A Generalization of the Gronwall-Bellman Lemma and Its Applications

László Losonczi
Department of Mathematics, University of Lagos, Lagos, Nigeria*
and
Department of Mathematics, Kossuth Lajos University, Debrecen, Hungary
Submitted by Richard Bellman

1. Introduction

In [5] we have characterised the solutions of the inequality

$$
\begin{equation*}
F\left(t^{a_{1}} x_{1}, \ldots, t^{a_{n}} x_{n}\right) \leqslant t^{a_{0}} F\left(x_{1}, \ldots, x_{n}\right) \quad\left(t \geqslant 1, x_{i}>0, i=1, \ldots, n\right) \tag{1}
\end{equation*}
$$

assuming that F is a continuously differentiable positive function and a_{0}, \ldots, a_{n} are constants. We have found that (1) is valid if and only if

$$
\begin{equation*}
a_{1} x_{1} \frac{\partial F}{\partial x_{1}}+\cdots+a_{n} x_{n} \frac{\partial F}{\partial x_{n}} \leqslant a_{0} F\left(x_{1}, \ldots, x_{n}\right) \tag{2}
\end{equation*}
$$

holds for all $x_{i}>0, i=1, \ldots, n$.
The generalization of this result lead us to the following problem.
Let u, v be continuously differentiable functions defined on $[\xi, \xi+a]$ such that

$$
\begin{equation*}
u^{\prime}(t)-f(t, u(t)) \leqslant v^{\prime}(t)-f(t, v(t)) \quad t \in[\xi, \xi+a] \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
u(\xi)=v(\xi) \tag{4}
\end{equation*}
$$

where $f:[\xi, \xi+a] \times R \rightarrow R$ is a given continuous function, R is the set of reals. Under what conditions do (3) and (4) imply

$$
\begin{equation*}
u(t) \leqslant v(t) \quad t \in[\xi, \xi+a] ? \tag{5}
\end{equation*}
$$

The continuity of f is surely not enough since if (3) and (4) imply (5) then the solution of the initial-value problem $y^{\prime}(t)-f(t, y(t))=0, y(\xi)=\eta$ is unique on $[\xi, \xi+a]$.

* Present address.

Instead of (3) and (4) we may consider the corresponding integral inequality

$$
\begin{equation*}
u(t)-\int_{\xi}^{t} f(s, u(s)) d s \leqslant v(t)-\int_{\xi}^{t} f(s, v(s)) d s \quad t \in[\xi, \xi+a] \tag{6}
\end{equation*}
$$

or even the inequality

$$
u-A u \leqslant v-B v
$$

where u, v are elements of a Banach space $X ; A, B$ are operators mapping X into itself and \leqslant is a partial ordering on X. Under what conditions does this inequality imply $u \leqslant v$?

Our first theorem, which may be regarded as an abstract generalization of the Gronwall-Bellman lemma, gives an answer to the above question (Section 2). In Section 3 we apply this theorem to get estimates for solutions of initial-value problems. Finally in Section 4 we give a necessary and sufficient condition for a function F to satisfy the inequality

$$
F\left(k_{1}\left(t, x_{1}\right), \ldots, k_{n}\left(t, x_{n}\right)\right) \leqslant k_{0}\left(t, F\left(x_{1}, \ldots, x_{n}\right)\right)
$$

where the functions k_{i} and the variable t are subjected to certain conditions. In the special cases $k_{i}(t, x)=t^{a_{i}} x$ and $a_{i} t+x$ we prove the same result under weaker assumptions and generalize an inequality of [3].

2. A Generalization of the Gronwall-Bellman Lemma

Let X denote a real Banach space and let C, a subset of X, be a cone i.e. a closed convexe set such that $x \in C, \alpha \geqslant 0$ imply $\alpha x \in C$ and from $x,-x \in C$ it follows that $x=0$. By help of C a partial ordering \leqslant can be defined in X : for $x, y \in X$

$$
\begin{equation*}
x \leqslant y \quad \text { if } \quad y-x \in C \tag{7}
\end{equation*}
$$

This partial ordering has the usual properties of the ordinary inequalities (see, e.g., [4]).

The following theorem plays an important role in our investigations.
Theorem 1. Assume that X is a real Banach space, C is a cone in X, \leqslant is the partial ordering defined by (7). Assume further that A, B are two operators (not necessarily linear) mapping X into itself such that
(i) $x, y \in X, x \leqslant y$ imply $A x \leqslant B y$ and
(ii) the equations

$$
\varphi=g+A \varphi \quad \psi=h+B \psi
$$

have unique solutions φ, ψ whatever be the elements $g, h \in X$, and these solutions can be obtained as the limits (in norm convergence) of the sequences of the corresponding successive approximations.

