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1. INTRODUCTION 

In [5] we have characterised the solutions of the inequality 

F(Plxl )..., P”X,) < POF(x, )...) Xn) (t > 1, xi > 0, i = l)...) n) (1) 

assuming that F is a continuously differentiable positive function and 
a, ,..., a, are constants. We have found that (1) is valid if and only if 

aF aF 
~~~~~+...+~~x~~~~oF(x,,...,x,) 

holds for all xi > 0, i = l,..., n. 
The generalization of this result lead us to the following problem. 

Let u, v be continuously differentiable functions defined on [[, [ + a] such thut 

u’(t) - f (4 u(t)) G v’(t) - fk v(t)) t E lx, 5 + 4 (3) 

and 

u(5) = v(5) (4) 

wheref: [t, E + a] x R -+ R is a given continuous function, R is the set of reals. 
Under what conditions do (3) and (4) imply 

u(t) d v(t) t E [5, ‘! + al ‘i (5) 

The continuity off is surely not enough since if (3) and (4) imply (5) then the 
solution of the initial-value problem y’(t) - f (t, y(t)) = 0, ~(5) = 77 is unique 
on [t, E + 4. 

* Present address. 
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Instead of (3) and (4) we may consider the corresponding integral inequality 

or even the inequality 

u-Au<v-Bv 

where u, v are elements of a Banach space X, A, B are operators mapping X 
into itself and < is a partial ordering on X. Under what conditions does this 
inequality imply p1 < v I 

Our first theorem, which may be regarded as an abstract generalization of 
the Gronwall-Bellman lemma, gives an answer to the above question 
(Section 2). In Section’3 we apply this theorem to get estimates for solutions of 
initial-value problems. Finally in Section 4 we give a necessary and sufficient 
condition for a function F to satisfy the inequality 

where the functions ki and the variable t are subjected to certain conditions. 
In the special cases k$(t, x) = tadx and ait + x we prove the same result under 
weaker assumptions and generalize an inequality of [3]. 

2. A GENERALIZATION OF THE GRONWALL-BELLMAN LEMMA 

Let X denote a real Banach space and let C, a subset of X, be a cone i.e. a 
closed convexe set such that x E C, (Y > 0 imply cyx E C and from x, -x E C it 
follows that x = 0. By help of C a partial ordering ,< can be defined in X: 
for x, y E X 

X<Y if y - x E C. (7) 

This partial ordering has the usual properties of the ordinary inequalities 
(see, e.g., [41). 

The following theorem plays an important role in our investigations. 

THEOREM 1. Assume that X is a real Banach space, C is a cone in X, < is 
the partial ordering defined by (7). Assume further that A, B are two operators 
(not necessarily linear) mapping X into itself such that 

(i) x,y~X,x <y imply Ax <By and 

(ii) the equations 

v=g+Av II,=h+B# 
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have unique solutions q, # whatever be the elements g, h E X, and these solutions 
can be obtained as the limits (in norm convergence) of the sequences of the corre- 
sponding successive approximations. 

Then the inequality 

implies that 

u-Au<v-Bv U,VEX 

u < v. 

Remark 1. The condition (i) is satisfied if Ax < Bx for all x E X and A 
(or B) is monotone in the sense that x, y E X, x < y imply Ax < Ay. 

Remark 2. The condition (ii) is fulfilled if both A and B are contractions. 

Remark 3. If A and B are linear bounded operators defined on the whole 
X and for some natural number n An and Bn are contractions, then (ii) is 
satisfied again. Namely in this case the sequence of successive approximations 
of the equation I$J = g + Ag, can be written as 

(n = 1, 2,..., E is the identity operator) which converges (necessarily to the 
unique solution of the equation), since the spectral radius of A is 

r(A) = i;f(jl AL II)“” < (11 An !j)l’n < 1 

and the same is true for the other equation. 

Proof of Theorem 1. Denote by g and h the element I( - Au and v - Bv 
respectively then 

g<h (8) 

and by (ii) 
u = limqD, v = lim & (9) 

where v. = g, ‘P%+~ = g + AT,, (n = 0, l,...); 9, = h, &+I = h + W, 
(n = 0, l,...). We prove by induction that 

%a G A2 (n = 0, l,...). (10) 

For n = 0 this is valid by (8). A ssume (10) is true for n = k then by (i) and (8) 

vs.1 = g + AT, < h + WI, = h+l . 

Letting n + 00 in (10) we obtain u < v which completes the proof. 
