A.

Proof. Let (Q, s,‘,b) and (Q, egh) be a sub-F-set of Q: let ’
€0, = (81 Eyurn €y 1< 016y y rn &)
verify the condition of the theorem and
&g, = (0...., 0, 1,0,..., 0)

be equivalent to &) . We construct the F-automaton 4 =(X,(Q.Y,#) as
follows:

0=0-1g,t, mVAXQ)->VYXQ0). hx,q)=N @ q

r.k



280 TOPENCHAROV AND PEEVA

where @;f = max(aj, min(ey, aff)). We shall show the states g;. j # b, with
the same indices in A and A are equivalent. For the words with length /=1

we have

= __ Ky k : 0 rb _ rkx __ 1
ay;= r}(‘f,’)‘(dzr'j )= max(f}(‘fﬂa;j )s Tf;‘(mm(sm a;j))) = mfx(aij ) =aj;.

Writing the last equality we have in mind that egb contains 1 € [0,1] as a
component. i.e., max, , (min(e}, aj7)) = a}, because

max(min(e}, a};)) = min(max(e}), a}y) = a}.
kb kb :

Suppose the states g;, j # b, w-equivalent, i.e., for arbitrary words u € X*,
v € Y* such that [(u)=I(v) =w, the following holds: p;(u/v)z= p;(u/v),.
According to the hypothesis max,, ,(min(e}, p,(u/v)) = p,(u/v). Then we
obtain

B,/ ,0) = max(min(@}, f,(u/v)) = max(max(min(@, p,(u/v)))

rb

min(au 4 Tag((mm(52~ pk(u/v))))

= mgX(min(a,’-f. pilu/v))) = pjxuly,v),

i.e.. the states with the same indices for automata A and 4 are (w + 1)-
equivalent and thus equivalent. For each &= (g,, €5,..., €, _ 1+ Ep s E,,) fOT
A. there exist an equivalent &= (£,.&;yw & _1, 0,6, e €,) for the
automaton 4. For a given ¢ =(¢,.¢€,,..,€,) for the automaton A. the
corresponding equivalent £ = (&, &,,..., &,) for 4 is defined by the correspon-
dence & = max(¢;, min(¢,. €}.)). i # b, where ¢}. is the ith component in the
vector sgh. Indeed, having in mind the definition, we obtain

S (u/v), =€ o P(u/v) = max(min(e;, p(u/v))
= max(max(min(e,. p,(4/v)), min(e,, max(e! , p,(4/v)))))
= mabX(min(maX(Bu min(e,. £7))), 5i(/v))

= mfg((min(é,-, piu/v))) = SAu/v)s.
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