Then the inequality

$$
u-A u \leqslant v-B v \quad u, v \in X
$$

implies that

$$
u \leqslant v
$$

Remark 1. The condition (i) is satisfied if $A x \leqslant B x$ for all $x \in X$ and A (or B) is monotone in the sense that $x, y \in X, x \leqslant y$ imply $A x \leqslant A y$.

Remark 2. The condition (ii) is fulfilled if both A and B are contractions.
Remark 3. If A and B are linear bounded operators defined on the whole X and for some natural number $n A^{n}$ and B^{n} are contractions, then (ii) is satisfied again. Namely in this case the sequence of successive approximations of the equation $\varphi=g+A \varphi$ can be written as

$$
\varphi_{n}=\left(E+A+A^{2}+\cdots+A^{n}\right) g
$$

($n=1,2, \ldots, E$ is the identity operator) which converges (necessarily to the unique solution of the equation), since the spectral radius of A is

$$
r(A)=\inf _{k}\left(\left\|A^{k}\right\|\right)^{1 / k} \leqslant\left(\left\|A^{n}\right\|\right)^{1 / n}<1
$$

and the same is true for the other equation.
Proof of Theorem 1. Denote by g and h the element $u-A u$ and $v-B v$ respectively then

$$
\begin{equation*}
g \leqslant h \tag{8}
\end{equation*}
$$

and by (ii)

$$
\begin{equation*}
u=\lim \varphi_{n} \quad v=\lim \psi_{n} \tag{9}
\end{equation*}
$$

where $\varphi_{0}=g, \varphi_{n+1}=g+A \varphi_{n}(n=0,1, \ldots) ; \psi_{0}=h, \psi_{n+1}=h+B \psi_{n}$ ($n=0,1, \ldots$). We prove by induction that

$$
\begin{equation*}
\varphi_{n} \leqslant \psi_{n} \quad(n=0,1, \ldots) . \tag{10}
\end{equation*}
$$

For $n=0$ this is valid by (8). Assume (10) is true for $n=k$ then by (i) and (8)

$$
\varphi_{k+1}=g+A \varphi_{k} \leqslant h+B \psi_{k}=\psi_{k+1}
$$

Letting $n \rightarrow \infty$ in (10) we obtain $u \leqslant v$ which completes the proof.

3. Estimates for Solutions of Operator-Equations

Theorem 2. Assume that A and B_{1}, B_{2} (in place of B) satisfy the conditions of Theorem 1 , except that instead of (i) we require the validity of the inequalities

$$
B_{1} x \leqslant A x \leqslant B_{2} x \quad x \in X
$$

and

$$
A x \leqslant A y \quad \text { if } \quad x \leqslant y ; \quad x, y \in X .
$$

Then the solutions v_{1}, v_{2} of the equations

$$
v_{1}-B_{1} v_{1}=0 \quad v_{2}-B_{2} v_{2}=0
$$

approximate the solution u of

$$
u-A u=0
$$

in the sense that

$$
v_{1} \leqslant u \leqslant v_{2} .
$$

Theorem 3. Assume that $A=B$ satisfy the conditions of Theorem 1 . Then

$$
u-A u \leqslant v-A v \quad u, v \in X
$$

implies the inequality

$$
u \leqslant v
$$

that is the inverse operator $(E-A)^{-1}$ is monotone increasing.
The proof of these theorems follows immediately from Theorem 1.
Choosing in Theorem 3 the element v as the solution of $v-A v=0$ and specializing A we can get many results obtained earlier. Instead of listing these we refer the reader to [1] where also detailed references can be found. Here we want to specialize Theorems 2, 3 only for the case of integral and differential operators.

Let $f, g_{1}, g_{2}:[\xi, \xi+a] \times R \rightarrow R$ be continuous real-valued functions satisfying Lipschitz condition in their second variable. Assume further that f is an increasing function in its second variable.