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3. ESTIMATES FOR SOLUTIONS OF OPERATOR-EQUATIONS 

THEOREM 2. Assume that A and B, , B, (in pike of B) satisfy the 
conditions of Theorem 1, except that instead of(i) we require the validity of the 
inequalities 

B,x < Ax < B,x XEX 

and 
Ax < Ay zy x ,<y; X,YEX. 

Then the solutions v, , v2 of the equations 

v, - B,v, = 0 v2 - B,v, = 0 

approximate the solution u of 

u-Au=0 

in the sense that 
v, < u < 02 , 

THEOREM 3. Assume that A = B satisfy the conditions of Theorem 1. Then 

u-Au<v-Av U,VEX 

implies the inequality 
u<v 

that is the inverse operator (E - A)-l is monotone increasing. 

The proof of these theorems follows immediately from Theorem 1. 
Choosing in Theorem 3 the element v as the solution of v - As = 0 and 

specializing A we can get many results obtained earlier. Instead of listing 
these we refer the reader to [I] where also detailed references can be found. 
Here we want to specialize Theorems 2, 3 only for the case of integral and 
differential operators. 

Let f, g, , g2:[[, .$ + a] x R--f R be continuous real-valued functions 
satisfying Lipschitz condition in their second variable. Assume further that f 
is an increasing function in its second variable. 

COROLLARY 1. If 

n(x, Y> G f (x9 Y) G g&s Y) xEK,Q+al, YER 

then the solution y of the initial-value problem 

Y’ = f c? Y> Y(f) = r) 

(11) 
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is approximated by the solutions y1 , y2 of the initial-value problems 

Yl = &, Yd Y&3 = % Y2 = g2(x, Y2) Y2(5> = % 

that is 
Y&9 G Y(X) G Y2W x E [t, E + al- (12) 

COROLLARY 2. Under the above mentioned conditions (for f) the inequalities 

u’(t) - f (t, u(t)> < v’(t) - f (4 qt>> t E [5, E + al 

45) = $6) 
(13) 

imply 
u(t) < $0 t E [E, 8 + al. (14) 

The proofs are obvious if we apply Theorem 2 and 3 respectively for 
X = C[,$, .$ + a], the Banach space of all real-valued functions defined and 
continuous on [.$, 5 + a], and for the operators A, B, , B, defined by 

(Acp) (~1 = 7 + lc’f P, VW> dt 

(Bid (4 = rl + (kt, &)I (i = 1, 2). 

We remark that if f, g, , g, are defined only on [[, .$ + a] x [T, v + b] 
then the validity of inequalities (12) and (14) can be guaranteed only on the 
interval [E, 5 + OL], where 01 = min{a, b/M) and M is a common bound for 
the absolute values off, g, , g, . Instead of a Lipschitz condition we may use 
weaker assumptions as well, namely we only have to provide the uniform 
convergence of the sequence of successive approximations. For this see [2]. 

4. SUBHOMOGENEOUS FUNCTIONS 

Let 1, J be open intervals, Ki: j x I-+ I (i = l,..., n), K,: J x A --+ R 
given functions. Assume that 

(i) there exists a t, E J such that 

k&, , x) = x x EI(if i = l,..., n); x E R(if i = 0), 

(ii) the functions k, , K, (i = I,..., n) are differentiable with respect to 
their first variable on J x R and J x I respectively, 

(iii) ki’(t , x) = k,‘(t, , ki(t, x)) h(t) (i = O,..., n) 

409144/3-12 
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holds for all possible values of t and x, where J1 is a continuous non-negative 
function on J and the prime denotes the partial derivative with respect to the 
first variable, 

(iv) K,‘(t, , x) is a continuous increasing function satisfying Lipschitz 
condition: 

DEFINITION. A function F: In -+ R is called a positive subhomogeneous 
function with respect to the functions K, ,..., k, satisfying (i)-(iv) if 

W,(t, xJ,.-, W, 4) < k,(t> F(x, ,-e-7 xn>> (15) 

holds for all x = (x1 ,..., x,) E I”, t E JE n [to , co), where 

Jz = {t ( t E J, ki(t, xi) E J(i = 1,. . . , n)}. 

F is called negative subhomogeneous with respect to k, ,..., k, if (15) holds for 
allxEPandtE JICn(--co,&]. 

The notion of positive, respectively, negative superhomogeneous function can 
be defined analogously changing the sign < to 3 in (15). 

Of course these definitions have sense even if the functions k, ,..., k, 
satisfy only condition (i), but our theorems shall be true only under the 
assumptions (i)-(iv). 

THEOREM 4. Let F: I” + R be a continuously differentiable function on In. 