Corollary 1. If

$$
\begin{equation*}
g_{1}(x, y) \leqslant f(x, y) \leqslant g_{2}(x, y) \quad x \in[\xi, \xi+a], \quad y \in R \tag{1}
\end{equation*}
$$

then the solution y of the initial-value problem

$$
y^{\prime}=f(x, y) \quad y(\xi)=\eta
$$

is approximated by the solutions y_{1}, y_{2} of the initial-value problems

$$
y_{1}=g_{1}\left(x, y_{1}\right) \quad y_{1}(\xi)=\eta, \quad y_{2}=g_{2}\left(x, y_{2}\right) \quad y_{2}(\xi)=\eta,
$$

that is

$$
\begin{equation*}
y_{1}(x) \leqslant y(x) \leqslant y_{2}(x) \quad x \in[\xi, \xi+a] . \tag{12}
\end{equation*}
$$

Corollary 2. Under the above mentioned conditions (for f) the inequalities

$$
\begin{gather*}
u^{\prime}(t)-f(t, u(t)) \leqslant v^{\prime}(t)-f(t, v(t)) \quad t \in[\xi, \xi+a] \tag{13}\\
u(\xi)=v(\xi)
\end{gather*}
$$

imply

$$
\begin{equation*}
u(t) \leqslant v(t) \quad t \in[\xi, \xi+a] . \tag{14}
\end{equation*}
$$

The proofs are obvious if we apply Theorem 2 and 3 respectively for $X=C[\xi, \xi+a]$, the Banach space of all real-valued functions defined and continuous on $[\xi, \xi+a]$, and for the operators A, B_{1}, B_{2} defined by

$$
\begin{aligned}
& \left(A_{\varphi}\right)(x)=\eta+\int_{\xi}^{x} f(t, \varphi(t)) d t \\
& \left(B_{i} \varphi\right)(x)=\eta+\int_{\xi}^{x} g_{i}(t, \varphi(t)) \quad(i=1,2) .
\end{aligned}
$$

We remark that if f, g_{1}, g_{2} are defined only on $[\xi, \xi+a] \times[\eta, \eta+b]$ then the validity of inequalities (12) and (14) can be guaranteed only on the interval $[\xi, \xi+\alpha]$, where $\alpha=\min \{a, b / M\}$ and M is a common bound for the absolute values of f, g_{1}, g_{2}. Instead of a Lipschitz condition we may use weaker assumptions as well, namely we only have to provide the uniform convergence of the sequence of successive approximations. For this see [2].

4. Subhomogeneous Functions

Let I, J be open intervals, $k_{i}: J \times I \rightarrow I(i=1, \ldots, n), k_{0}: J \times R \rightarrow R$ given functions. Assume that
(i) there exists a $t_{0} \in J$ such that

$$
k_{i}\left(t_{0}, x\right)=x \quad x \in I(\text { if } i=1, \ldots, n) ; \quad x \in R(\text { if } i=0)
$$

(ii) the functions $k_{0}, k_{i}(i=1, \ldots, n)$ are differentiable with respect to their first variable on $J \times R$ and $J \times I$ respectively,
(iii) $\quad k_{i}{ }^{\prime}(t, x)=k_{i}{ }^{\prime}\left(t_{0}, k_{i}(t, x)\right) h(t) \quad(i=0, \ldots, n)$
holds for all possible values of t and x, where h is a continuous non-negative function on J and the prime denotes the partial derivative with respect to the first variable,
(iv) $k_{0}{ }^{\prime}\left(t_{0}, x\right)$ is a continuous increasing function satisfying Lipschitz condition:

$$
\left|k_{0}^{\prime}\left(t_{0}, x_{1}\right)-k_{0}^{\prime}\left(t_{0}, x_{2}\right)\right| \leqslant \alpha\left|x_{1}-x_{2}\right| \quad x_{1}, x_{2} \in R
$$

with constant α.
Definition. A function $F: I^{n} \rightarrow R$ is called a positive subhomogeneous function with respect to the functions k_{0}, \ldots, k_{n} satisfying (i)-(iv) if

$$
\begin{equation*}
F\left(k_{1}\left(t, x_{1}\right), \ldots, k_{n}\left(t, x_{n}\right)\right) \leqslant k_{0}\left(t, F\left(x_{1}, \ldots, x_{n}\right)\right) \tag{15}
\end{equation*}
$$

holds for all $x=\left(x_{1}, \ldots, x_{n}\right) \in I^{n}, t \in J_{x} \cap\left[t_{0}, \infty\right)$, where

$$
J_{x}=\left\{t \mid t \in J, k_{i}\left(t, x_{i}\right) \in J(i=1, \ldots, n)\right\}
$$

F is called negative subhomogeneous with respect to k_{0}, \ldots, k_{n} if (15) holds for all $x \in I^{n}$ and $t \in J_{x} \cap\left(-\infty, t_{0}\right]$.
'The notion of positive, respectively, negative superhomogeneous function can be defined analogously changing the sign \leqslant to \geqslant in (15).

Of course these definitions have sense even if the functions k_{0}, \ldots, k_{n} satisfy only condition (i), but our theorems shall be true only under the assumptions (i)-(iv).

Theorem 4. Let $F: I^{n} \rightarrow R$ be a continuously differentiable function on I^{n}. F is positive subhomogeneous with respect to k_{0}, \ldots, k_{n} (satisfying (i)-(iv)!) that is

$$
\begin{equation*}
F\left(k_{1}\left(t, x_{1}\right), \ldots, k_{n}\left(t, x_{n}\right)\right) \leqslant k_{0}\left(t, F\left(x_{1}, \ldots, x_{n}\right)\right) \tag{15}
\end{equation*}
$$

holds for all $x \in I^{n}, t \in J_{x} \cap\left[t_{0}, \infty\right)$ if and only if
$k_{1}{ }^{\prime}\left(t_{0}, x_{1}\right) \frac{\partial F(x)}{\partial x_{1}}+\cdots+k_{n}{ }^{\prime}\left(t_{0}, x_{n}\right) \frac{\partial F(x)}{\partial x_{n}} \leqslant k_{0}{ }^{\prime}\left(t_{0}, F(x)\right), \quad x \in I^{n}$.
Proof. Necessity. Let $x \in I^{n}$ be a fixed vector and denote by $u(t)$ and $v(t)$ the left and right side of (15) respectively. Then $u\left(t_{0}\right)=v\left(t_{0}\right)$, thus (15) may be written as

$$
\left(u(t)-u\left(t_{0}\right)\right) /\left(t-t_{0}\right) \leqslant\left(v(t)-v\left(t_{0}\right)\right) /\left(t-t_{0}\right), \quad t \in J_{x} \cap\left(t_{0}, \infty\right)
$$

Letting $t \rightarrow t_{0}+0$ we have

$$
u^{\prime}\left(t_{0}\right) \leqslant v^{\prime}\left(t_{0}\right)
$$

which is identical to (16).

Sufficiency. Put $k_{i}\left(t, x_{i}\right)$ instead of x_{i} in (16) and multiply the obtained inequality by $h(t)$, the function occured in (iii). Using the property (iii) we get

$$
\sum_{i=1}^{n} \frac{\partial F(k(t, x))}{\partial x_{i}} k_{i}{ }^{\prime}\left(t, x_{i}\right) \leqslant k_{\mathbf{0}}{ }^{\prime}(t, F(k(t, x)) h(t)
$$

where $x \in I^{n}, t \in J_{x}$ and $k(t, x)=\left(k_{1}\left(t, x_{1}\right), \ldots, k_{n}\left(t, x_{n}\right)\right)$. Hence

$$
u^{\prime}(t)-v^{\prime}(t) \leqslant k_{0}{ }^{\prime}\left(t_{0}, F(k(t, x))\right) h(t)-k_{0}{ }^{\prime}(t, F(x))
$$

since $v^{\prime}(t)=k_{0}{ }^{\prime}(t, F(x))$. By (iii) (uscd for $\left.i==0\right)$

$$
\begin{equation*}
u^{\prime}(t)-k_{0}^{\prime}\left(t_{0}, u(t)\right) h(t) \leqslant v^{\prime}(t)-k_{0}^{\prime}\left(t_{0}, v(t)\right) h(t), \quad t \in J_{x} \tag{17}
\end{equation*}
$$

Applying Corollary 2 we get

$$
\begin{equation*}
u(t) \leqslant v(t), \quad t \in J_{x} \cap\left[t_{0}, \infty\right) \tag{18}
\end{equation*}
$$

which was to be proved.
We remark that Theorem 4 remains in force if we write \geqslant instead of \leqslant both in (15) and (16). Changing only the condition $t \in J_{x} \cap\left[t_{0}, \infty\right)$ into $t \in J_{x} \cap\left(-\infty, t_{0}\right]$ the inequality sign in (16) will change. This implies that if (15) is satisfied for all $x \in I^{n}, t \in J_{x}$ then (16) holds with equality sign thus (15) can hold also with equality sign.

In the special cases $k_{i}(t, x)=t^{a_{i x}}(i=0, \ldots, n), J=R^{+}=(0, \infty)$ and $k_{i}(t, x)=a_{i} t+x(i=0, \ldots, n), J=R$ we can obtain stronger result then Theorem 4 (see also [5] Theorems 1, 2).