F is positive subhomogeneous with respect to k, ,..., k, (satisfying (i)-(iv)!) that is 

W,(t, xd,..., k,(t, x,>> < W, F(x, ,-‘., 4) (15) 

holds for all x E In, t E Jx n [to , co) if and only if 

W4 k,‘(to ,XI> 7 + .a. + k,‘(to , x,) F ,< k,‘(t, SF(x)), x EI”. (16) 
1 72 

Proof. Necessity. Let x E I” be a fixed vector and denote by u(t) and v(t) 
the left and right side of (15) respectively. Then u(t,J = v(tO), thus (15) may 
be written as 

(u(t) - u(trJ)l(t - to) d (v(t) - aN(t - 44 

Letting t -+ to + 0 we have 

u’(t,) < v’(to) 

t E Jz n 0, , 4. 

which is identical to (16). 
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Suficienc~. Put &(t, xi) instead of xi in (16) and multiply the obtained 
inequality by h(t), the function occured in (iii). Using the property (iii) we get 

Lx z 
IE aF’;:y x)) hi’(t, Xi) < ho’(t, F(h(t, x)) h(t) 

i=l 

where x E Ifi, t E Jz and k(t, X) = (k,(t, xi) ,..., h,(t, x,J). Hence 

u’(t) - v’(t) < k<(t, , F(k(t, x))) h(t) - &yt, F(x)) 

since v’(t) = ho’(t, F(x)). By (iii) (used for i = 0) 

u’(t) - J$l’(t, 1 u(t)) h(t) < w’(t) - kl’(t, , v(t))&), tEl%-* (17) 

Applying Corollary 2 we get 

u(t) d v(t), 

which was to be proved. 

t E J% n [to ) a3) (18) 

We remark that Theorem 4 remains in force if we write >, instead of < 
both in (15) and (16). Changing only the condition t E JE n [to, 00) into 
t E Jz n (-co, to] the inequality sign in (16) will change. This implies that if 
(15) is satisfied f or all x E I”, t E _7, then (16) holds with equality sign thus 
(15) can hold also with equality sign. 

In the special cases ki(t, X) = taix (i = O,..., n), J = R+ = (0, 00) and 
lQ(t, x) = a$ + x (i = o,..., n), J = R we can obtain stronger result then 
Theorem 4 (see also [5] Theorems 1,2). 

Let F: I’” + R be a (totally) differentiable function on In. The inequality 

F( ta’xl ,..., P-x,) < taoF(xl ,..., x,), XSP, teR,+n [l, 00) 

is equivalent to 

a,x,(~W4/%> + ... f a,z~,(~F(x)/%J G a,,+), XEP. 

Similarly, the inequality 

F(a,t + x1 ,**., ant + x,) < a,t + F(x, ,.-., xn), XEI”, tER,n [O. CO) 

is equivalent to 

Q,(W)/%) + .*. + Q~(WWX,J < 00, XEP. 

The proof is the same as that of Theorem 4 except the implication 
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(17) -+ (18). Th e continuity of the partial derivatives were used only in this 
step. In the first case the inequality corresponding to (17) has the form 

After a multiplication by PO this can be written as 

(d/dt) (t-%(t)) < (d/dt) (t-%(t)) 

from which 

u(t) < fJ(t), t E R,+ n [I, m) 

since u(1) = w(l). 
In the second case (17) has the form 

u’(t) - a, < w’(t) - a, 

which obviously implies u(t) < w(t) for t E R, n [0, CO) since u(0) = w(O). 
Let n > 2 be a fixed natural number and denote by W, the set of all 

vectorsp = (p, ,..., p,) having the properties p, > 0 (i = I,..., n), ~~=,p, = 1. 
If x = (X1 ,..., x,) then tx and t + x denote the vectors (txl ,..., tx,) and 
(t + Xl ,*-*, t + 3,) respectively. 

Applying the above results to the function, 

where @: I+ R is a differentiable function on the open interval I, p E W, , 
x E IQ we get further interesting inequalities. 

COROLLARY 3. The inequality 

is true for all x E I”, p E W, and t 2 1 with tx E I” if and only ;f the function Y 
defined by Y(x) = x@‘(x) is a conwex function on I. 

COROLLARY 4. In order that the inequality 

F,(t + 4 < ED (19) 

holds for all x E In, p E W,, and t > 0 with t + x E In it is necessary and 
sz.@icient that Qi’, the deriwative of @, be a convex function on I. 

This is a generalization of Theorem 4 of [3]. There it was proved that (19) 
is true if @ is a concave and @’ is a convex function on I( =R+). 
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