Let $F: I^{n} \rightarrow R$ be a (totally) differentiable function on I^{n}. The inequality

$$
F\left(t^{a_{1}} x_{1}, \ldots, t^{a_{n}} x_{n}\right) \leqslant t^{a_{0}} F\left(x_{1}, \ldots, x_{n}\right), \quad x \in I^{n}, \quad t \in R_{x}^{+} \cap[1, \infty)
$$

is equivalent to

$$
a_{1} x_{1}\left(\partial F(x) / \partial x_{1}\right)+\cdots+a_{n} x_{n}\left(\partial F(x) / \partial x_{n}\right) \leqslant a_{0} F(x), \quad x \in I^{n} .
$$

Similarly, the inequality
$F\left(a_{1} t+x_{1}, \ldots, a_{n} t+x_{n}\right) \leqslant a_{0} t+F\left(x_{1}, \ldots, x_{n}\right), \quad x \in I^{n}, \quad t \in R_{x} \cap[0, \infty)$ is equivalent to

$$
a_{1}\left(\partial F(x) / \partial x_{1}\right)+\cdots+a_{n}\left(\partial F(x) /\left(\partial x_{n}\right) \leqslant a_{0}, \quad x \in I^{n}\right.
$$

The proof is the same as that of Theorem 4 except the implication
$(17) \rightarrow(18)$. The continuity of the partial derivatives were used only in this step. In the first case the inequality corresponding to (17) has the form

$$
u^{\prime}(t)-\left(a_{0} / t\right) u(t) \leqslant v^{\prime}(t)-\left(a_{0} / t\right) v(t) .
$$

After a multiplication by $t^{-a_{0}}$ this can be written as

$$
(d / d t)\left(t^{-a_{0}} u(t)\right) \leqslant(d / d t)\left(t^{-a_{0}} v(t)\right)
$$

from which

$$
u(t) \leqslant v(t), \quad t \in R_{x}+\cap[1, \infty)
$$

since $u(1)=v(1)$.
In the second case (17) has the form

$$
u^{\prime}(t)-a_{0} \leqslant v^{\prime}(t)-a_{0}
$$

which obviously implies $u(t) \leqslant v(t)$ for $t \in R_{x} \cap[0, \infty)$ since $u(0)=v(0)$.
Let $n \geqslant 2$ be a fixed natural number and denote by W_{n} the set of all vectors $p=\left(p_{1}, \ldots, p_{n}\right)$ having the properties $p_{i} \geqslant 0(i=1, \ldots, n), \sum_{i=1}^{n} p_{i}=1$. If $x=\left(x_{1}, \ldots, x_{n}\right)$ then $t x$ and $t+x$ denote the vectors $\left(t x_{1}, \ldots, t x_{n}\right)$ and $\left(t+x_{1}, \ldots, t+x_{n}\right)$ respectively.

Applying the above results to the function,

$$
F(x)=F_{p}(x)=\Phi\left(\sum_{i=1}^{n} p_{i} x_{i}\right)-\sum_{i=1}^{n} p_{i} \Phi\left(x_{i}\right)
$$

where $\Phi: I \rightarrow R$ is a differentiable function on the open interval $I, p \in W_{n}$, $x \in I^{n}$ we get further interesting inequalities.

Corollary 3. The inequality

$$
F_{p}(t x) \leqslant F_{p}(x)
$$

is true for all $x \in I^{n}, p \in W_{n}$ and $t \geqslant 1$ with $t x \in I^{n}$ if and only if the function Ψ defined $b y \Psi(x)=x \Phi^{\prime}(x)$ is a convex function on I.

Corollary 4. In order that the inequality

$$
\begin{equation*}
F_{p}(t+x) \leqslant F_{p}(x) \tag{19}
\end{equation*}
$$

holds for all $x \in I^{n}, p \in W_{n}$ and $t \geqslant 0$ with $t+x \in I^{n}$ it is necessary and sufficient that Φ^{\prime}, the derivative of Φ, be a convex function on I.

This is a generalization of Theorem 4 of [3]. There it was proved that (19) is truc if Φ is a concave and Φ^{\prime} is a convex function on $I\left(=R^{+}\right)$.

References

1. F. Chandra and B. A. Fleishman, On a generalization of the Gronwall-Bellman lemma in partially ordered Banach spaces, J. Math. Anal. Appl. 31 (1970), 668-681.
2. E. A. Coddington and N. Levinson, "Theory of Ordinary Differential Equations," McGraw-Hill, New York, 1955.
3. A. Dinghas, Superadditive Functionale, Identitäten und Ungleichungen der elementaren Analysis, Math. Ann. 178 (1968), 315-334.
4. M. A. Krasnosklskir, "Positive Solutions of Operator Equations," Noordhoff, Groningen, 1964.
5. L. Losonczi, Subhomogene Mittelwerte, Acta Math. Acad. Sci. Hung. 22 (1971), 187-195.
